Rev 2139 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2108 | - | 1 | #include <avr/io.h> |
2 | #include <avr/interrupt.h> |
||
3 | #include "eeprom.h" |
||
4 | #include "output.h" |
||
5 | #include "flight.h" |
||
6 | #include "attitude.h" |
||
7 | #include "timer2.h" |
||
8 | |||
9 | // #define COARSERESOLUTION 1 |
||
10 | |||
11 | #ifdef COARSERESOLUTION |
||
2135 | - | 12 | #define NEUTRAL_PULSELENGTH ((int16_t)(F_CPU/32000*1.5f + 0.5f)) |
2139 | - | 13 | #define SERVO_NORMAL_LIMIT ((int16_t)(F_CPU/32000*0.5f + 0.5f)) |
14 | #define SERVO_ABS_LIMIT ((int16_t)(F_CPU/32000*0.8f + 0.5f)) |
||
15 | //#define SCALE_FACTOR 4 |
||
2108 | - | 16 | #define CS2 ((1<<CS21)|(1<<CS20)) |
17 | |||
18 | #else |
||
2135 | - | 19 | #define NEUTRAL_PULSELENGTH ((int16_t)(F_CPU/8000.0f * 1.5f + 0.5f)) |
2139 | - | 20 | #define SERVO_NORMAL_LIMIT ((int16_t)(F_CPU/8000.0f * 0.5f + 0.5f)) |
21 | #define SERVO_ABS_LIMIT ((int16_t)(F_CPU/8000.0f * 0.8f + 0.5f)) |
||
22 | //#define SCALE_FACTOR 16 |
||
2108 | - | 23 | #define CS2 (1<<CS21) |
24 | #endif |
||
25 | |||
2139 | - | 26 | #define FRAMELENGTH ((uint16_t)(NEUTRAL_PULSELENGTH + SERVO_ABS_LIMIT) * (uint16_t)staticParams.servoCount + 128) |
2108 | - | 27 | |
28 | volatile uint16_t servoValues[MAX_SERVOS]; |
||
2139 | - | 29 | //volatile uint8_t recalculateServoTimes = 0; |
30 | //volatile uint16_t previousManualValues[2]; |
||
2108 | - | 31 | |
2133 | - | 32 | #define HEF4017R_ON PORTD |= (1<<PORTD3) |
33 | #define HEF4017R_OFF PORTD &= ~(1<<PORTD3) |
||
2108 | - | 34 | |
35 | /***************************************************** |
||
36 | * Initialize Timer 2 |
||
37 | *****************************************************/ |
||
38 | void timer2_init(void) { |
||
39 | uint8_t sreg = SREG; |
||
40 | |||
41 | // disable all interrupts before reconfiguration |
||
42 | cli(); |
||
43 | |||
2135 | - | 44 | // set PD7 as output of the 4017 clk |
2109 | - | 45 | DDRB |= (1 << DDB3); |
46 | PORTB &= ~(1 << PORTB3); // set PD7 to low |
||
2108 | - | 47 | |
2109 | - | 48 | // oc2b DDRD |= (1 << DDD4); // set PC6 as output (Reset for HEF4017) |
2133 | - | 49 | DDRD |= (1 << DDD3); // set PC6 as output (Reset for HEF4017) |
50 | HEF4017R_ON; // reset |
||
2108 | - | 51 | |
52 | // Timer/Counter 2 Control Register A |
||
53 | // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0) |
||
54 | // PD3: Output OCR2 match, (Bits: COM2B1 = 1, COM2B0 = 0) |
||
55 | // PB3: Normal port operation, OC2A disconnected, (Bits: COM2A1 = 0, COM2A0 = 0) |
||
2109 | - | 56 | // ardu TCCR2A &= ~((1 << COM2B0) | (1 << COM2A1) | (1 << COM2A0) | (1 << WGM20) | (1 << WGM22)); |
57 | // ardu TCCR2A |= (1 << COM2B1) | (1 << WGM21); |
||
58 | TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22)); |
||
59 | TCCR2A |= (1 << COM2A1) | (1 << WGM21); |
||
2108 | - | 60 | |
61 | // Timer/Counter 2 Control Register B |
||
62 | |||
63 | // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz |
||
64 | // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us |
||
65 | // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms |
||
66 | |||
67 | TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22)); |
||
68 | TCCR2B |= CS2; |
||
69 | |||
70 | // Initialize the Timer/Counter 2 Register |
||
71 | TCNT2 = 0; |
||
72 | |||
73 | // Initialize the Output Compare Register A used for signal generation on port PD7. |
||
74 | OCR2A = 255; |
||
75 | |||
76 | // Timer/Counter 2 Interrupt Mask Register |
||
77 | // Enable timer output compare match A Interrupt only |
||
78 | TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2)); |
||
79 | TIMSK2 |= (1 << OCIE2A); |
||
80 | |||
2139 | - | 81 | //for (uint8_t axis=0; axis<2; axis++) |
82 | // previousManualValues[axis] = dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR; |
||
2108 | - | 83 | |
2139 | - | 84 | for (uint8_t i=0; i<MAX_SERVOS; i++) |
85 | servoValues[i] = NEUTRAL_PULSELENGTH; |
||
86 | |||
2108 | - | 87 | SREG = sreg; |
88 | } |
||
89 | |||
90 | /***************************************************** |
||
91 | * Control (camera gimbal etc.) servos |
||
2139 | - | 92 | * Makes no sense as long as we have no acc. reference. |
2108 | - | 93 | *****************************************************/ |
2139 | - | 94 | /* |
2108 | - | 95 | int16_t calculateStabilizedServoAxis(uint8_t axis) { |
96 | int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about |
||
97 | // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000. |
||
98 | // That is a divisor of about 1<<14. Same conclusion as H&I. |
||
2132 | - | 99 | value *= staticParams.gimbalServoConfigurations[axis].stabilizationFactor; |
2108 | - | 100 | value = value >> 8; |
2132 | - | 101 | if (staticParams.gimbalServoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE) |
2108 | - | 102 | return -value; |
103 | return value; |
||
104 | } |
||
105 | |||
106 | // With constant-speed limitation. |
||
107 | uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) { |
||
108 | int16_t diff = manualValue - previousManualValues[axis]; |
||
2132 | - | 109 | uint8_t maxSpeed = staticParams.gimbalServoMaxManualSpeed; |
2108 | - | 110 | if (diff > maxSpeed) diff = maxSpeed; |
111 | else if (diff < -maxSpeed) diff = -maxSpeed; |
||
112 | manualValue = previousManualValues[axis] + diff; |
||
113 | previousManualValues[axis] = manualValue; |
||
114 | return manualValue; |
||
115 | } |
||
2139 | - | 116 | */ |
2108 | - | 117 | |
2139 | - | 118 | /* |
2108 | - | 119 | // add stabilization and manual, apply soft position limits. |
120 | // All in a [0..255*SCALE_FACTOR] space (despite signed types used internally) |
||
121 | int16_t featuredServoValue(uint8_t axis) { |
||
2132 | - | 122 | int16_t value = calculateManualServoAxis(axis, dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR); |
2108 | - | 123 | value += calculateStabilizedServoAxis(axis); |
2132 | - | 124 | int16_t limit = staticParams.gimbalServoConfigurations[axis].minValue * SCALE_FACTOR; |
2108 | - | 125 | if (value < limit) value = limit; |
2132 | - | 126 | limit = staticParams.gimbalServoConfigurations[axis].maxValue * SCALE_FACTOR; |
2108 | - | 127 | if (value > limit) value = limit; |
128 | value -= (128 * SCALE_FACTOR); |
||
129 | if (value < -SERVOLIMIT) value = -SERVOLIMIT; |
||
130 | else if (value > SERVOLIMIT) value = SERVOLIMIT; |
||
131 | // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space. |
||
132 | return value + NEUTRAL_PULSELENGTH; |
||
133 | } |
||
2139 | - | 134 | */ |
2108 | - | 135 | |
136 | void calculateControlServoValues(void) { |
||
137 | int16_t value; |
||
138 | for (uint8_t axis=0; axis<4; axis++) { |
||
139 | value = controlServos[axis]; |
||
2139 | - | 140 | |
141 | // Apply configurable limits. These are signed: +-128 is twice the normal +- 0.5 ms limit and +- 64 is normal. |
||
2142 | - | 142 | int16_t min = (int16_t)staticParams.servos[axis].minValue * (SERVO_NORMAL_LIMIT >> 6); |
143 | int16_t max = (int16_t)staticParams.servos[axis].maxValue * (SERVO_NORMAL_LIMIT >> 6); |
||
2139 | - | 144 | |
2142 | - | 145 | if (value < -min) value = -min; |
2139 | - | 146 | else if (value > max) value = max; |
147 | |||
148 | if (value < -SERVO_ABS_LIMIT) value = -SERVO_ABS_LIMIT; |
||
149 | else if (value > SERVO_ABS_LIMIT) value = SERVO_ABS_LIMIT; |
||
150 | |||
2142 | - | 151 | debugOut.analog[24+axis] = value; |
152 | |||
2108 | - | 153 | servoValues[axis] = value + NEUTRAL_PULSELENGTH; |
154 | } |
||
155 | } |
||
156 | |||
2139 | - | 157 | /* |
2108 | - | 158 | void calculateFeaturedServoValues(void) { |
159 | int16_t value; |
||
160 | uint8_t axis; |
||
161 | |||
162 | // Save the computation cost of computing a new value before the old one is used. |
||
163 | if (!recalculateServoTimes) return; |
||
164 | |||
165 | for (axis= MAX_CONTROL_SERVOS; axis<MAX_CONTROL_SERVOS+2; axis++) { |
||
166 | value = featuredServoValue(axis-MAX_CONTROL_SERVOS); |
||
167 | servoValues[axis] = value; |
||
168 | } |
||
169 | for (axis=MAX_CONTROL_SERVOS+2; axis<MAX_SERVOS; axis++) { |
||
170 | value = 128 * SCALE_FACTOR; |
||
171 | servoValues[axis] = value; |
||
172 | } |
||
173 | |||
174 | recalculateServoTimes = 0; |
||
175 | } |
||
2139 | - | 176 | */ |
2108 | - | 177 | |
2142 | - | 178 | uint8_t finalServoMap[] = {1,0,0,2,4,5,6,7}; |
179 | |||
2108 | - | 180 | ISR(TIMER2_COMPA_vect) { |
181 | static uint16_t remainingPulseTime; |
||
182 | static uint8_t servoIndex = 0; |
||
183 | static uint16_t sumOfPulseTimes = 0; |
||
184 | |||
185 | if (!remainingPulseTime) { |
||
186 | // Pulse is over, and the next pulse has already just started. Calculate length of next pulse. |
||
187 | if (servoIndex < staticParams.servoCount) { |
||
188 | // There are more signals to output. |
||
2142 | - | 189 | sumOfPulseTimes += (remainingPulseTime = servoValues[finalServoMap[servoIndex]]); |
2108 | - | 190 | servoIndex++; |
191 | } else { |
||
192 | // There are no more signals. Reset the counter and make this pulse cover the missing frame time. |
||
2135 | - | 193 | remainingPulseTime = FRAMELENGTH - sumOfPulseTimes; |
2108 | - | 194 | sumOfPulseTimes = servoIndex = 0; |
2139 | - | 195 | //recalculateServoTimes = 1; |
2108 | - | 196 | HEF4017R_ON; |
197 | } |
||
198 | } |
||
199 | |||
200 | // Schedule the next OCR2A event. The counter is already reset at this time. |
||
201 | if (remainingPulseTime > 256+128) { |
||
202 | // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again, |
||
203 | // as long as it happens once per pulse. This will, because all pulses are > 255+128 long. |
||
204 | OCR2A = 255; |
||
205 | TCCR2A &= ~(1<<COM2A0); |
||
206 | remainingPulseTime-=256; |
||
207 | } else if (remainingPulseTime > 256) { |
||
208 | // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard |
||
209 | // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt |
||
210 | // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK. |
||
211 | remainingPulseTime-=128; |
||
212 | OCR2A=127; |
||
213 | } else { |
||
214 | // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low |
||
215 | TCCR2A |= (1<<COM2A0); |
||
216 | OCR2A = remainingPulseTime-1; |
||
217 | remainingPulseTime=0; |
||
218 | HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0. |
||
219 | } |
||
220 | } |