Rev 2133 | Rev 2139 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2108 | - | 1 | #include <avr/io.h> |
2 | #include <avr/interrupt.h> |
||
3 | #include "eeprom.h" |
||
4 | #include "output.h" |
||
5 | #include "flight.h" |
||
6 | #include "attitude.h" |
||
7 | #include "timer2.h" |
||
8 | |||
9 | // #define COARSERESOLUTION 1 |
||
10 | |||
11 | #ifdef COARSERESOLUTION |
||
2135 | - | 12 | #define NEUTRAL_PULSELENGTH ((int16_t)(F_CPU/32000*1.5f + 0.5f)) |
2108 | - | 13 | #define STABILIZATION_LOG_DIVIDER 6 |
2135 | - | 14 | #define SERVOLIMIT ((int16_t)(F_CPU/32000*0.8f + 0.5f)) |
2108 | - | 15 | #define SCALE_FACTOR 4 |
16 | #define CS2 ((1<<CS21)|(1<<CS20)) |
||
17 | |||
18 | #else |
||
2135 | - | 19 | #define NEUTRAL_PULSELENGTH ((int16_t)(F_CPU/8000.0f * 1.5f + 0.5f)) |
2108 | - | 20 | #define STABILIZATION_LOG_DIVIDER 4 |
2135 | - | 21 | #define SERVOLIMIT ((int16_t)(F_CPU/8000.0f * 0.8f + 0.5f)) |
2108 | - | 22 | #define SCALE_FACTOR 16 |
23 | #define CS2 (1<<CS21) |
||
24 | #endif |
||
25 | |||
2135 | - | 26 | #define FRAMELENGTH ((uint16_t)(NEUTRAL_PULSELENGTH + SERVOLIMIT) * (uint16_t)staticParams.servoCount + 128) |
2108 | - | 27 | #define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT) |
28 | #define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT) |
||
29 | |||
30 | volatile uint8_t recalculateServoTimes = 0; |
||
31 | volatile uint16_t servoValues[MAX_SERVOS]; |
||
32 | volatile uint16_t previousManualValues[2]; |
||
33 | |||
2133 | - | 34 | #define HEF4017R_ON PORTD |= (1<<PORTD3) |
35 | #define HEF4017R_OFF PORTD &= ~(1<<PORTD3) |
||
2108 | - | 36 | |
37 | /***************************************************** |
||
38 | * Initialize Timer 2 |
||
39 | *****************************************************/ |
||
40 | void timer2_init(void) { |
||
41 | uint8_t sreg = SREG; |
||
42 | |||
43 | // disable all interrupts before reconfiguration |
||
44 | cli(); |
||
45 | |||
2135 | - | 46 | // set PD7 as output of the 4017 clk |
2109 | - | 47 | DDRB |= (1 << DDB3); |
48 | PORTB &= ~(1 << PORTB3); // set PD7 to low |
||
2108 | - | 49 | |
2109 | - | 50 | // oc2b DDRD |= (1 << DDD4); // set PC6 as output (Reset for HEF4017) |
2133 | - | 51 | DDRD |= (1 << DDD3); // set PC6 as output (Reset for HEF4017) |
52 | HEF4017R_ON; // reset |
||
2108 | - | 53 | |
54 | // Timer/Counter 2 Control Register A |
||
55 | // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0) |
||
56 | // PD3: Output OCR2 match, (Bits: COM2B1 = 1, COM2B0 = 0) |
||
57 | // PB3: Normal port operation, OC2A disconnected, (Bits: COM2A1 = 0, COM2A0 = 0) |
||
2109 | - | 58 | // ardu TCCR2A &= ~((1 << COM2B0) | (1 << COM2A1) | (1 << COM2A0) | (1 << WGM20) | (1 << WGM22)); |
59 | // ardu TCCR2A |= (1 << COM2B1) | (1 << WGM21); |
||
60 | TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22)); |
||
61 | TCCR2A |= (1 << COM2A1) | (1 << WGM21); |
||
2108 | - | 62 | |
63 | // Timer/Counter 2 Control Register B |
||
64 | |||
65 | // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz |
||
66 | // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us |
||
67 | // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms |
||
68 | |||
69 | TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22)); |
||
70 | TCCR2B |= CS2; |
||
71 | |||
72 | // Initialize the Timer/Counter 2 Register |
||
73 | TCNT2 = 0; |
||
74 | |||
75 | // Initialize the Output Compare Register A used for signal generation on port PD7. |
||
76 | OCR2A = 255; |
||
77 | |||
78 | // Timer/Counter 2 Interrupt Mask Register |
||
79 | // Enable timer output compare match A Interrupt only |
||
80 | TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2)); |
||
81 | TIMSK2 |= (1 << OCIE2A); |
||
82 | |||
83 | for (uint8_t axis=0; axis<2; axis++) |
||
2132 | - | 84 | previousManualValues[axis] = dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR; |
2108 | - | 85 | |
86 | SREG = sreg; |
||
87 | } |
||
88 | |||
89 | /***************************************************** |
||
90 | * Control (camera gimbal etc.) servos |
||
91 | *****************************************************/ |
||
92 | int16_t calculateStabilizedServoAxis(uint8_t axis) { |
||
93 | int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about |
||
94 | // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000. |
||
95 | // That is a divisor of about 1<<14. Same conclusion as H&I. |
||
2132 | - | 96 | value *= staticParams.gimbalServoConfigurations[axis].stabilizationFactor; |
2108 | - | 97 | value = value >> 8; |
2132 | - | 98 | if (staticParams.gimbalServoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE) |
2108 | - | 99 | return -value; |
100 | return value; |
||
101 | } |
||
102 | |||
103 | // With constant-speed limitation. |
||
104 | uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) { |
||
105 | int16_t diff = manualValue - previousManualValues[axis]; |
||
2132 | - | 106 | uint8_t maxSpeed = staticParams.gimbalServoMaxManualSpeed; |
2108 | - | 107 | if (diff > maxSpeed) diff = maxSpeed; |
108 | else if (diff < -maxSpeed) diff = -maxSpeed; |
||
109 | manualValue = previousManualValues[axis] + diff; |
||
110 | previousManualValues[axis] = manualValue; |
||
111 | return manualValue; |
||
112 | } |
||
113 | |||
114 | // add stabilization and manual, apply soft position limits. |
||
115 | // All in a [0..255*SCALE_FACTOR] space (despite signed types used internally) |
||
116 | int16_t featuredServoValue(uint8_t axis) { |
||
2132 | - | 117 | int16_t value = calculateManualServoAxis(axis, dynamicParams.gimbalServoManualControl[axis] * SCALE_FACTOR); |
2108 | - | 118 | value += calculateStabilizedServoAxis(axis); |
2132 | - | 119 | int16_t limit = staticParams.gimbalServoConfigurations[axis].minValue * SCALE_FACTOR; |
2108 | - | 120 | if (value < limit) value = limit; |
2132 | - | 121 | limit = staticParams.gimbalServoConfigurations[axis].maxValue * SCALE_FACTOR; |
2108 | - | 122 | if (value > limit) value = limit; |
123 | value -= (128 * SCALE_FACTOR); |
||
124 | if (value < -SERVOLIMIT) value = -SERVOLIMIT; |
||
125 | else if (value > SERVOLIMIT) value = SERVOLIMIT; |
||
126 | // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space. |
||
127 | return value + NEUTRAL_PULSELENGTH; |
||
128 | } |
||
129 | |||
130 | void calculateControlServoValues(void) { |
||
131 | int16_t value; |
||
132 | for (uint8_t axis=0; axis<4; axis++) { |
||
133 | value = controlServos[axis]; |
||
2132 | - | 134 | if (value < -SERVOLIMIT) value = -SERVOLIMIT; |
135 | else if (value > SERVOLIMIT) value = SERVOLIMIT; |
||
2108 | - | 136 | servoValues[axis] = value + NEUTRAL_PULSELENGTH; |
137 | } |
||
138 | } |
||
139 | |||
140 | void calculateFeaturedServoValues(void) { |
||
141 | int16_t value; |
||
142 | uint8_t axis; |
||
143 | |||
144 | // Save the computation cost of computing a new value before the old one is used. |
||
145 | if (!recalculateServoTimes) return; |
||
146 | |||
147 | for (axis= MAX_CONTROL_SERVOS; axis<MAX_CONTROL_SERVOS+2; axis++) { |
||
148 | value = featuredServoValue(axis-MAX_CONTROL_SERVOS); |
||
149 | servoValues[axis] = value; |
||
150 | } |
||
151 | for (axis=MAX_CONTROL_SERVOS+2; axis<MAX_SERVOS; axis++) { |
||
152 | value = 128 * SCALE_FACTOR; |
||
153 | servoValues[axis] = value; |
||
154 | } |
||
155 | |||
156 | recalculateServoTimes = 0; |
||
157 | } |
||
158 | |||
159 | ISR(TIMER2_COMPA_vect) { |
||
160 | static uint16_t remainingPulseTime; |
||
161 | static uint8_t servoIndex = 0; |
||
162 | static uint16_t sumOfPulseTimes = 0; |
||
163 | |||
164 | if (!remainingPulseTime) { |
||
165 | // Pulse is over, and the next pulse has already just started. Calculate length of next pulse. |
||
166 | if (servoIndex < staticParams.servoCount) { |
||
167 | // There are more signals to output. |
||
168 | sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]); |
||
169 | servoIndex++; |
||
170 | } else { |
||
171 | // There are no more signals. Reset the counter and make this pulse cover the missing frame time. |
||
2135 | - | 172 | remainingPulseTime = FRAMELENGTH - sumOfPulseTimes; |
2108 | - | 173 | sumOfPulseTimes = servoIndex = 0; |
174 | recalculateServoTimes = 1; |
||
175 | HEF4017R_ON; |
||
176 | } |
||
177 | } |
||
178 | |||
179 | // Schedule the next OCR2A event. The counter is already reset at this time. |
||
180 | if (remainingPulseTime > 256+128) { |
||
181 | // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again, |
||
182 | // as long as it happens once per pulse. This will, because all pulses are > 255+128 long. |
||
183 | OCR2A = 255; |
||
184 | TCCR2A &= ~(1<<COM2A0); |
||
185 | remainingPulseTime-=256; |
||
186 | } else if (remainingPulseTime > 256) { |
||
187 | // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard |
||
188 | // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt |
||
189 | // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK. |
||
190 | remainingPulseTime-=128; |
||
191 | OCR2A=127; |
||
192 | } else { |
||
193 | // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low |
||
194 | TCCR2A |= (1<<COM2A0); |
||
195 | OCR2A = remainingPulseTime-1; |
||
196 | remainingPulseTime=0; |
||
197 | HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0. |
||
198 | } |
||
199 | } |