Rev 2135 | Rev 2141 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2108 | - | 1 | #include <stdlib.h> |
2 | #include <avr/io.h> |
||
3 | #include <avr/interrupt.h> |
||
4 | |||
5 | #include "rc.h" |
||
6 | #include "controlMixer.h" |
||
7 | #include "configuration.h" |
||
8 | #include "commands.h" |
||
9 | #include "output.h" |
||
10 | |||
11 | // The channel array is 0-based! |
||
12 | volatile int16_t PPM_in[MAX_CHANNELS]; |
||
2132 | - | 13 | volatile uint16_t RC_buffer[MAX_CHANNELS]; |
14 | volatile uint8_t inBfrPnt = 0; |
||
15 | |||
2108 | - | 16 | volatile uint8_t RCQuality; |
17 | |||
18 | uint8_t lastRCCommand = COMMAND_NONE; |
||
19 | uint8_t lastFlightMode = FLIGHT_MODE_NONE; |
||
20 | |||
2109 | - | 21 | #define TIME(s) ((int16_t)(((long)F_CPU/(long)8000)*(float)s)) |
22 | |||
2108 | - | 23 | /*************************************************************** |
24 | * 16bit timer 1 is used to decode the PPM-Signal |
||
25 | ***************************************************************/ |
||
26 | void RC_Init(void) { |
||
27 | uint8_t sreg = SREG; |
||
28 | |||
29 | // disable all interrupts before reconfiguration |
||
30 | cli(); |
||
31 | |||
32 | // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1 |
||
2109 | - | 33 | DDRB &= ~(1<<0); |
34 | PORTB |= (1<<PORTB0); |
||
2108 | - | 35 | |
36 | // Timer/Counter1 Control Register A, B, C |
||
37 | // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0) |
||
38 | // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0) |
||
39 | // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1) |
||
40 | // Enable input capture noise cancler (bit: ICNC1=1) |
||
41 | // Trigger on positive edge of the input capture pin (bit: ICES1=1), |
||
42 | // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s |
||
43 | // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s. |
||
44 | TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10)); |
||
45 | TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12)); |
||
2109 | - | 46 | TCCR1B |= (1 << CS11) | (1 << ICES1) | (1 << ICNC1); |
2108 | - | 47 | TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B)); |
48 | |||
49 | // Timer/Counter1 Interrupt Mask Register |
||
50 | // Enable Input Capture Interrupt (bit: ICIE1=1) |
||
51 | // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0) |
||
52 | // Enable Overflow Interrupt (bit: TOIE1=0) |
||
53 | TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1)); |
||
54 | TIMSK1 |= (1<<ICIE1); |
||
55 | |||
56 | RCQuality = 0; |
||
57 | |||
58 | SREG = sreg; |
||
59 | } |
||
60 | |||
2132 | - | 61 | /* |
62 | * This new and much faster interrupt handler should reduce servo jolts. |
||
63 | */ |
||
64 | ISR(TIMER1_CAPT_vect) { |
||
65 | static uint16_t oldICR1 = 0; |
||
66 | uint16_t signal = (uint16_t)ICR1 - oldICR1; |
||
67 | oldICR1 = ICR1; |
||
68 | //sync gap? (3.5 ms < signal < 25.6 ms) |
||
69 | if (signal > TIME(3.5)) { |
||
70 | inBfrPnt = 0; |
||
71 | } else if (inBfrPnt<MAX_CHANNELS) { |
||
72 | RC_buffer[inBfrPnt++] = signal; |
||
73 | } |
||
74 | } |
||
75 | |||
2108 | - | 76 | /********************************************************************/ |
77 | /* Every time a positive edge is detected at PD6 */ |
||
78 | /********************************************************************/ |
||
79 | /* t-Frame |
||
80 | <-----------------------------------------------------------------------> |
||
81 | ____ ______ _____ ________ ______ sync gap ____ |
||
82 | | | | | | | | | | | | |
||
83 | | | | | | | | | | | | |
||
84 | ___| |_| |_| |_| |_.............| |________________| |
||
85 | <-----><-------><------><----------- <------> <--- |
||
86 | t0 t1 t2 t4 tn t0 |
||
87 | |||
88 | The PPM-Frame length is 22.5 ms. |
||
89 | Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse. |
||
90 | The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms. |
||
91 | The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms. |
||
92 | The minimum duration of all channels at minimum value is 8 * 1 ms = 8 ms. |
||
93 | The maximum duration of all channels at maximum value is 8 * 2 ms = 16 ms. |
||
94 | The remaining time of (22.5 - 8 ms) ms = 14.5 ms to (22.5 - 16 ms) ms = 6.5 ms is |
||
95 | the syncronization gap. |
||
96 | */ |
||
2132 | - | 97 | void RC_process(void) { |
98 | if (RCQuality) RCQuality--; |
||
99 | for (uint8_t channel=0; channel<MAX_CHANNELS; channel++) { |
||
100 | uint16_t signal = RC_buffer[channel]; |
||
101 | if (signal != 0) { |
||
102 | RC_buffer[channel] = 0; // reset to flag value already used. |
||
2109 | - | 103 | if ((signal >= TIME(0.8)) && (signal < TIME(2.2))) { |
2132 | - | 104 | signal -= (TIME(1.5) - 128 + channelMap.HWTrim); |
105 | if (abs(signal - PPM_in[channel]) < TIME(0.05)) { |
||
106 | // With 7 channels and 50 frames/sec, we get 350 channel values/sec. |
||
2108 | - | 107 | if (RCQuality < 200) |
2132 | - | 108 | RCQuality += 2; |
2108 | - | 109 | } |
2132 | - | 110 | PPM_in[channel] = signal; |
2108 | - | 111 | } |
112 | } |
||
113 | } |
||
114 | } |
||
115 | |||
116 | #define RCChannel(dimension) PPM_in[channelMap.channels[dimension]] |
||
117 | |||
118 | uint8_t getControlModeSwitch(void) { |
||
2109 | - | 119 | int16_t channel = RCChannel(CH_MODESWITCH); |
120 | uint8_t flightMode = channel < -TIME(0.17) ? FLIGHT_MODE_MANUAL : (channel > TIME(0.17) ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE); |
||
2108 | - | 121 | return flightMode; |
122 | } |
||
123 | |||
124 | // Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice. |
||
125 | // Maybe simply: Very very low throttle. |
||
126 | // Throttle xlow for COMMAND_TIMER: GYROCAL (once). |
||
127 | // mode switched: CHMOD |
||
128 | |||
129 | uint8_t RC_getCommand(void) { |
||
130 | uint8_t flightMode = getControlModeSwitch(); |
||
131 | |||
132 | if (lastFlightMode != flightMode) { |
||
133 | lastFlightMode = flightMode; |
||
134 | lastRCCommand = COMMAND_CHMOD; |
||
135 | return lastRCCommand; |
||
136 | } |
||
137 | |||
138 | int16_t channel = RCChannel(CH_THROTTLE); |
||
139 | |||
2109 | - | 140 | if (channel <= -TIME(0.55)) { |
2132 | - | 141 | int16_t aux = RCChannel(COMMAND_CHANNEL_HORIZONTAL); |
142 | if (abs(aux) >= TIME(0.3)) // If we pull on the stick, it is gyrocal. Else it is RC cal. |
||
143 | lastRCCommand = COMMAND_GYROCAL; |
||
144 | else |
||
145 | lastRCCommand = COMMAND_RCCAL; |
||
2108 | - | 146 | } else { |
147 | lastRCCommand = COMMAND_NONE; |
||
148 | } |
||
149 | return lastRCCommand; |
||
150 | } |
||
151 | |||
152 | uint8_t RC_getArgument(void) { |
||
153 | return lastFlightMode; |
||
154 | } |
||
155 | |||
156 | /* |
||
157 | * Get Pitch, Roll, Throttle, Yaw values |
||
158 | */ |
||
159 | void RC_periodicTaskAndPRYT(int16_t* PRYT) { |
||
2132 | - | 160 | RC_process(); |
161 | |||
162 | PRYT[CONTROL_ELEVATOR] = RCChannel(CH_ELEVATOR) - rcTrim.trim[CH_ELEVATOR]; |
||
163 | PRYT[CONTROL_AILERONS] = RCChannel(CH_AILERONS) - rcTrim.trim[CH_AILERONS]; |
||
164 | PRYT[CONTROL_RUDDER] = RCChannel(CH_RUDDER) - rcTrim.trim[CH_RUDDER]; |
||
165 | PRYT[CONTROL_THROTTLE] = RCChannel(CH_THROTTLE); // no trim on throttle! |
||
2135 | - | 166 | |
167 | debugOut.analog[20] = PRYT[CONTROL_ELEVATOR]; |
||
168 | debugOut.analog[21] = PRYT[CONTROL_AILERONS]; |
||
169 | debugOut.analog[22] = PRYT[CONTROL_RUDDER]; |
||
170 | debugOut.analog[23] = PRYT[CONTROL_THROTTLE]; |
||
2108 | - | 171 | } |
172 | |||
173 | /* |
||
174 | * Get other channel value |
||
175 | */ |
||
176 | int16_t RC_getVariable(uint8_t varNum) { |
||
2135 | - | 177 | if (varNum < 4) { |
2108 | - | 178 | // 0th variable is 5th channel (1-based) etc. |
2135 | - | 179 | int16_t result = (RCChannel(varNum + CH_POTS) / 6) + channelMap.variableOffset; |
180 | if (varNum<2) debugOut.analog[18+varNum] = result; |
||
181 | return result; |
||
182 | } |
||
2108 | - | 183 | /* |
184 | * Let's just say: |
||
185 | * The RC variable i is hardwired to channel i, i>=4 |
||
186 | */ |
||
2132 | - | 187 | return (PPM_in[varNum] >> 3) + channelMap.variableOffset; |
2108 | - | 188 | } |
189 | |||
190 | uint8_t RC_getSignalQuality(void) { |
||
191 | if (RCQuality >= 160) |
||
192 | return SIGNAL_GOOD; |
||
193 | if (RCQuality >= 140) |
||
194 | return SIGNAL_OK; |
||
195 | if (RCQuality >= 120) |
||
196 | return SIGNAL_BAD; |
||
197 | return SIGNAL_LOST; |
||
198 | } |
||
199 | |||
200 | void RC_calibrate(void) { |
||
2132 | - | 201 | rcTrim.trim[CH_ELEVATOR] = RCChannel(CH_ELEVATOR); |
202 | rcTrim.trim[CH_AILERONS] = RCChannel(CH_AILERONS); |
||
203 | rcTrim.trim[CH_RUDDER] = RCChannel(CH_RUDDER); |
||
204 | rcTrim.trim[CH_THROTTLE] = 0; |
||
2108 | - | 205 | } |
2115 | - | 206 | |
2132 | - | 207 | int16_t RC_getZeroThrottle(void) { |
2136 | - | 208 | return TIME (1.0f); |
2115 | - | 209 | } |
2132 | - | 210 | |
211 | void RC_setZeroTrim(void) { |
||
212 | for (uint8_t i=0; i<MAX_CHANNELS; i++) { |
||
213 | rcTrim.trim[i] = 0; |
||
214 | } |
||
215 | } |