Subversion Repositories FlightCtrl

Rev

Rev 2109 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2108 - 1
#include <avr/io.h>
2
#include <avr/interrupt.h>
3
#include <avr/pgmspace.h>
4
#include <stdlib.h>
5
 
6
#include "analog.h"
7
#include "configuration.h"
8
#include "attitude.h"
9
#include "sensors.h"
10
#include "printf_P.h"
11
#include "isqrt.h"
12
#include "twimaster.h"
13
 
14
// for Delay functions
15
#include "timer0.h"
16
 
17
// For reading and writing acc. meter offsets.
18
#include "eeprom.h"
19
 
20
// For debugOut
21
#include "output.h"
22
 
23
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
24
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
25
 
26
const char* recal = ", recalibration needed.";
27
 
28
volatile uint16_t ADSensorInputs[8];
29
 
30
 
31
/*
32
 * These 4 exported variables are zero-offset. The "PID" ones are used
33
 * in the attitude control as rotation rates. The "ATT" ones are for
34
 * integration to angles.
35
 */
36
int16_t gyro_PID[3];
37
int16_t gyro_ATT[3];
38
int16_t gyroD[3];
39
int16_t gyroDWindow[3][GYRO_D_WINDOW_LENGTH];
40
uint8_t gyroDWindowIdx = 0;
41
 
42
/*
43
 * Airspeed
44
 */
45
uint32_t airpressure;
46
uint16_t airspeedVelocity = 0;
47
int16_t airpressureWindow[AIRPRESSURE_WINDOW_LENGTH];
48
uint8_t airpressureWindowIdx = 0;
49
 
50
/*
51
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
52
 * standing still. They are used for adjusting the gyro and acc. meter values
53
 * to be centered on zero.
54
 */
55
sensorOffset_t gyroOffset;
56
uint16_t airpressureOffset;
57
 
58
/*
59
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
60
 * If a sensor is used in an orientation where one but not both of the axes has
61
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
62
 * Transform:
63
 * pitch <- pp*pitch + pr*roll
64
 * roll  <- rp*pitch + rr*roll
65
 * Not reversed, GYRO_QUADRANT:
66
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
67
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
68
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
69
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
70
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
71
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
72
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
73
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
74
 * Reversed, GYRO_QUADRANT:
75
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
76
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
77
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
78
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
79
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
80
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
81
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
82
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
83
 */
84
 
85
void rotate(int16_t* result, uint8_t quadrant, uint8_t reversePR, uint8_t reverseYaw) {
86
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
87
  // Pitch to Pitch part
88
  int8_t xx = reversePR ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
89
  // Roll to Pitch part
90
  int8_t xy = rotationTab[(quadrant+2)%8];
91
  // Pitch to Roll part
92
  int8_t yx = reversePR ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
93
  // Roll to Roll part
94
  int8_t yy = rotationTab[quadrant];
95
 
96
  int16_t xIn = result[0];
97
  result[0] = xx*xIn + xy*result[1];
98
  result[1] = yx*xIn + yy*result[1];
99
 
100
  if (quadrant & 1) {
101
        // A rotation was used above, where the factors were too large by sqrt(2).
102
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
103
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
104
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
105
        result[0] = (result[0]*11) >> 4;
106
        result[1] = (result[1]*11) >> 4;
107
  }
108
 
109
  if (reverseYaw)
110
    result[3] =-result[3];
111
}
112
 
113
/*
114
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
115
 * That is divided by 3 below, for a final 10.34 per volt.
116
 * So the initial value of 100 is for 9.7 volts.
117
 */
118
uint16_t UBat = 100;
119
 
120
/*
121
 * Control and status.
122
 */
123
volatile uint8_t sensorDataReady = ALL_DATA_READY;
124
 
125
/*
126
 * Experiment: Measuring vibration-induced sensor noise.
127
 */
128
uint16_t gyroNoisePeak[3];
129
 
130
volatile uint8_t adState;
131
volatile uint8_t adChannel;
132
 
133
// ADC channels
134
#define AD_UBAT           6
135
#define AD_AIRPRESSURE    7
136
 
137
/*
138
 * Table of AD converter inputs for each state.
139
 * The number of samples summed for each channel is equal to
140
 * the number of times the channel appears in the array.
141
 * The max. number of samples that can be taken in 2 ms is:
142
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
143
 * loop needs a little time between reading AD values and
144
 * re-enabling ADC, the real limit is (how much?) lower.
145
 * The acc. sensor is sampled even if not used - or installed
146
 * at all. The cost is not significant.
147
 */
148
 
149
const uint8_t channelsForStates[] PROGMEM = {
150
  AD_AIRPRESSURE,
151
  AD_UBAT,
152
  AD_AIRPRESSURE,
153
  AD_AIRPRESSURE,
154
  AD_AIRPRESSURE,
155
};
156
 
157
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
158
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
159
 
160
void analog_init(void) {
161
        uint8_t sreg = SREG;
162
        // disable all interrupts before reconfiguration
163
        cli();
164
 
165
        // ADC0 ... ADC7 is connected to PortA pin 0 ... 7
166
        // DDRA = 0x00;
167
        // PORTA = 0x00;
168
        // Digital Input Disable Register 0
169
        // Disable digital input buffer for analog adc_channel pins
170
        // DIDR0 = 0xFF;
171
        // external reference, adjust data to the right
172
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
173
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
174
        ADMUX = (ADMUX & 0xE0);
175
        //Set ADC Control and Status Register A
176
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
177
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
178
        //Set ADC Control and Status Register B
179
        //Trigger Source to Free Running Mode
180
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
181
 
182
        startAnalogConversionCycle();
183
 
184
        // restore global interrupt flags
185
        SREG = sreg;
186
}
187
 
188
/*
189
 * Here the axes of the sensor can be shuffled around.
190
 */
191
uint16_t rawGyroValue(uint8_t axis) {
192
        return IMU3200SensorInputs[axis+1]; // skip temperature mesaurement in any case..
193
}
194
 
195
/*
196
uint16_t rawAccValue(uint8_t axis) {
197
        return sensorInputs[AD_ACC_PITCH-axis];
198
}
199
*/
200
 
201
void measureNoise(const int16_t sensor,
202
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
203
        if (sensor > (int16_t) (*noiseMeasurement)) {
204
                *noiseMeasurement = sensor;
205
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
206
                *noiseMeasurement = -sensor;
207
        } else if (*noiseMeasurement > damping) {
208
                *noiseMeasurement -= damping;
209
        } else {
210
                *noiseMeasurement = 0;
211
        }
212
}
213
 
214
void startAnalogConversionCycle(void) {
215
  sensorDataReady = 0;
216
 
217
  // Stop the sampling. Cycle is over.
218
  for (uint8_t i = 0; i<8; i++) {
219
    ADSensorInputs[i] = 0;
220
  }
221
 
222
  adState = 0;
223
  adChannel = AD_AIRPRESSURE;
224
  ADMUX = (ADMUX & 0xE0) | adChannel;
225
  startADC();
226
  twimaster_startCycle();
227
}
228
 
229
/*****************************************************
230
 * Interrupt Service Routine for ADC
231
 * Runs at 312.5 kHz or 3.2 �s. When all states are
232
 * processed further conversions are stopped.
233
 *****************************************************/
234
ISR(ADC_vect) {
235
  ADSensorInputs[adChannel] += ADC;
236
  // set up for next state.
237
  adState++;
238
  if (adState < sizeof(channelsForStates)) {
239
    adChannel = pgm_read_byte(&channelsForStates[adState]);
240
    // set adc muxer to next adChannel
241
    ADMUX = (ADMUX & 0xE0) | adChannel;
242
    // after full cycle stop further interrupts
243
    startADC();
244
  } else {
245
    sensorDataReady |= ADC_DATA_READY;
246
    // do not restart ADC converter. 
247
  }
248
}
249
 
250
void analog_updateGyros(void) {
251
  // for various filters...
252
  int16_t tempOffsetGyro[3], tempGyro;
253
 
254
  for (uint8_t axis=0; axis<3; axis++) {
255
    tempGyro = rawGyroValue(axis);
256
    /*
257
     * Process the gyro data for the PID controller.
258
     */
259
 
260
    // Saturation prevention was removed. No airplane rotates more than 2000 deg/s.
261
 
262
    // 2) Apply sign and offset, scale before filtering.
263
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]);
264
  }
265
 
266
  // 2.1: Transform axes.
267
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
268
 
269
  for (uint8_t axis=0; axis<3; axis++) {
270
        // 3) Filter.
271
    tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant;
272
 
273
    // 4) Measure noise.
274
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
275
 
276
    // 5) Differential measurement.
277
    // TODO: Examine effects of overruns here, they are quite possible.
278
    int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis];
279
    gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx];
280
    gyroD[axis] += diff;
281
    gyroDWindow[axis][gyroDWindowIdx] = diff;
282
 
283
    // 6) Done.
284
    gyro_PID[axis] = tempOffsetGyro[axis];
285
 
286
    // Prepare tempOffsetGyro for next calculation below...
287
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]);
288
  }
289
 
290
  /*
291
   * Now process the data for attitude angles.
292
   */
293
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
294
 
295
  // dampenGyroActivity();
296
  gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
297
  gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
298
  gyro_ATT[YAW] = tempOffsetGyro[YAW];
299
 
300
  if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) {
301
      gyroDWindowIdx = 0;
302
  }
303
}
304
 
305
// probably wanna aim at 1/10 m/s/unit.
306
#define LOG_AIRSPEED_FACTOR 2
307
 
308
void analog_updateAirspeed(void) {
309
  uint16_t rawAirpressure = ADSensorInputs[AD_AIRPRESSURE];
310
  int16_t temp = rawAirpressure - airpressureOffset;
311
  airpressure -= airpressureWindow[airpressureWindowIdx];
312
  airpressure += temp;
313
  airpressureWindow[airpressureWindowIdx] = temp;
314
  airpressureWindowIdx++;
315
  if (airpressureWindowIdx == AIRPRESSURE_WINDOW_LENGTH) {
316
          airpressureWindowIdx = 0;
317
  }
318
 
319
  if (temp<0) temp = 0;
320
  airspeedVelocity = (staticParams.airspeedCorrection * isqrt32(airpressure)) >> LOG_AIRSPEED_FACTOR;
321
  isFlying = (airspeedVelocity >= staticParams.isFlyingThreshold);
322
}
323
 
324
void analog_updateBatteryVoltage(void) {
325
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
326
  // This is divided by 3 --> 10.34 counts per volt.
327
  UBat = (3 * UBat + ADSensorInputs[AD_UBAT] / 3) / 4;
328
}
329
 
330
void analog_update(void) {
331
  analog_updateGyros();
332
  // analog_updateAccelerometers();
333
  analog_updateAirspeed();
334
  analog_updateBatteryVoltage();
335
#ifdef USE_MK3MAG
336
  magneticHeading = volatileMagneticHeading;
337
#endif
338
}
339
 
340
void analog_setNeutral() {
341
        twimaster_setNeutral();
342
 
343
  if (gyroOffset_readFromEEProm()) {
344
    printf("gyro offsets invalid%s",recal);
345
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING;
346
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING;
347
  }
348
 
349
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
350
  for (uint8_t i=PITCH; i<=YAW; i++) {
351
          gyroNoisePeak[i] = 0;
352
          gyroD[i] = 0;
353
          for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) {
354
                  gyroDWindow[i][j] = 0;
355
          }
356
  }
357
 
358
  for (uint8_t i=0; i<AIRPRESSURE_WINDOW_LENGTH; i++) {
359
          airpressureWindow[i] = 0;
360
  }
361
 
362
  // Setting offset values has an influence in the analog.c ISR
363
  // Therefore run measurement for 100ms to achive stable readings
364
  delay_ms_with_adc_measurement(100, 0);
365
 
366
  // gyroActivity = 0;
367
}
368
 
369
void analog_calibrate(void) {
370
#define OFFSET_CYCLES 64
371
  uint8_t i, axis;
372
  int32_t offsets[4] = { 0, 0, 0, 0};
373
 
374
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
375
  for (i = 0; i < OFFSET_CYCLES; i++) {
376
    delay_ms_with_adc_measurement(10, 1);
377
    for (axis = PITCH; axis <= YAW; axis++) {
378
      offsets[axis] += rawGyroValue(axis);
379
    }
380
    offsets[3] += ADSensorInputs[AD_AIRPRESSURE];
381
  }
382
 
383
  for (axis = PITCH; axis <= YAW; axis++) {
384
    gyroOffset.offsets[axis] = (offsets[axis] + OFFSET_CYCLES / 2) / OFFSET_CYCLES;
385
    int16_t min = (512-200) * GYRO_OVERSAMPLING;
386
    int16_t max = (512+200) * GYRO_OVERSAMPLING;
387
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
388
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
389
  }
390
 
391
  airpressureOffset = (offsets[3] + OFFSET_CYCLES / 2) / OFFSET_CYCLES;
392
  int16_t min = 200;
393
  int16_t max = (1024-200) * 2;
394
  if(airpressureOffset < min || airpressureOffset > max)
395
    versionInfo.hardwareErrors[0] |= FC_ERROR0_PRESSURE;
396
 
397
  gyroOffset_writeToEEProm();
398
 
399
  startAnalogConversionCycle();
400
}