Rev 2023 | Rev 2099 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1910 | - | 1 | #ifndef _ANALOG_H |
2 | #define _ANALOG_H |
||
3 | #include <inttypes.h> |
||
2096 | - | 4 | #include "configuration.h" |
1910 | - | 5 | |
6 | /* |
||
7 | About setting constants for different gyros: |
||
8 | Main parameters are positive directions and voltage/angular speed gain. |
||
9 | The "Positive direction" is the rotation direction around an axis where |
||
10 | the corresponding gyro outputs a voltage > the no-rotation voltage. |
||
11 | A gyro is considered, in this code, to be "forward" if its positive |
||
12 | direction is: |
||
13 | - Nose down for pitch |
||
14 | - Left hand side down for roll |
||
15 | - Clockwise seen from above for yaw. |
||
2096 | - | 16 | |
1910 | - | 17 | Setting gyro gain correctly: All sensor measurements in analog.c take |
18 | place in a cycle, each cycle comprising all sensors. Some sensors are |
||
2096 | - | 19 | sampled more than once (oversampled), and the results added. |
1910 | - | 20 | In the H&I code, the results for pitch and roll are multiplied by 2 (FC1.0) |
21 | or 4 (other versions), offset to zero, low pass filtered and then assigned |
||
22 | to the "HiResXXXX" and "AdWertXXXXFilter" variables, where XXXX is nick or |
||
2096 | - | 23 | roll. The factor 2 or 4 or whatever is called GYRO_FACTOR_PITCHROLL here. |
24 | */ |
||
25 | #define GYRO_FACTOR_PITCHROLL 1 |
||
1910 | - | 26 | |
2096 | - | 27 | /* |
28 | GYRO_HW_FACTOR is the relation between rotation rate and ADCValue: |
||
1910 | - | 29 | ADCValue [units] = |
30 | rotational speed [deg/s] * |
||
31 | gyro sensitivity [V / deg/s] * |
||
32 | amplifier gain [units] * |
||
33 | 1024 [units] / |
||
34 | 3V full range [V] |
||
35 | |||
2096 | - | 36 | GYRO_HW_FACTOR is: |
1910 | - | 37 | gyro sensitivity [V / deg/s] * |
38 | amplifier gain [units] * |
||
39 | 1024 [units] / |
||
40 | 3V full range [V] |
||
41 | |||
42 | Examples: |
||
43 | FC1.3 has 0.67 mV/deg/s gyros and amplifiers with a gain of 5.7: |
||
2096 | - | 44 | GYRO_HW_FACTOR = 0.00067 V / deg / s * 5.7 * 1024 / 3V = 1.304 units/(deg/s). |
45 | |||
1910 | - | 46 | FC2.0 has 6*(3/5) mV/deg/s gyros (they are ratiometric) and no amplifiers: |
2096 | - | 47 | GYRO_HW_FACTOR = 0.006 V / deg / s * 1 * 1024 * 3V / (3V * 5V) = 1.2288 units/(deg/s). |
48 | |||
1910 | - | 49 | My InvenSense copter has 2mV/deg/s gyros and no amplifiers: |
2096 | - | 50 | GYRO_HW_FACTOR = 0.002 V / deg / s * 1 * 1024 / 3V = 0.6827 units/(deg/s) |
1910 | - | 51 | (only about half as sensitive as V1.3. But it will take about twice the |
52 | rotation rate!) |
||
53 | |||
2096 | - | 54 | GYRO_HW_FACTOR is given in the makefile. |
55 | */ |
||
1910 | - | 56 | |
57 | /* |
||
2096 | - | 58 | * How many samples are added in one ADC loop, for pitch&roll and yaw, |
1910 | - | 59 | * respectively. This is = the number of occurences of each channel in the |
60 | * channelsForStates array in analog.c. |
||
61 | */ |
||
2096 | - | 62 | #define GYRO_OVERSAMPLING_PITCHROLL 4 |
63 | #define GYRO_OVERSAMPLING_YAW 2 |
||
1910 | - | 64 | |
2096 | - | 65 | #define ACC_OVERSAMPLING_XY 2 |
66 | #define ACC_OVERSAMPLING_Z 1 |
||
1910 | - | 67 | |
68 | /* |
||
2096 | - | 69 | * The product of the 3 above constants. This represents the expected change in ADC value sums for 1 deg/s of rotation rate. |
1910 | - | 70 | */ |
2096 | - | 71 | #define GYRO_RATE_FACTOR_PITCHROLL (GYRO_HW_FACTOR * GYRO_OVERSAMPLING_PITCHROLL * GYRO_FACTOR_PITCHROLL) |
72 | #define GYRO_RATE_FACTOR_YAW (GYRO_HW_FACTOR * GYRO_OVERSAMPLING_YAW) |
||
1910 | - | 73 | |
74 | /* |
||
75 | * The value of gyro[PITCH/ROLL] for one deg/s = The hardware factor H * the number of samples * multiplier factor. |
||
76 | * Will be about 10 or so for InvenSense, and about 33 for ADXRS610. |
||
77 | */ |
||
78 | |||
79 | /* |
||
80 | * Gyro saturation prevention. |
||
81 | */ |
||
82 | // How far from the end of its range a gyro is considered near-saturated. |
||
83 | #define SENSOR_MIN_PITCHROLL 32 |
||
84 | // Other end of the range (calculated) |
||
2096 | - | 85 | #define SENSOR_MAX_PITCHROLL (GYRO_OVERSAMPLING_PITCHROLL * 1023 - SENSOR_MIN_PITCHROLL) |
1910 | - | 86 | // Max. boost to add "virtually" to gyro signal at total saturation. |
87 | #define EXTRAPOLATION_LIMIT 2500 |
||
88 | // Slope of the boost (calculated) |
||
89 | #define EXTRAPOLATION_SLOPE (EXTRAPOLATION_LIMIT/SENSOR_MIN_PITCHROLL) |
||
90 | |||
91 | /* |
||
92 | * This value is subtracted from the gyro noise measurement in each iteration, |
||
93 | * making it return towards zero. |
||
94 | */ |
||
95 | #define GYRO_NOISE_MEASUREMENT_DAMPING 5 |
||
96 | |||
97 | #define PITCH 0 |
||
98 | #define ROLL 1 |
||
99 | #define YAW 2 |
||
100 | #define Z 2 |
||
101 | /* |
||
102 | * The values that this module outputs |
||
103 | * These first 2 exported arrays are zero-offset. The "PID" ones are used |
||
104 | * in the attitude control as rotation rates. The "ATT" ones are for |
||
105 | * integration to angles. For the same axis, the PID and ATT variables |
||
106 | * generally have about the same values. There are just some differences |
||
107 | * in filtering, and when a gyro becomes near saturated. |
||
108 | * Maybe this distinction is not really necessary. |
||
109 | */ |
||
2096 | - | 110 | extern int16_t gyro_PID[2]; |
111 | extern int16_t gyro_ATT[2]; |
||
112 | #define GYRO_D_WINDOW_LENGTH 8 |
||
113 | extern int16_t gyroD[3]; |
||
114 | extern int16_t yawGyro; |
||
115 | extern int16_t UBat; |
||
1910 | - | 116 | |
117 | // 1:11 voltage divider, 1024 counts per 3V, and result is divided by 3. |
||
118 | #define UBAT_AT_5V (int16_t)((5.0 * (1.0/11.0)) * 1024 / (3.0 * 3)) |
||
119 | |||
2096 | - | 120 | extern sensorOffset_t gyroOffset; |
121 | extern sensorOffset_t accOffset; |
||
122 | extern sensorOffset_t gyroAmplifierOffset; |
||
123 | |||
1910 | - | 124 | /* |
125 | * This is not really for external use - but the ENC-03 gyro modules needs it. |
||
126 | */ |
||
2096 | - | 127 | //extern volatile int16_t rawGyroSum[3]; |
1910 | - | 128 | |
129 | /* |
||
130 | * The acceleration values that this module outputs. They are zero based. |
||
131 | */ |
||
2096 | - | 132 | extern int16_t acc[3]; |
133 | extern int16_t filteredAcc[3]; |
||
1910 | - | 134 | // extern volatile int32_t stronglyFilteredAcc[3]; |
135 | |||
136 | /* |
||
137 | * Diagnostics: Gyro noise level because of motor vibrations. The variables |
||
138 | * only really reflect the noise level when the copter stands still but with |
||
139 | * its motors running. |
||
140 | */ |
||
2096 | - | 141 | extern uint16_t gyroNoisePeak[3]; |
142 | extern uint16_t accNoisePeak[3]; |
||
1910 | - | 143 | |
144 | /* |
||
145 | * Air pressure. |
||
2096 | - | 146 | * The sensor has a sensitivity of 45 mV/kPa. |
147 | * An approximate p(h) formula is = p(h[m])[kPa] = p_0 - 11.95 * 10^-3 * h |
||
148 | * p(h[m])[kPa] = 101.3 - 11.95 * 10^-3 * h |
||
149 | * 11.95 * 10^-3 * h = 101.3 - p[kPa] |
||
150 | * h = (101.3 - p[kPa])/0.01195 |
||
151 | * That is: dV = -45 mV * 11.95 * 10^-3 dh = -0.53775 mV / m. |
||
152 | * That is, with 38.02 * 1.024 / 3 steps per mV: -7 steps / m |
||
153 | |||
154 | Display pressures |
||
155 | 4165 mV-->1084.7 |
||
156 | 4090 mV-->1602.4 517.7 |
||
157 | 3877 mV-->3107.8 1503.4 |
||
158 | |||
159 | 4165 mV-->1419.1 |
||
160 | 3503 mV-->208.1 |
||
161 | Diff.: 1211.0 |
||
162 | |||
163 | Calculated Vout = 5V(.009P-0.095) --> 5V .009P = Vout + 5V 0.095 --> P = (Vout + 5V 0.095)/(5V 0.009) |
||
164 | 4165 mV = 5V(0.009P-0.095) P = 103.11 kPa h = -151.4m |
||
165 | 4090 mV = 5V(0.009P-0.095) P = 101.44 kPa h = -11.7m 139.7m |
||
166 | 3877 mV = 5V(0.009P-0.095) P = 96.7 kPa h = 385m 396.7m |
||
167 | |||
168 | 4165 mV = 5V(0.009P-0.095) P = 103.11 kPa h = -151.4m |
||
169 | 3503 mV = 5V(0.009P-0.095) P = 88.4 kPa h = 384m Diff: 1079.5m |
||
170 | Pressure at sea level: 101.3 kPa. voltage: 5V * (0.009P-0.095) = 4.0835V |
||
171 | This is OCR2 = 143.15 at 1.5V in --> simple pressure = |
||
172 | */ |
||
173 | |||
174 | #define AIRPRESSURE_OVERSAMPLING 14 |
||
1910 | - | 175 | #define AIRPRESSURE_FILTER 8 |
176 | // Minimum A/D value before a range change is performed. |
||
177 | #define MIN_RAWPRESSURE (200 * 2) |
||
178 | // Maximum A/D value before a range change is performed. |
||
179 | #define MAX_RAWPRESSURE (1023 * 2 - MIN_RAWPRESSURE) |
||
180 | |||
181 | #define MIN_RANGES_EXTRAPOLATION 15 |
||
182 | #define MAX_RANGES_EXTRAPOLATION 240 |
||
183 | |||
184 | #define PRESSURE_EXTRAPOLATION_COEFF 25L |
||
185 | #define AUTORANGE_WAIT_FACTOR 1 |
||
186 | |||
2096 | - | 187 | #define ABS_ALTITUDE_OFFSET 108205 |
188 | |||
189 | extern uint16_t simpleAirPressure; |
||
1910 | - | 190 | /* |
191 | * At saturation, the filteredAirPressure may actually be (simulated) negative. |
||
192 | */ |
||
2096 | - | 193 | extern int32_t filteredAirPressure; |
1910 | - | 194 | |
2096 | - | 195 | extern int16_t magneticHeading; |
196 | |||
197 | extern uint32_t gyroActivity; |
||
198 | |||
1910 | - | 199 | /* |
200 | * Flag: Interrupt handler has done all A/D conversion and processing. |
||
201 | */ |
||
202 | extern volatile uint8_t analogDataReady; |
||
203 | |||
2096 | - | 204 | |
1910 | - | 205 | void analog_init(void); |
206 | |||
2096 | - | 207 | /* |
208 | * This is really only for use for the ENC-03 code module, which needs to get the raw value |
||
209 | * for its calibration. The raw value should not be used for anything else. |
||
210 | */ |
||
211 | uint16_t rawGyroValue(uint8_t axis); |
||
1910 | - | 212 | |
2096 | - | 213 | /* |
214 | * Start the conversion cycle. It will stop automatically. |
||
215 | */ |
||
216 | void startAnalogConversionCycle(void); |
||
1910 | - | 217 | |
218 | /* |
||
2096 | - | 219 | * Process the sensor data to update the exported variables. Must be called after each measurement cycle and before the data is used. |
1910 | - | 220 | */ |
2096 | - | 221 | void analog_update(void); |
1910 | - | 222 | |
223 | /* |
||
2096 | - | 224 | * Read gyro and acc.meter calibration from EEPROM. |
1910 | - | 225 | */ |
2096 | - | 226 | void analog_setNeutral(void); |
227 | |||
228 | /* |
||
229 | * Zero-offset gyros and write the calibration data to EEPROM. |
||
230 | */ |
||
231 | void analog_calibrateGyros(void); |
||
232 | |||
233 | /* |
||
234 | * Zero-offset accelerometers and write the calibration data to EEPROM. |
||
235 | */ |
||
1910 | - | 236 | void analog_calibrateAcc(void); |
2096 | - | 237 | |
238 | |||
239 | void analog_setGround(void); |
||
240 | |||
241 | int32_t analog_getHeight(void); |
||
242 | int16_t analog_getDHeight(void); |
||
243 | |||
1910 | - | 244 | #endif //_ANALOG_H |