Subversion Repositories FlightCtrl

Rev

Rev 2023 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1910 - 1
#ifndef _ANALOG_H
2
#define _ANALOG_H
3
#include <inttypes.h>
4
 
5
//#include "invenSense.h"
6
//#include "ENC-03_FC1.3.h"
7
//#include "ADXRS610_FC2.0.h"
8
 
9
/*
10
 * How much low pass filtering to apply for gyro_PID.
11
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
12
 * Temporarily replaced by userparam-configurable variable.
13
 */
14
// #define GYROS_PID_FILTER 1
15
 
16
/*
17
 * How much low pass filtering to apply for gyro_ATT.
18
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
19
 * Temporarily replaced by userparam-configurable variable.
20
 */
21
// #define GYROS_ATT_FILTER 1
22
 
23
// Temporarily replaced by userparam-configurable variable.
24
// #define ACC_FILTER 4
25
 
26
/*
27
 About setting constants for different gyros:
28
 Main parameters are positive directions and voltage/angular speed gain.
29
 The "Positive direction" is the rotation direction around an axis where
30
 the corresponding gyro outputs a voltage > the no-rotation voltage.
31
 A gyro is considered, in this code, to be "forward" if its positive
32
 direction is:
33
 - Nose down for pitch
34
 - Left hand side down for roll
35
 - Clockwise seen from above for yaw.
36
 Declare the GYRO_REVERSE_YAW, GYRO_REVERSE_ROLL and
37
 GYRO_REVERSE_PITCH #define's if the respective gyros are reverse.
38
 
39
 Setting gyro gain correctly: All sensor measurements in analog.c take
40
 place in a cycle, each cycle comprising all sensors. Some sensors are
41
 sampled more than ones, and the results added. The pitch and roll gyros
42
 are sampled 4 times and the yaw gyro 2 times in the original H&I V0.74
43
 code.
44
 In the H&I code, the results for pitch and roll are multiplied by 2 (FC1.0)
45
 or 4 (other versions), offset to zero, low pass filtered and then assigned
46
 to the "HiResXXXX" and "AdWertXXXXFilter" variables, where XXXX is nick or
47
 roll.
48
 So:
49
 
50
 gyro = V * (ADCValue1 + ADCValue2 + ADCValue3 + ADCValue4),
51
 where V is 2 for FC1.0 and 4 for all others.
52
 
53
 Assuming constant ADCValue, in the H&I code:
54
 
55
 gyro = I * ADCValue.
56
 
57
 where I is 8 for FC1.0 and 16 for all others.
58
 
59
 The relation between rotation rate and ADCValue:
60
 ADCValue [units] =
61
 rotational speed [deg/s] *
62
 gyro sensitivity [V / deg/s] *
63
 amplifier gain [units] *
64
 1024 [units] /
65
 3V full range [V]
66
 
67
 or: H is the number of steps the ADC value changes with,
68
 for a 1 deg/s change in rotational velocity:
69
 H = ADCValue [units] / rotation rate [deg/s] =
70
 gyro sensitivity [V / deg/s] *
71
 amplifier gain [units] *
72
 1024 [units] /
73
 3V full range [V]
74
 
75
 Examples:
76
 FC1.3 has 0.67 mV/deg/s gyros and amplifiers with a gain of 5.7:
77
 H = 0.00067 V / deg / s * 5.7 * 1024 / 3V = 1.304 units/(deg/s).
78
 FC2.0 has 6*(3/5) mV/deg/s gyros (they are ratiometric) and no amplifiers:
79
 H = 0.006 V / deg / s * 1 * 1024 * 3V / (3V * 5V) = 1.2288 units/(deg/s).
80
 My InvenSense copter has 2mV/deg/s gyros and no amplifiers:
81
 H = 0.002 V / deg / s * 1 * 1024 / 3V = 0.6827 units/(deg/s)
82
 (only about half as sensitive as V1.3. But it will take about twice the
83
 rotation rate!)
84
 
85
 All together: gyro = I * H * rotation rate [units / (deg/s)].
86
 */
87
 
88
/*
89
 * A factor that the raw gyro values are multiplied by,
90
 * before being filtered and passed to the attitude module.
91
 * A value of 1 would cause a little bit of loss of precision in the
92
 * filtering (on the other hand the values are so noisy in flight that
93
 * it will not really matter - but when testing on the desk it might be
94
 * noticeable). 4 is fine for the default filtering.
95
 * Experiment: Set it to 1.
96
 */
97
#define GYRO_FACTOR_PITCHROLL 1
98
 
99
/*
100
 * How many samples are summed in one ADC loop, for pitch&roll and yaw,
101
 * respectively. This is = the number of occurences of each channel in the
102
 * channelsForStates array in analog.c.
103
 */
104
#define GYRO_SUMMATION_FACTOR_PITCHROLL 4
105
#define GYRO_SUMMATION_FACTOR_YAW 2
106
 
107
#define ACC_SUMMATION_FACTOR_PITCHROLL 2
108
#define ACC_SUMMATION_FACTOR_Z 1
109
 
110
/*
111
 Integration:
112
 The HiResXXXX values are divided by 8 (in H&I firmware) before integration.
113
 In the Killagreg rewrite of the H&I firmware, the factor 8 is called
114
 HIRES_GYRO_AMPLIFY. In this code, it is called HIRES_GYRO_INTEGRATION_FACTOR,
115
 and care has been taken that all other constants (gyro to degree factor, and
116
 180 degree flip-over detection limits) are corrected to it. Because the
117
 division by the constant takes place in the flight attitude code, the
118
 constant is there.
119
 
120
 The control loop executes every 2ms, and for each iteration
121
 gyro_ATT[PITCH/ROLL] is added to gyroIntegral[PITCH/ROLL].
122
 Assuming a constant rotation rate v and a zero initial gyroIntegral
123
 (for this explanation), we get:
124
 
125
 gyroIntegral =
126
 N * gyro / HIRES_GYRO_INTEGRATION_FACTOR =
127
 N * I * H * v / HIRES_GYRO_INTEGRATION_FACTOR
128
 
129
 where N is the number of summations; N = t/2ms.
130
 
131
 For one degree of rotation: t*v = 1:
132
 
133
 gyroIntegralXXXX = t/2ms * I * H * 1/t = INTEGRATION_FREQUENCY * I * H / HIRES_GYRO_INTEGRATION_FACTOR.
134
 
135
 This number (INTEGRATION_FREQUENCY * I * H) is the integral-to-degree factor.
136
 
137
 Examples:
138
 FC1.3: I=2, H=1.304, HIRES_GYRO_INTEGRATION_FACTOR=8 --> integralDegreeFactor = 1304
139
 FC2.0: I=2, H=2.048, HIRES_GYRO_INTEGRATION_FACTOR=13 --> integralDegreeFactor = 1260
140
 My InvenSense copter: HIRES_GYRO_INTEGRATION_FACTOR=4, H=0.6827 --> integralDegreeFactor = 1365
141
 */
142
 
143
/*
144
 * The value of gyro[PITCH/ROLL] for one deg/s = The hardware factor H * the number of samples * multiplier factor.
145
 * Will be about 10 or so for InvenSense, and about 33 for ADXRS610.
146
 */
147
#define GYRO_RATE_FACTOR_PITCHROLL (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_PITCHROLL * GYRO_FACTOR_PITCHROLL)
148
#define GYRO_RATE_FACTOR_YAW (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_YAW)
149
 
150
/*
151
 * Gyro saturation prevention.
152
 */
153
// How far from the end of its range a gyro is considered near-saturated.
154
#define SENSOR_MIN_PITCHROLL 32
155
// Other end of the range (calculated)
156
#define SENSOR_MAX_PITCHROLL (GYRO_SUMMATION_FACTOR_PITCHROLL * 1023 - SENSOR_MIN_PITCHROLL)
157
// Max. boost to add "virtually" to gyro signal at total saturation.
158
#define EXTRAPOLATION_LIMIT 2500
159
// Slope of the boost (calculated)
160
#define EXTRAPOLATION_SLOPE (EXTRAPOLATION_LIMIT/SENSOR_MIN_PITCHROLL)
161
 
162
/*
163
 * This value is subtracted from the gyro noise measurement in each iteration,
164
 * making it return towards zero.
165
 */
166
#define GYRO_NOISE_MEASUREMENT_DAMPING 5
167
 
168
#define PITCH 0
169
#define ROLL 1
170
#define YAW 2
171
#define Z 2
172
/*
173
 * The values that this module outputs
174
 * These first 2 exported arrays are zero-offset. The "PID" ones are used
175
 * in the attitude control as rotation rates. The "ATT" ones are for
176
 * integration to angles. For the same axis, the PID and ATT variables
177
 * generally have about the same values. There are just some differences
178
 * in filtering, and when a gyro becomes near saturated.
179
 * Maybe this distinction is not really necessary.
180
 */
181
extern volatile int16_t gyro_PID[2];
182
extern volatile int16_t gyro_ATT[2];
183
extern volatile int16_t gyroD[3];
184
extern volatile int16_t yawGyro;
185
extern volatile uint16_t ADCycleCount;
186
extern volatile int16_t UBat;
187
 
188
// 1:11 voltage divider, 1024 counts per 3V, and result is divided by 3.
189
#define UBAT_AT_5V (int16_t)((5.0 * (1.0/11.0)) * 1024 / (3.0 * 3))
190
 
191
/*
192
 * This is not really for external use - but the ENC-03 gyro modules needs it.
193
 */
194
extern volatile int16_t rawGyroSum[3];
195
 
196
/*
197
 * The acceleration values that this module outputs. They are zero based.
198
 */
199
extern volatile int16_t acc[3];
200
extern volatile int16_t filteredAcc[2];
201
// extern volatile int32_t stronglyFilteredAcc[3];
202
 
203
/*
204
 * Diagnostics: Gyro noise level because of motor vibrations. The variables
205
 * only really reflect the noise level when the copter stands still but with
206
 * its motors running.
207
 */
208
extern volatile uint16_t gyroNoisePeak[2];
209
extern volatile uint16_t accNoisePeak[2];
210
 
211
/*
212
 * Air pressure.
213
 * The sensor has a sensitivity of 46 mV/kPa.
214
 * An approximate p(h) formula is = p(h[m])[Pa] = p_0 - 11.95 * 10^-3 * h
215
 * That is: dV = 46 mV * 11.95 * 10^-3 dh = 0.5497 mV / m.
216
 * That is, with 2 * 1.024 / 3 steps per mV: 0.037 steps / m
217
 */
218
#define AIRPRESSURE_SUMMATION_FACTOR 16
219
#define AIRPRESSURE_FILTER 8
220
// Minimum A/D value before a range change is performed.
221
#define MIN_RAWPRESSURE (200 * 2)
222
// Maximum A/D value before a range change is performed.
223
#define MAX_RAWPRESSURE (1023 * 2 - MIN_RAWPRESSURE)
224
 
225
#define MIN_RANGES_EXTRAPOLATION 15
226
#define MAX_RANGES_EXTRAPOLATION 240
227
 
228
#define PRESSURE_EXTRAPOLATION_COEFF 25L
229
#define AUTORANGE_WAIT_FACTOR 1
230
 
231
extern volatile uint16_t simpleAirPressure;
232
/*
233
 * At saturation, the filteredAirPressure may actually be (simulated) negative.
234
 */
235
extern volatile int32_t filteredAirPressure;
236
 
237
/*
238
 * Flag: Interrupt handler has done all A/D conversion and processing.
239
 */
240
extern volatile uint8_t analogDataReady;
241
 
242
void analog_init(void);
243
 
244
// clear ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
245
#define analog_stop() (ADCSRA &= ~((1<<ADEN)|(1<<ADSC)|(1<<ADIE)))
246
 
247
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
248
#define analog_start() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
249
 
250
/*
251
 * "Warm" calibration: Zero-offset gyros.
252
 */
253
void analog_calibrate(void);
254
 
255
/*
256
 * "Cold" calibration: Zero-offset accelerometers and write the calibration data to EEPROM.
257
 */
258
void analog_calibrateAcc(void);
259
#endif //_ANALOG_H