Rev 2122 | Rev 2125 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2096 | - | 1 | #include <avr/io.h> |
1910 | - | 2 | #include <avr/interrupt.h> |
3 | #include <avr/pgmspace.h> |
||
2096 | - | 4 | #include <stdlib.h> |
1910 | - | 5 | |
6 | #include "analog.h" |
||
7 | #include "attitude.h" |
||
2096 | - | 8 | #include "printf_P.h" |
2102 | - | 9 | #include "isqrt.h" |
2119 | - | 10 | #include "sensors.h" |
1910 | - | 11 | |
12 | // for Delay functions |
||
13 | #include "timer0.h" |
||
14 | |||
15 | // For reading and writing acc. meter offsets. |
||
16 | #include "eeprom.h" |
||
17 | |||
2096 | - | 18 | // For debugOut |
1910 | - | 19 | #include "output.h" |
20 | |||
2096 | - | 21 | // set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit |
22 | #define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE)) |
||
23 | |||
24 | const char* recal = ", recalibration needed."; |
||
25 | |||
1910 | - | 26 | /* |
27 | * For each A/D conversion cycle, each analog channel is sampled a number of times |
||
28 | * (see array channelsForStates), and the results for each channel are summed. |
||
29 | * Here are those for the gyros and the acc. meters. They are not zero-offset. |
||
30 | * They are exported in the analog.h file - but please do not use them! The only |
||
31 | * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating |
||
32 | * the offsets with the DAC. |
||
33 | */ |
||
2096 | - | 34 | volatile uint16_t sensorInputs[8]; |
1910 | - | 35 | |
2104 | - | 36 | |
1910 | - | 37 | /* |
38 | * These 4 exported variables are zero-offset. The "PID" ones are used |
||
39 | * in the attitude control as rotation rates. The "ATT" ones are for |
||
40 | * integration to angles. |
||
41 | */ |
||
2099 | - | 42 | int16_t gyro_PID[3]; |
43 | int16_t gyro_ATT[3]; |
||
44 | int16_t gyroD[3]; |
||
2103 | - | 45 | int16_t gyroDWindow[3][GYRO_D_WINDOW_LENGTH]; |
2096 | - | 46 | uint8_t gyroDWindowIdx = 0; |
47 | |||
1910 | - | 48 | /* |
2109 | - | 49 | * Airspeed |
50 | */ |
||
51 | int16_t airpressure; |
||
52 | uint16_t airspeedVelocity = 0; |
||
53 | //int16_t airpressureWindow[AIRPRESSURE_WINDOW_LENGTH]; |
||
54 | //uint8_t airpressureWindowIdx = 0; |
||
55 | |||
56 | /* |
||
1910 | - | 57 | * Offset values. These are the raw gyro and acc. meter sums when the copter is |
58 | * standing still. They are used for adjusting the gyro and acc. meter values |
||
59 | * to be centered on zero. |
||
60 | */ |
||
2096 | - | 61 | sensorOffset_t gyroOffset; |
2106 | - | 62 | uint16_t airpressureOffset; |
1910 | - | 63 | |
64 | /* |
||
2096 | - | 65 | * In the MK coordinate system, nose-down is positive and left-roll is positive. |
66 | * If a sensor is used in an orientation where one but not both of the axes has |
||
67 | * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true). |
||
68 | * Transform: |
||
69 | * pitch <- pp*pitch + pr*roll |
||
70 | * roll <- rp*pitch + rr*roll |
||
71 | * Not reversed, GYRO_QUADRANT: |
||
72 | * 0: pp=1, pr=0, rp=0, rr=1 // 0 degrees |
||
73 | * 1: pp=1, pr=-1,rp=1, rr=1 // +45 degrees |
||
74 | * 2: pp=0, pr=-1,rp=1, rr=0 // +90 degrees |
||
75 | * 3: pp=-1,pr=-1,rp=1, rr=1 // +135 degrees |
||
76 | * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees |
||
77 | * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees |
||
78 | * 6: pp=0, pr=1, rp=-1,rr=0 // +270 degrees |
||
79 | * 7: pp=1, pr=1, rp=-1,rr=1 // +315 degrees |
||
80 | * Reversed, GYRO_QUADRANT: |
||
81 | * 0: pp=-1,pr=0, rp=0, rr=1 // 0 degrees with pitch reversed |
||
82 | * 1: pp=-1,pr=-1,rp=-1,rr=1 // +45 degrees with pitch reversed |
||
83 | * 2: pp=0, pr=-1,rp=-1,rr=0 // +90 degrees with pitch reversed |
||
84 | * 3: pp=1, pr=-1,rp=-1,rr=1 // +135 degrees with pitch reversed |
||
85 | * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed |
||
86 | * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed |
||
87 | * 6: pp=0, pr=1, rp=1, rr=0 // +270 degrees with pitch reversed |
||
88 | * 7: pp=-1,pr=1, rp=1, rr=1 // +315 degrees with pitch reversed |
||
89 | */ |
||
90 | |||
2099 | - | 91 | void rotate(int16_t* result, uint8_t quadrant, uint8_t reversePR, uint8_t reverseYaw) { |
2096 | - | 92 | static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1}; |
93 | // Pitch to Pitch part |
||
2099 | - | 94 | int8_t xx = reversePR ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant]; |
2096 | - | 95 | // Roll to Pitch part |
96 | int8_t xy = rotationTab[(quadrant+2)%8]; |
||
97 | // Pitch to Roll part |
||
2099 | - | 98 | int8_t yx = reversePR ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8]; |
2096 | - | 99 | // Roll to Roll part |
100 | int8_t yy = rotationTab[quadrant]; |
||
101 | |||
102 | int16_t xIn = result[0]; |
||
103 | result[0] = xx*xIn + xy*result[1]; |
||
104 | result[1] = yx*xIn + yy*result[1]; |
||
105 | |||
106 | if (quadrant & 1) { |
||
107 | // A rotation was used above, where the factors were too large by sqrt(2). |
||
108 | // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2). |
||
109 | // A suitable value for n: Sample is 11 bits. After transformation it is the sum |
||
110 | // of 2 11 bit numbers, so 12 bits. We have 4 bits left... |
||
111 | result[0] = (result[0]*11) >> 4; |
||
112 | result[1] = (result[1]*11) >> 4; |
||
113 | } |
||
2099 | - | 114 | |
115 | if (reverseYaw) |
||
116 | result[3] =-result[3]; |
||
2096 | - | 117 | } |
118 | |||
119 | /* |
||
1910 | - | 120 | * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt. |
121 | * That is divided by 3 below, for a final 10.34 per volt. |
||
122 | * So the initial value of 100 is for 9.7 volts. |
||
123 | */ |
||
2104 | - | 124 | uint16_t UBat = 100; |
1910 | - | 125 | |
126 | /* |
||
127 | * Control and status. |
||
128 | */ |
||
129 | volatile uint8_t analogDataReady = 1; |
||
130 | |||
131 | /* |
||
132 | * Experiment: Measuring vibration-induced sensor noise. |
||
133 | */ |
||
2096 | - | 134 | uint16_t gyroNoisePeak[3]; |
1910 | - | 135 | |
2096 | - | 136 | volatile uint8_t adState; |
137 | volatile uint8_t adChannel; |
||
138 | |||
1910 | - | 139 | // ADC channels |
140 | #define AD_GYRO_YAW 0 |
||
141 | #define AD_GYRO_ROLL 1 |
||
142 | #define AD_GYRO_PITCH 2 |
||
143 | #define AD_AIRPRESSURE 3 |
||
144 | #define AD_UBAT 4 |
||
145 | #define AD_ACC_Z 5 |
||
146 | #define AD_ACC_ROLL 6 |
||
147 | #define AD_ACC_PITCH 7 |
||
148 | |||
149 | /* |
||
150 | * Table of AD converter inputs for each state. |
||
151 | * The number of samples summed for each channel is equal to |
||
152 | * the number of times the channel appears in the array. |
||
153 | * The max. number of samples that can be taken in 2 ms is: |
||
154 | * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control |
||
155 | * loop needs a little time between reading AD values and |
||
156 | * re-enabling ADC, the real limit is (how much?) lower. |
||
157 | * The acc. sensor is sampled even if not used - or installed |
||
158 | * at all. The cost is not significant. |
||
159 | */ |
||
160 | |||
161 | const uint8_t channelsForStates[] PROGMEM = { |
||
2099 | - | 162 | AD_GYRO_PITCH, |
163 | AD_GYRO_ROLL, |
||
164 | AD_GYRO_YAW, |
||
1910 | - | 165 | |
2099 | - | 166 | AD_GYRO_PITCH, |
167 | AD_GYRO_ROLL, |
||
168 | AD_GYRO_YAW, |
||
169 | |||
2122 | - | 170 | AD_AIRPRESSURE, |
171 | |||
2099 | - | 172 | AD_UBAT, |
173 | |||
174 | AD_GYRO_PITCH, |
||
175 | AD_GYRO_ROLL, |
||
176 | AD_GYRO_YAW, |
||
1910 | - | 177 | |
2099 | - | 178 | AD_GYRO_PITCH, |
179 | AD_GYRO_ROLL, |
||
2122 | - | 180 | AD_GYRO_YAW, |
181 | |||
182 | AD_AIRPRESSURE |
||
1910 | - | 183 | }; |
184 | |||
185 | // Feature removed. Could be reintroduced later - but should work for all gyro types then. |
||
186 | // uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0; |
||
187 | |||
188 | void analog_init(void) { |
||
189 | uint8_t sreg = SREG; |
||
190 | // disable all interrupts before reconfiguration |
||
191 | cli(); |
||
192 | |||
193 | //ADC0 ... ADC7 is connected to PortA pin 0 ... 7 |
||
194 | DDRA = 0x00; |
||
195 | PORTA = 0x00; |
||
196 | // Digital Input Disable Register 0 |
||
197 | // Disable digital input buffer for analog adc_channel pins |
||
198 | DIDR0 = 0xFF; |
||
199 | // external reference, adjust data to the right |
||
2096 | - | 200 | ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR)); |
1910 | - | 201 | // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice) |
2096 | - | 202 | ADMUX = (ADMUX & 0xE0); |
1910 | - | 203 | //Set ADC Control and Status Register A |
204 | //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz |
||
2096 | - | 205 | ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0); |
1910 | - | 206 | //Set ADC Control and Status Register B |
207 | //Trigger Source to Free Running Mode |
||
2096 | - | 208 | ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0)); |
209 | |||
210 | startAnalogConversionCycle(); |
||
211 | |||
1910 | - | 212 | // restore global interrupt flags |
213 | SREG = sreg; |
||
214 | } |
||
215 | |||
2096 | - | 216 | uint16_t rawGyroValue(uint8_t axis) { |
217 | return sensorInputs[AD_GYRO_PITCH-axis]; |
||
218 | } |
||
219 | |||
2099 | - | 220 | /* |
2096 | - | 221 | uint16_t rawAccValue(uint8_t axis) { |
222 | return sensorInputs[AD_ACC_PITCH-axis]; |
||
223 | } |
||
2099 | - | 224 | */ |
2096 | - | 225 | |
1910 | - | 226 | void measureNoise(const int16_t sensor, |
227 | volatile uint16_t* const noiseMeasurement, const uint8_t damping) { |
||
228 | if (sensor > (int16_t) (*noiseMeasurement)) { |
||
229 | *noiseMeasurement = sensor; |
||
230 | } else if (-sensor > (int16_t) (*noiseMeasurement)) { |
||
231 | *noiseMeasurement = -sensor; |
||
232 | } else if (*noiseMeasurement > damping) { |
||
233 | *noiseMeasurement -= damping; |
||
234 | } else { |
||
235 | *noiseMeasurement = 0; |
||
236 | } |
||
237 | } |
||
238 | |||
2096 | - | 239 | void startAnalogConversionCycle(void) { |
240 | analogDataReady = 0; |
||
241 | |||
242 | // Stop the sampling. Cycle is over. |
||
243 | for (uint8_t i = 0; i < 8; i++) { |
||
244 | sensorInputs[i] = 0; |
||
245 | } |
||
246 | adState = 0; |
||
247 | adChannel = AD_GYRO_PITCH; |
||
248 | ADMUX = (ADMUX & 0xE0) | adChannel; |
||
249 | startADC(); |
||
1910 | - | 250 | } |
251 | |||
252 | /***************************************************** |
||
253 | * Interrupt Service Routine for ADC |
||
2096 | - | 254 | * Runs at 312.5 kHz or 3.2 �s. When all states are |
255 | * processed further conversions are stopped. |
||
1910 | - | 256 | *****************************************************/ |
257 | ISR(ADC_vect) { |
||
2096 | - | 258 | sensorInputs[adChannel] += ADC; |
259 | // set up for next state. |
||
260 | adState++; |
||
261 | if (adState < sizeof(channelsForStates)) { |
||
262 | adChannel = pgm_read_byte(&channelsForStates[adState]); |
||
263 | // set adc muxer to next adChannel |
||
264 | ADMUX = (ADMUX & 0xE0) | adChannel; |
||
265 | // after full cycle stop further interrupts |
||
266 | startADC(); |
||
267 | } else { |
||
268 | analogDataReady = 1; |
||
269 | // do not restart ADC converter. |
||
270 | } |
||
271 | } |
||
1910 | - | 272 | |
2096 | - | 273 | void analog_updateGyros(void) { |
274 | // for various filters... |
||
2099 | - | 275 | int16_t tempOffsetGyro[3], tempGyro; |
2096 | - | 276 | |
277 | debugOut.digital[0] &= ~DEBUG_SENSORLIMIT; |
||
2103 | - | 278 | |
2099 | - | 279 | for (uint8_t axis=0; axis<3; axis++) { |
2096 | - | 280 | tempGyro = rawGyroValue(axis); |
281 | /* |
||
282 | * Process the gyro data for the PID controller. |
||
283 | */ |
||
284 | // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a |
||
285 | // gyro with a wider range, and helps counter saturation at full control. |
||
286 | |||
287 | if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) { |
||
2099 | - | 288 | if (tempGyro < SENSOR_MIN) { |
2096 | - | 289 | debugOut.digital[0] |= DEBUG_SENSORLIMIT; |
290 | tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT; |
||
2099 | - | 291 | } else if (tempGyro > SENSOR_MAX) { |
2096 | - | 292 | debugOut.digital[0] |= DEBUG_SENSORLIMIT; |
2099 | - | 293 | tempGyro = (tempGyro - SENSOR_MAX) * EXTRAPOLATION_SLOPE + SENSOR_MAX; |
2096 | - | 294 | } |
295 | } |
||
1910 | - | 296 | |
2096 | - | 297 | // 2) Apply sign and offset, scale before filtering. |
2099 | - | 298 | tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]); |
2096 | - | 299 | } |
1910 | - | 300 | |
2096 | - | 301 | // 2.1: Transform axes. |
2099 | - | 302 | rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW); |
1910 | - | 303 | |
2099 | - | 304 | for (uint8_t axis=0; axis<3; axis++) { |
2096 | - | 305 | // 3) Filter. |
306 | tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant; |
||
1910 | - | 307 | |
2096 | - | 308 | // 4) Measure noise. |
309 | measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING); |
||
1910 | - | 310 | |
2096 | - | 311 | // 5) Differential measurement. |
312 | // gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant; |
||
313 | int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis]; |
||
314 | gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx]; |
||
315 | gyroD[axis] += diff; |
||
316 | gyroDWindow[axis][gyroDWindowIdx] = diff; |
||
1910 | - | 317 | |
2096 | - | 318 | // 6) Done. |
319 | gyro_PID[axis] = tempOffsetGyro[axis]; |
||
1910 | - | 320 | |
2096 | - | 321 | // Prepare tempOffsetGyro for next calculation below... |
2099 | - | 322 | tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]); |
2096 | - | 323 | } |
1910 | - | 324 | |
2096 | - | 325 | /* |
326 | * Now process the data for attitude angles. |
||
327 | */ |
||
2099 | - | 328 | rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW); |
1910 | - | 329 | |
2099 | - | 330 | // dampenGyroActivity(); |
331 | gyro_ATT[PITCH] = tempOffsetGyro[PITCH]; |
||
332 | gyro_ATT[ROLL] = tempOffsetGyro[ROLL]; |
||
2103 | - | 333 | gyro_ATT[YAW] = tempOffsetGyro[YAW]; |
1910 | - | 334 | |
2096 | - | 335 | if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) { |
336 | gyroDWindowIdx = 0; |
||
337 | } |
||
338 | } |
||
1910 | - | 339 | |
2105 | - | 340 | // probably wanna aim at 1/10 m/s/unit. |
2109 | - | 341 | #define LOG_AIRSPEED_FACTOR 0 |
2105 | - | 342 | |
343 | void analog_updateAirspeed(void) { |
||
2109 | - | 344 | uint16_t rawAirpressure = sensorInputs[AD_AIRPRESSURE]; |
345 | int16_t temp = airpressureOffset - rawAirpressure; |
||
346 | //airpressure -= airpressureWindow[airpressureWindowIdx]; |
||
347 | //airpressure += temp; |
||
348 | //airpressureWindow[airpressureWindowIdx] = temp; |
||
349 | //airpressureWindowIdx++; |
||
350 | //if (airpressureWindowIdx == AIRPRESSURE_WINDOW_LENGTH) { |
||
351 | // airpressureWindowIdx = 0; |
||
352 | //} |
||
353 | |||
354 | #define AIRPRESSURE_FILTER 16 |
||
355 | airpressure = ((int32_t)airpressure * (AIRPRESSURE_FILTER-1) + (AIRPRESSURE_FILTER/2) + temp) / AIRPRESSURE_FILTER; |
||
356 | |||
357 | uint16_t p2 = (airpressure<0) ? 0 : airpressure; |
||
358 | airspeedVelocity = (staticParams.airspeedCorrection * isqrt16(p2)) >> LOG_AIRSPEED_FACTOR; |
||
359 | |||
360 | debugOut.analog[17] = airpressure; |
||
361 | debugOut.analog[18] = airpressureOffset; |
||
362 | debugOut.analog[19] = airspeedVelocity; |
||
363 | |||
364 | isFlying = 0; //(airspeedVelocity >= staticParams.isFlyingThreshold); |
||
2096 | - | 365 | } |
1910 | - | 366 | |
2096 | - | 367 | void analog_updateBatteryVoltage(void) { |
368 | // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v). |
||
369 | // This is divided by 3 --> 10.34 counts per volt. |
||
370 | UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4; |
||
1910 | - | 371 | } |
372 | |||
2096 | - | 373 | void analog_update(void) { |
374 | analog_updateGyros(); |
||
2099 | - | 375 | // analog_updateAccelerometers(); |
2106 | - | 376 | analog_updateAirspeed(); |
2096 | - | 377 | analog_updateBatteryVoltage(); |
378 | #ifdef USE_MK3MAG |
||
379 | magneticHeading = volatileMagneticHeading; |
||
380 | #endif |
||
381 | } |
||
1910 | - | 382 | |
2096 | - | 383 | void analog_setNeutral() { |
384 | gyro_init(); |
||
385 | |||
386 | if (gyroOffset_readFromEEProm()) { |
||
387 | printf("gyro offsets invalid%s",recal); |
||
2099 | - | 388 | gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING; |
389 | gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING; |
||
2096 | - | 390 | } |
2099 | - | 391 | |
2096 | - | 392 | // Noise is relative to offset. So, reset noise measurements when changing offsets. |
2099 | - | 393 | for (uint8_t i=PITCH; i<=YAW; i++) { |
2096 | - | 394 | gyroNoisePeak[i] = 0; |
395 | gyroD[i] = 0; |
||
396 | for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) { |
||
397 | gyroDWindow[i][j] = 0; |
||
398 | } |
||
399 | } |
||
400 | // Setting offset values has an influence in the analog.c ISR |
||
401 | // Therefore run measurement for 100ms to achive stable readings |
||
402 | delay_ms_with_adc_measurement(100, 0); |
||
1910 | - | 403 | |
2102 | - | 404 | // gyroActivity = 0; |
2096 | - | 405 | } |
1910 | - | 406 | |
2105 | - | 407 | void analog_calibrate(void) { |
2122 | - | 408 | #define OFFSET_CYCLES 120 |
2096 | - | 409 | uint8_t i, axis; |
2119 | - | 410 | int32_t offsets[4] = { 0, 0, 0, 0 }; |
2096 | - | 411 | gyro_calibrate(); |
412 | |||
2122 | - | 413 | // determine gyro bias by averaging (requires that the aircraft does not rotate around any axis!) |
2105 | - | 414 | for (i = 0; i < OFFSET_CYCLES; i++) { |
2124 | - | 415 | delay_ms_with_adc_measurement(4, 1); |
2096 | - | 416 | for (axis = PITCH; axis <= YAW; axis++) { |
417 | offsets[axis] += rawGyroValue(axis); |
||
418 | } |
||
2105 | - | 419 | offsets[3] += sensorInputs[AD_AIRPRESSURE]; |
2096 | - | 420 | } |
421 | |||
422 | for (axis = PITCH; axis <= YAW; axis++) { |
||
2122 | - | 423 | gyroOffset.offsets[axis] = (offsets[axis] + OFFSET_CYCLES/2) / OFFSET_CYCLES; |
2099 | - | 424 | int16_t min = (512-200) * GYRO_OVERSAMPLING; |
425 | int16_t max = (512+200) * GYRO_OVERSAMPLING; |
||
2096 | - | 426 | if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) |
427 | versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis; |
||
428 | } |
||
1910 | - | 429 | |
2122 | - | 430 | airpressureOffset = (offsets[3] + OFFSET_CYCLES/2) / OFFSET_CYCLES; |
2105 | - | 431 | int16_t min = 200; |
2110 | - | 432 | int16_t max = 1024-200; |
2106 | - | 433 | if(airpressureOffset < min || airpressureOffset > max) |
2105 | - | 434 | versionInfo.hardwareErrors[0] |= FC_ERROR0_PRESSURE; |
435 | |||
436 | gyroOffset_writeToEEProm(); |
||
437 | |||
2096 | - | 438 | startAnalogConversionCycle(); |
1910 | - | 439 | } |