Subversion Repositories FlightCtrl

Rev

Rev 1927 | Rev 2099 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1910 - 1
#include <avr/interrupt.h>
2
#include <avr/pgmspace.h>
3
 
4
#include "analog.h"
5
#include "attitude.h"
6
#include "sensors.h"
7
 
8
// for Delay functions
9
#include "timer0.h"
10
 
11
// For DebugOut
12
#include "uart0.h"
13
 
14
// For reading and writing acc. meter offsets.
15
#include "eeprom.h"
16
 
17
// For DebugOut.Digital
18
#include "output.h"
19
 
20
/*
21
 * For each A/D conversion cycle, each analog channel is sampled a number of times
22
 * (see array channelsForStates), and the results for each channel are summed.
23
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
24
 * They are exported in the analog.h file - but please do not use them! The only
25
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
26
 * the offsets with the DAC.
27
 */
28
volatile int16_t rawGyroSum[3];
29
volatile int16_t acc[3];
30
volatile int16_t filteredAcc[2] = { 0,0 };
31
 
32
/*
33
 * These 4 exported variables are zero-offset. The "PID" ones are used
34
 * in the attitude control as rotation rates. The "ATT" ones are for
35
 * integration to angles.
36
 */
37
volatile int16_t gyro_PID[2];
38
volatile int16_t gyro_ATT[2];
39
volatile int16_t gyroD[3];
40
volatile int16_t yawGyro;
41
 
42
/*
43
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
44
 * standing still. They are used for adjusting the gyro and acc. meter values
45
 * to be centered on zero.
46
 */
47
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
48
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
49
 
50
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
51
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
52
 
53
/*
54
 * Air pressure
55
 */
56
volatile uint8_t rangewidth = 106;
57
 
58
// Direct from sensor, irrespective of range.
59
// volatile uint16_t rawAirPressure;
60
 
61
// Value of 2 samples, with range.
62
volatile uint16_t simpleAirPressure;
63
 
64
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
65
volatile int32_t filteredAirPressure;
66
 
67
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
68
volatile int32_t airPressureSum;
69
 
70
// The number of samples summed into airPressureSum so far.
71
volatile uint8_t pressureMeasurementCount;
72
 
73
/*
74
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
75
 * That is divided by 3 below, for a final 10.34 per volt.
76
 * So the initial value of 100 is for 9.7 volts.
77
 */
78
volatile int16_t UBat = 100;
79
 
80
/*
81
 * Control and status.
82
 */
83
volatile uint16_t ADCycleCount = 0;
84
volatile uint8_t analogDataReady = 1;
85
 
86
/*
87
 * Experiment: Measuring vibration-induced sensor noise.
88
 */
89
volatile uint16_t gyroNoisePeak[2];
90
volatile uint16_t accNoisePeak[2];
91
 
92
// ADC channels
93
#define AD_GYRO_YAW       0
94
#define AD_GYRO_ROLL      1
95
#define AD_GYRO_PITCH     2
96
#define AD_AIRPRESSURE    3
97
#define AD_UBAT           4
98
#define AD_ACC_Z          5
99
#define AD_ACC_ROLL       6
100
#define AD_ACC_PITCH      7
101
 
102
/*
103
 * Table of AD converter inputs for each state.
104
 * The number of samples summed for each channel is equal to
105
 * the number of times the channel appears in the array.
106
 * The max. number of samples that can be taken in 2 ms is:
107
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
108
 * loop needs a little time between reading AD values and
109
 * re-enabling ADC, the real limit is (how much?) lower.
110
 * The acc. sensor is sampled even if not used - or installed
111
 * at all. The cost is not significant.
112
 */
113
 
114
const uint8_t channelsForStates[] PROGMEM = {
115
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
116
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
117
 
118
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
119
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
120
 
121
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
122
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
123
  AD_AIRPRESSURE, // at 14, finish air pressure.
124
 
125
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
126
  AD_GYRO_ROLL,   // at 16, finish roll gyro
127
  AD_UBAT         // at 17, measure battery.
128
};
129
 
130
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
131
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
132
 
133
void analog_init(void) {
134
        uint8_t sreg = SREG;
135
        // disable all interrupts before reconfiguration
136
        cli();
137
 
138
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
139
        DDRA = 0x00;
140
        PORTA = 0x00;
141
        // Digital Input Disable Register 0
142
        // Disable digital input buffer for analog adc_channel pins
143
        DIDR0 = 0xFF;
144
        // external reference, adjust data to the right
145
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
146
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
147
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
148
        //Set ADC Control and Status Register A
149
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
150
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
151
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
152
        //Set ADC Control and Status Register B
153
        //Trigger Source to Free Running Mode
154
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
155
        // Start AD conversion
156
        analog_start();
157
        // restore global interrupt flags
158
        SREG = sreg;
159
}
160
 
161
void measureNoise(const int16_t sensor,
162
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
163
        if (sensor > (int16_t) (*noiseMeasurement)) {
164
                *noiseMeasurement = sensor;
165
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
166
                *noiseMeasurement = -sensor;
167
        } else if (*noiseMeasurement > damping) {
168
                *noiseMeasurement -= damping;
169
        } else {
170
                *noiseMeasurement = 0;
171
        }
172
}
173
 
174
/*
175
 * Min.: 0
176
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
177
 */
178
uint16_t getSimplePressure(int advalue) {
179
  return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
180
}
181
 
2022 - 182
/*
183
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
184
 * If a sensor is used in an orientation where one but not both of the axes has
185
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
186
 */
1910 - 187
void transformPRGyro(int16_t* result) {
188
  static const uint8_t tab[] = {1,1,0,0-1,-1,-1,0,1};
2022 - 189
  // Pitch to Pitch part
190
  int8_t pp = PR_GYROS_ORIENTATION_REVERSED ? tab[(GYRO_QUADRANT+4)%8] : tab[GYRO_QUADRANT];
191
  // Pitch to Roll part
1910 - 192
  int8_t pr = tab[(GYRO_QUADRANT+2)%8];
2022 - 193
  // Roll to Roll part
194
  int8_t rp = PR_GYROS_ORIENTATION_REVERSED ? tab[(GYRO_QUADRANT+2)%8] : tab[(GYRO_QUADRANT+6)%8];
195
  // Roll to Roll part
1910 - 196
  int8_t rr = tab[GYRO_QUADRANT];
197
 
2022 - 198
  int16_t pitchIn = result[PITCH];
199
 
200
  result[PITCH] = pp*result[PITCH] + pr*result[ROLL];
201
  result[ROLL] = rp*pitchIn + rr*result[ROLL];
1910 - 202
}
203
 
204
/*****************************************************
205
 * Interrupt Service Routine for ADC
2022 - 206
 * Runs at 312.5 kHz or 3.2 us. When all states are
1910 - 207
 * processed the interrupt is disabled and further
208
 * AD conversions are stopped.
209
 *****************************************************/
210
ISR(ADC_vect) {
211
        static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
212
        static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
213
        static uint16_t pressureAutorangingWait = 25;
214
        uint16_t rawAirPressure;
215
        uint8_t i, axis;
216
        int16_t newrange;
217
 
218
        // for various filters...
219
        int16_t tempOffsetGyro[2];
220
 
221
        sensorInputs[ad_channel] += ADC;
222
 
223
        /*
224
         * Actually we don't need this "switch". We could do all the sampling into the
225
         * sensorInputs array first, and all the processing after the last sample.
226
         */
227
        switch (state++) {
228
 
229
        case 8: // Z acc
230
                if (Z_ACC_REVERSED)
231
                        acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
232
                else
233
                        acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
234
 
235
                /*
236
        stronglyFilteredAcc[Z] =
237
            (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
238
        */
239
 
240
                break;
241
 
242
        case 11: // yaw gyro
243
                rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
2022 - 244
                if (YAW_GYRO_REVERSED)
1910 - 245
                  tempOffsetGyro[0] = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
246
                else
247
                  tempOffsetGyro[0] = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
2022 - 248
                gyroD[YAW] = (gyroD[YAW] * (staticParams.DGyroFilter - 1) + (tempOffsetGyro[0] - yawGyro)) / staticParams.DGyroFilter;
1910 - 249
                yawGyro = tempOffsetGyro[0];
250
                break;         
251
    case 13: // roll axis acc.
252
 
253
            // We have no sensor installed...
254
            acc[PITCH] = acc[ROLL] = 0;
255
 
256
            for (axis=0; axis<2; axis++) {
257
        filteredAcc[axis] =
2022 - 258
                    (filteredAcc[axis] * (staticParams.accFilter - 1) + acc[axis]) / staticParams.accFilter;
1910 - 259
                measureNoise(acc[axis], &accNoisePeak[axis], 1);
260
            }
261
                break;
262
 
263
        case 14: // air pressure
264
                if (pressureAutorangingWait) {
265
                        //A range switch was done recently. Wait for steadying.
266
                        pressureAutorangingWait--;
267
                        DebugOut.Analog[27] = (uint16_t) OCR0A;
268
                        DebugOut.Analog[31] = simpleAirPressure;
269
                        break;
270
                }
271
 
272
                rawAirPressure = sensorInputs[AD_AIRPRESSURE];
273
                if (rawAirPressure < MIN_RAWPRESSURE) {
274
                        // value is too low, so decrease voltage on the op amp minus input, making the value higher.
275
                        newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
276
                        if (newrange > MIN_RANGES_EXTRAPOLATION) {
277
                                pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
278
                                OCR0A = newrange;
279
                        } else {
280
                                if (OCR0A) {
281
                                        OCR0A--;
282
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
283
                                }
284
                        }
285
                } else if (rawAirPressure > MAX_RAWPRESSURE) {
286
                        // value is too high, so increase voltage on the op amp minus input, making the value lower.
287
                        // If near the end, make a limited increase
288
                        newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
289
                        if (newrange < MAX_RANGES_EXTRAPOLATION) {
290
                                pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
291
                                OCR0A = newrange;
292
                        } else {
293
                                if (OCR0A < 254) {
294
                                        OCR0A++;
295
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
296
                                }
297
                        }
298
                }
299
 
300
                // Even if the sample is off-range, use it.
301
                simpleAirPressure = getSimplePressure(rawAirPressure);
302
                DebugOut.Analog[27] = (uint16_t) OCR0A;
303
                DebugOut.Analog[31] = simpleAirPressure;
304
 
305
                if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
306
                        // Danger: pressure near lower end of range. If the measurement saturates, the
307
                        // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
308
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
309
                        airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
310
                                        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
311
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
312
                } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
313
                        // Danger: pressure near upper end of range. If the measurement saturates, the
314
                        // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
315
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
316
                        airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
317
                                        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
318
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
319
                } else {
320
                        // normal case.
321
                        // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
322
                        // The 2 cases above (end of range) are ignored for this.
323
                        DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
324
                        if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
325
                                airPressureSum += simpleAirPressure / 2;
326
                        else
327
                                airPressureSum += simpleAirPressure;
328
                }
329
 
330
                // 2 samples were added.
331
                pressureMeasurementCount += 2;
332
                if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
333
                        filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
334
                                        + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
335
                        pressureMeasurementCount = airPressureSum = 0;
336
                }
337
 
338
                break;
339
 
340
    case 16: // pitch and roll gyro.
341
            for (axis=0; axis<2; axis++) {
342
                tempOffsetGyro[axis] = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
343
                // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
344
                //    gyro with a wider range, and helps counter saturation at full control.
345
 
346
                if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
347
                  if (tempOffsetGyro[axis] < SENSOR_MIN_PITCHROLL) {
348
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
349
                                tempOffsetGyro[axis] = tempOffsetGyro[axis] * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
350
                        } else if (tempOffsetGyro[axis] > SENSOR_MAX_PITCHROLL) {
351
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
352
                                tempOffsetGyro[axis] = (tempOffsetGyro[axis] - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
353
                        } else {
354
                                DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
355
                        }
356
                }
357
 
358
                // 2) Apply sign and offset, scale before filtering.
359
                tempOffsetGyro[axis] = (tempOffsetGyro[axis] - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
360
            }
361
 
362
        // 2.1: Transform axis if configured to.
363
            transformPRGyro(tempOffsetGyro);
364
 
365
                // 3) Scale and filter.
366
            for (axis=0; axis<2; axis++) {
2022 - 367
                tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.PIDGyroFilter - 1) + tempOffsetGyro[axis]) / staticParams.PIDGyroFilter;
1910 - 368
 
369
                // 4) Measure noise.
370
                measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
371
 
372
                // 5) Differential measurement.
2022 - 373
                gyroD[axis] = (gyroD[axis] * (staticParams.DGyroFilter - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.DGyroFilter;
1910 - 374
 
375
                // 6) Done.
376
                gyro_PID[axis] = tempOffsetGyro[axis];
377
            }
378
 
379
                /*
380
                 * Now process the data for attitude angles.
381
                 */
382
            for (axis=0; axis<2; axis++) {
383
              tempOffsetGyro[axis] = (rawGyroSum[axis] - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
384
            }
385
 
386
            transformPRGyro(tempOffsetGyro);
387
 
388
            // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
2022 - 389
            gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
390
            gyro_ATT[ROLL] = (gyro_ATT[ROLL] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL]) / staticParams.attitudeGyroFilter;
1910 - 391
            break;
392
 
393
        case 17:
394
                // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
395
                // This is divided by 3 --> 10.34 counts per volt.
396
                UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
397
                DebugOut.Analog[20] = UBat;
398
                analogDataReady = 1; // mark
399
                ADCycleCount++;
400
                // Stop the sampling. Cycle is over.
401
                state = 0;
402
                for (i = 0; i < 8; i++) {
403
                        sensorInputs[i] = 0;
404
                }
405
                break;
406
        default: {
407
        } // do nothing.
408
        }
409
 
410
        // set up for next state.
411
        ad_channel = pgm_read_byte(&channelsForStates[state]);
412
        // ad_channel = channelsForStates[state];
413
 
414
        // set adc muxer to next ad_channel
415
        ADMUX = (ADMUX & 0xE0) | ad_channel;
416
        // after full cycle stop further interrupts
417
        if (state)
418
                analog_start();
419
}
420
 
421
void analog_calibrate(void) {
422
#define GYRO_OFFSET_CYCLES 32
423
        uint8_t i, axis;
424
        int32_t deltaOffsets[3] = { 0, 0, 0 };
425
 
426
        gyro_calibrate();
427
 
428
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
429
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
430
                delay_ms_Mess(20);
431
                for (axis = PITCH; axis <= YAW; axis++) {
432
                        deltaOffsets[axis] += rawGyroSum[axis];
433
                }
434
        }
435
 
436
        for (axis = PITCH; axis <= YAW; axis++) {
437
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
438
                // DebugOut.Analog[20 + axis] = gyroOffset[axis];
439
        }
440
 
441
        // Noise is relativ to offset. So, reset noise measurements when changing offsets.
442
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
443
 
444
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
445
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
446
        accOffset[Z] = GetParamWord(PID_ACC_Z);
447
 
448
        // Rough estimate. Hmm no nothing happens at calibration anyway.
449
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
450
        // pressureMeasurementCount = 0;
451
 
452
        delay_ms_Mess(100);
453
}
454
 
455
/*
456
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
457
 * Does not (!} update the local variables. This must be done with a
458
 * call to analog_calibrate() - this always (?) is done by the caller
459
 * anyway. There would be nothing wrong with updating the variables
460
 * directly from here, though.
461
 */
462
void analog_calibrateAcc(void) {
463
#define ACC_OFFSET_CYCLES 10
464
        /*
465
        uint8_t i, axis;
466
        int32_t deltaOffset[3] = { 0, 0, 0 };
467
        int16_t filteredDelta;
468
        // int16_t pressureDiff, savedRawAirPressure;
469
 
470
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
471
                delay_ms_Mess(10);
472
                for (axis = PITCH; axis <= YAW; axis++) {
473
                        deltaOffset[axis] += acc[axis];
474
                }
475
        }
476
 
477
        for (axis = PITCH; axis <= YAW; axis++) {
478
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
479
                                / ACC_OFFSET_CYCLES;
480
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
481
        }
482
 
483
        // Save ACC neutral settings to eeprom
484
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
485
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
486
        SetParamWord(PID_ACC_Z, accOffset[Z]);
487
 
488
        // Noise is relative to offset. So, reset noise measurements when
489
        // changing offsets.
490
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
491
 
492
        // Setting offset values has an influence in the analog.c ISR
493
        // Therefore run measurement for 100ms to achive stable readings
494
        delay_ms_Mess(100);
495
 
496
        */
497
        // Set the feedback so that air pressure ends up in the middle of the range.
498
        // (raw pressure high --> OCR0A also high...)
499
        /*
500
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
501
         delay_ms_Mess(1000);
502
 
503
         pressureDiff = 0;
504
         // DebugOut.Analog[16] = rawAirPressure;
505
 
506
         #define PRESSURE_CAL_CYCLE_COUNT 5
507
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
508
         savedRawAirPressure = rawAirPressure;
509
         OCR0A+=2;
510
         delay_ms_Mess(500);
511
         // raw pressure will decrease.
512
         pressureDiff += (savedRawAirPressure - rawAirPressure);
513
         savedRawAirPressure = rawAirPressure;
514
         OCR0A-=2;
515
         delay_ms_Mess(500);
516
         // raw pressure will increase.
517
         pressureDiff += (rawAirPressure - savedRawAirPressure);
518
         }
519
 
520
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
521
         DebugOut.Analog[27] = rangewidth;
522
         */
523
}