Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1993 | - | 1 | /* |
2 | FreeIMU.cpp - A libre and easy to use orientation sensing library for Arduino |
||
3 | Copyright (C) 2011 Fabio Varesano <fabio at varesano dot net> |
||
4 | |||
5 | |||
6 | This program is free software: you can redistribute it and/or modify |
||
7 | it under the terms of the version 3 GNU General Public License as |
||
8 | published by the Free Software Foundation. |
||
9 | |||
10 | This program is distributed in the hope that it will be useful, |
||
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
13 | GNU General Public License for more details. |
||
14 | |||
15 | You should have received a copy of the GNU General Public License |
||
16 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
17 | |||
18 | */ |
||
19 | |||
20 | #include <inttypes.h> |
||
21 | //#define DEBUG |
||
22 | #include "WProgram.h" |
||
23 | #include "FreeIMU.h" |
||
24 | // #include "WireUtils.h" |
||
25 | #include "DebugUtils.h" |
||
26 | |||
27 | //---------------------------------------------------------------------------------------------------- |
||
28 | // Definitions |
||
29 | |||
30 | #define Kp 2.0f // proportional gain governs rate of convergence to accelerometer/magnetometer |
||
31 | #define Ki 0.005f // integral gain governs rate of convergence of gyroscope biases |
||
32 | //#define halfT 0.02f // half the sample period |
||
33 | |||
34 | |||
35 | FreeIMU::FreeIMU() { |
||
36 | #if FREEIMU_VER <= 3 |
||
37 | acc = ADXL345(); |
||
38 | #else |
||
39 | acc = BMA180(); |
||
40 | #endif |
||
41 | gyro = ITG3200(); |
||
42 | magn = HMC58X3(); |
||
43 | |||
44 | // initialize quaternion |
||
45 | q0 = 1.0; |
||
46 | q1 = 0.0; |
||
47 | q2 = 0.0; |
||
48 | q3 = 0.0; |
||
49 | exInt = 0.0; |
||
50 | eyInt = 0.0; |
||
51 | ezInt = 0.0; |
||
52 | lastUpdate = 0; |
||
53 | now = 0; |
||
54 | } |
||
55 | |||
56 | void FreeIMU::init() { |
||
57 | init(FIMU_ACC_ADDR, FIMU_ITG3200_DEF_ADDR, false); |
||
58 | } |
||
59 | |||
60 | void FreeIMU::init(bool fastmode) { |
||
61 | init(FIMU_ACC_ADDR, FIMU_ITG3200_DEF_ADDR, fastmode); |
||
62 | } |
||
63 | |||
64 | void FreeIMU::init(int acc_addr, int gyro_addr, bool fastmode) { |
||
65 | delay(5); |
||
66 | |||
67 | // disable internal pullups of the ATMEGA which Wire enable by default |
||
68 | #if defined(__AVR_ATmega168__) || defined(__AVR_ATmega8__) || defined(__AVR_ATmega328P__) |
||
69 | // deactivate internal pull-ups for twi |
||
70 | // as per note from atmega8 manual pg167 |
||
71 | cbi(PORTC, 4); |
||
72 | cbi(PORTC, 5); |
||
73 | #else |
||
74 | // deactivate internal pull-ups for twi |
||
75 | // as per note from atmega128 manual pg204 |
||
76 | cbi(PORTD, 0); |
||
77 | cbi(PORTD, 1); |
||
78 | #endif |
||
79 | |||
80 | if(fastmode) { // switch to 400KHz I2C - eheheh |
||
81 | TWBR = ((16000000L / 400000L) - 16) / 2; // see twi_init in Wire/utility/twi.c |
||
82 | // TODO: make the above usable also for 8MHz arduinos.. |
||
83 | } |
||
84 | |||
85 | #if FREEIMU_VER <= 3 |
||
86 | // init ADXL345 |
||
87 | acc.init(acc_addr); |
||
88 | #else |
||
89 | // init BMA180 |
||
90 | acc.setAddress(acc_addr); |
||
91 | acc.SoftReset(); |
||
92 | acc.enableWrite(); |
||
93 | acc.SetFilter(acc.F10HZ); |
||
94 | acc.setGSensitivty(acc.G15); |
||
95 | acc.SetSMPSkip(); |
||
96 | acc.SetISRMode(); |
||
97 | acc.disableWrite(); |
||
98 | #endif |
||
99 | |||
100 | // init ITG3200 |
||
101 | gyro.init(gyro_addr); |
||
102 | // calibrate the ITG3200 |
||
103 | gyro.zeroCalibrate(64,5); |
||
104 | |||
105 | // init HMC5843 |
||
106 | magn.init(false); // Don't set mode yet, we'll do that later on. |
||
107 | // Calibrate HMC using self test, not recommended to change the gain after calibration. |
||
108 | magn.calibrate(1); // Use gain 1=default, valid 0-7, 7 not recommended. |
||
109 | // Single mode conversion was used in calibration, now set continuous mode |
||
110 | magn.setMode(0); |
||
111 | delay(10); |
||
112 | magn.setDOR(B110); |
||
113 | } |
||
114 | |||
115 | |||
116 | void FreeIMU::getRawValues(int * raw_values) { |
||
117 | acc.readAccel(&raw_values[0], &raw_values[1], &raw_values[2]); |
||
118 | gyro.readGyroRaw(&raw_values[3], &raw_values[4], &raw_values[5]); |
||
119 | magn.getValues(&raw_values[6], &raw_values[7], &raw_values[8]); |
||
120 | } |
||
121 | |||
122 | |||
123 | void FreeIMU::getValues(float * values) { |
||
124 | int accval[3]; |
||
125 | acc.readAccel(&accval[0], &accval[1], &accval[2]); |
||
126 | values[0] = ((float) accval[0]); |
||
127 | values[1] = ((float) accval[1]); |
||
128 | values[2] = ((float) accval[2]); |
||
129 | |||
130 | gyro.readGyro(&values[3]); |
||
131 | |||
132 | magn.getValues(&values[6]); |
||
133 | } |
||
134 | |||
135 | |||
136 | |||
137 | //===================================================================================================== |
||
138 | // AHRS.c |
||
139 | // S.O.H. Madgwick |
||
140 | // 25th August 2010 |
||
141 | //===================================================================================================== |
||
142 | // Description: |
||
143 | // |
||
144 | // Quaternion implementation of the 'DCM filter' [Mayhony et al]. Incorporates the magnetic distortion |
||
145 | // compensation algorithms from my filter [Madgwick] which eliminates the need for a reference |
||
146 | // direction of flux (bx bz) to be predefined and limits the effect of magnetic distortions to yaw |
||
147 | // axis only. |
||
148 | // |
||
149 | // User must define 'halfT' as the (sample period / 2), and the filter gains 'Kp' and 'Ki'. |
||
150 | // |
||
151 | // Global variables 'q0', 'q1', 'q2', 'q3' are the quaternion elements representing the estimated |
||
152 | // orientation. See my report for an overview of the use of quaternions in this application. |
||
153 | // |
||
154 | // User must call 'AHRSupdate()' every sample period and parse calibrated gyroscope ('gx', 'gy', 'gz'), |
||
155 | // accelerometer ('ax', 'ay', 'ay') and magnetometer ('mx', 'my', 'mz') data. Gyroscope units are |
||
156 | // radians/second, accelerometer and magnetometer units are irrelevant as the vector is normalised. |
||
157 | // |
||
158 | //===================================================================================================== |
||
159 | void FreeIMU::AHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) { |
||
160 | float norm; |
||
161 | float hx, hy, hz, bx, bz; |
||
162 | float vx, vy, vz, wx, wy, wz; |
||
163 | float ex, ey, ez; |
||
164 | |||
165 | // auxiliary variables to reduce number of repeated operations |
||
166 | float q0q0 = q0*q0; |
||
167 | float q0q1 = q0*q1; |
||
168 | float q0q2 = q0*q2; |
||
169 | float q0q3 = q0*q3; |
||
170 | float q1q1 = q1*q1; |
||
171 | float q1q2 = q1*q2; |
||
172 | float q1q3 = q1*q3; |
||
173 | float q2q2 = q2*q2; |
||
174 | float q2q3 = q2*q3; |
||
175 | float q3q3 = q3*q3; |
||
176 | |||
177 | // normalise the measurements |
||
178 | |||
179 | now = millis(); |
||
180 | halfT = (now - lastUpdate) / 2000.0; |
||
181 | lastUpdate = now; |
||
182 | |||
183 | norm = sqrt(ax*ax + ay*ay + az*az); |
||
184 | ax = ax / norm; |
||
185 | ay = ay / norm; |
||
186 | az = az / norm; |
||
187 | |||
188 | /* |
||
189 | norm = invSqrt(ax*ax + ay*ay + az*az); |
||
190 | ax = ax * norm; |
||
191 | ay = ay * norm; |
||
192 | az = az * norm; |
||
193 | */ |
||
194 | |||
195 | norm = sqrt(mx*mx + my*my + mz*mz); |
||
196 | mx = mx / norm; |
||
197 | my = my / norm; |
||
198 | mz = mz / norm; |
||
199 | |||
200 | /* |
||
201 | norm = invSqrt(mx*mx + my*my + mz*mz); |
||
202 | mx = mx * norm; |
||
203 | my = my * norm; |
||
204 | mz = mz * norm; |
||
205 | */ |
||
206 | |||
207 | // compute reference direction of flux |
||
208 | hx = 2*mx*(0.5 - q2q2 - q3q3) + 2*my*(q1q2 - q0q3) + 2*mz*(q1q3 + q0q2); |
||
209 | hy = 2*mx*(q1q2 + q0q3) + 2*my*(0.5 - q1q1 - q3q3) + 2*mz*(q2q3 - q0q1); |
||
210 | hz = 2*mx*(q1q3 - q0q2) + 2*my*(q2q3 + q0q1) + 2*mz*(0.5 - q1q1 - q2q2); |
||
211 | bx = sqrt((hx*hx) + (hy*hy)); |
||
212 | bz = hz; |
||
213 | |||
214 | // estimated direction of gravity and flux (v and w) |
||
215 | vx = 2*(q1q3 - q0q2); |
||
216 | vy = 2*(q0q1 + q2q3); |
||
217 | vz = q0q0 - q1q1 - q2q2 + q3q3; |
||
218 | wx = 2*bx*(0.5 - q2q2 - q3q3) + 2*bz*(q1q3 - q0q2); |
||
219 | wy = 2*bx*(q1q2 - q0q3) + 2*bz*(q0q1 + q2q3); |
||
220 | wz = 2*bx*(q0q2 + q1q3) + 2*bz*(0.5 - q1q1 - q2q2); |
||
221 | |||
222 | // error is sum of cross product between reference direction of fields and direction measured by sensors |
||
223 | ex = (ay*vz - az*vy) + (my*wz - mz*wy); |
||
224 | ey = (az*vx - ax*vz) + (mz*wx - mx*wz); |
||
225 | ez = (ax*vy - ay*vx) + (mx*wy - my*wx); |
||
226 | |||
227 | // integral error scaled integral gain |
||
228 | exInt = exInt + ex*Ki; |
||
229 | eyInt = eyInt + ey*Ki; |
||
230 | ezInt = ezInt + ez*Ki; |
||
231 | |||
232 | // adjusted gyroscope measurements |
||
233 | gx = gx + Kp*ex + exInt; |
||
234 | gy = gy + Kp*ey + eyInt; |
||
235 | gz = gz + Kp*ez + ezInt; |
||
236 | |||
237 | // integrate quaternion rate and normalise |
||
238 | iq0 = (-q1*gx - q2*gy - q3*gz)*halfT; |
||
239 | iq1 = (q0*gx + q2*gz - q3*gy)*halfT; |
||
240 | iq2 = (q0*gy - q1*gz + q3*gx)*halfT; |
||
241 | iq3 = (q0*gz + q1*gy - q2*gx)*halfT; |
||
242 | |||
243 | q0 += iq0; |
||
244 | q1 += iq1; |
||
245 | q2 += iq2; |
||
246 | q3 += iq3; |
||
247 | |||
248 | // normalise quaternion |
||
249 | |||
250 | norm = sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3); |
||
251 | q0 = q0 / norm; |
||
252 | q1 = q1 / norm; |
||
253 | q2 = q2 / norm; |
||
254 | q3 = q3 / norm; |
||
255 | |||
256 | /* |
||
257 | norm = invSqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3); |
||
258 | q0 = q0 * norm; |
||
259 | q1 = q1 * norm; |
||
260 | q2 = q2 * norm; |
||
261 | q3 = q3 * norm; |
||
262 | */ |
||
263 | } |
||
264 | |||
265 | void FreeIMU::getQ(float * q) { |
||
266 | float val[9]; |
||
267 | getValues(val); |
||
268 | |||
269 | DEBUG_PRINT(val[3] * M_PI/180); |
||
270 | DEBUG_PRINT(val[4] * M_PI/180); |
||
271 | DEBUG_PRINT(val[5] * M_PI/180); |
||
272 | DEBUG_PRINT(val[0]); |
||
273 | DEBUG_PRINT(val[1]); |
||
274 | DEBUG_PRINT(val[2]); |
||
275 | DEBUG_PRINT(val[6]); |
||
276 | DEBUG_PRINT(val[7]); |
||
277 | DEBUG_PRINT(val[8]); |
||
278 | |||
279 | // gyro values are expressed in deg/sec, the * M_PI/180 will convert it to radians/sec |
||
280 | AHRSupdate(val[3] * M_PI/180, val[4] * M_PI/180, val[5] * M_PI/180, val[0], val[1], val[2], val[6], val[7], val[8]); |
||
281 | q[0] = q0; |
||
282 | q[1] = q1; |
||
283 | q[2] = q2; |
||
284 | q[3] = q3; |
||
285 | } |
||
286 | |||
287 | // Returns the Euler angles in radians defined with the Aerospace sequence. |
||
288 | // See Sebastian O.H. Madwick report |
||
289 | // "An efficient orientation filter for inertial and intertial/magnetic sensor arrays" Chapter 2 Quaternion representation |
||
290 | void FreeIMU::getEuler(float * angles) { |
||
291 | float q[4]; // quaternion |
||
292 | getQ(q); |
||
293 | angles[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1) * 180/M_PI; // psi |
||
294 | angles[1] = -asin(2 * q[1] * q[3] + 2 * q[0] * q[2]) * 180/M_PI; // theta |
||
295 | angles[2] = atan2(2 * q[2] * q[3] - 2 * q[0] * q[1], 2 * q[0] * q[0] + 2 * q[3] * q[3] - 1) * 180/M_PI; // phi |
||
296 | } |
||
297 | |||
298 | |||
299 | |||
300 | void FreeIMU::getYawPitchRoll(float * ypr) { |
||
301 | float q[4]; // quaternion |
||
302 | float gx, gy, gz; // estimated gravity direction |
||
303 | getQ(q); |
||
304 | |||
305 | gx = 2 * (q[1]*q[3] - q[0]*q[2]); |
||
306 | gy = 2 * (q[0]*q[1] + q[2]*q[3]); |
||
307 | gz = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; |
||
308 | |||
309 | ypr[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1) * 180/M_PI; |
||
310 | ypr[1] = atan(gx / sqrt(gy*gy + gz*gz)) * 180/M_PI; |
||
311 | ypr[2] = atan(gy / sqrt(gx*gx + gz*gz)) * 180/M_PI; |
||
312 | } |
||
313 | |||
314 | |||
315 | float invSqrt(float number) { |
||
316 | volatile long i; |
||
317 | volatile float x, y; |
||
318 | volatile const float f = 1.5F; |
||
319 | |||
320 | x = number * 0.5F; |
||
321 | y = number; |
||
322 | i = * ( long * ) &y; |
||
323 | i = 0x5f375a86 - ( i >> 1 ); |
||
324 | y = * ( float * ) &i; |
||
325 | y = y * ( f - ( x * y * y ) ); |
||
326 | return y; |
||
327 | } |