Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1227 | killagreg | 1 | /*####################################################################################### |
2 | Flight Control |
||
3 | #######################################################################################*/ |
||
4 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
5 | // + Copyright (c) 04.2007 Holger Buss |
||
6 | // + Nur für den privaten Gebrauch |
||
7 | // + www.MikroKopter.com |
||
8 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
9 | // + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation), |
||
10 | // + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist. |
||
11 | // + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt |
||
12 | // + bzgl. der Nutzungsbedingungen aufzunehmen. |
||
13 | // + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen, |
||
14 | // + Verkauf von Luftbildaufnahmen, usw. |
||
15 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
16 | // + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht, |
||
17 | // + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen |
||
18 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
19 | // + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts |
||
20 | // + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de" |
||
21 | // + eindeutig als Ursprung verlinkt werden |
||
22 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
23 | // + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion |
||
24 | // + Benutzung auf eigene Gefahr |
||
25 | // + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden |
||
26 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
27 | // + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur |
||
28 | // + mit unserer Zustimmung zulässig |
||
29 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
30 | // + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen |
||
31 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
32 | // + Redistributions of source code (with or without modifications) must retain the above copyright notice, |
||
33 | // + this list of conditions and the following disclaimer. |
||
34 | // + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived |
||
35 | // + from this software without specific prior written permission. |
||
36 | // + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet |
||
37 | // + for non-commercial use (directly or indirectly) |
||
38 | // + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted |
||
39 | // + with our written permission |
||
40 | // + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be |
||
41 | // + clearly linked as origin |
||
42 | // + * porting to systems other than hardware from www.mikrokopter.de is not allowed |
||
43 | // + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
44 | // + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
45 | // + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
46 | // + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
||
47 | // + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||
48 | // + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||
49 | // + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
||
50 | // + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
51 | // + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
52 | // + POSSIBILITY OF SUCH DAMAGE. |
||
53 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
54 | #include <stdlib.h> |
||
55 | #include <avr/io.h> |
||
56 | |||
57 | #include "main.h" |
||
58 | #include "eeprom.h" |
||
59 | #include "timer0.h" |
||
60 | #include "analog.h" |
||
61 | #include "fc.h" |
||
62 | #include "uart0.h" |
||
63 | #include "rc.h" |
||
64 | #include "twimaster.h" |
||
65 | #include "timer2.h" |
||
66 | #ifdef USE_KILLAGREG |
||
67 | #include "mm3.h" |
||
68 | #include "gps.h" |
||
69 | #endif |
||
70 | #ifdef USE_MK3MAG |
||
71 | #include "mk3mag.h" |
||
72 | #include "gps.h" |
||
73 | #endif |
||
74 | #include "led.h" |
||
75 | #ifdef USE_NAVICTRL |
||
76 | #include "spi.h" |
||
77 | #endif |
||
78 | |||
79 | |||
80 | #define STICK_GAIN 4 |
||
81 | #define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;} |
||
82 | |||
83 | // gyro readings |
||
84 | int16_t GyroNick, GyroRoll, GyroYaw; |
||
85 | |||
86 | // gyro bias |
||
87 | int16_t BiasHiResGyroNick = 0, BiasHiResGyroRoll = 0, AdBiasGyroYaw = 0; |
||
88 | |||
89 | // accelerations |
||
90 | int16_t AccNick, AccRoll, AccTop; |
||
91 | |||
92 | // neutral acceleration readings |
||
93 | int16_t AdBiasAccNick = 0, AdBiasAccRoll = 0; |
||
94 | volatile float AdBiasAccTop = 0; |
||
95 | // the additive gyro rate corrections according to the axis coupling |
||
96 | int16_t TrimNick, TrimRoll; |
||
97 | |||
98 | |||
99 | // attitude gyro integrals |
||
100 | int32_t IntegralGyroNick = 0,IntegralGyroNick2 = 0; |
||
101 | int32_t IntegralGyroRoll = 0,IntegralGyroRoll2 = 0; |
||
102 | int32_t IntegralGyroYaw = 0; |
||
103 | int32_t ReadingIntegralGyroNick = 0, ReadingIntegralGyroNick2 = 0; |
||
104 | int32_t ReadingIntegralGyroRoll = 0, ReadingIntegralGyroRoll2 = 0; |
||
105 | int32_t ReadingIntegralGyroYaw = 0; |
||
106 | int32_t MeanIntegralGyroNick; |
||
107 | int32_t MeanIntegralGyroRoll; |
||
108 | |||
109 | // attitude acceleration integrals |
||
110 | int32_t MeanAccNick = 0, MeanAccRoll = 0; |
||
111 | volatile int32_t ReadingIntegralTop = 0; |
||
112 | |||
113 | // compass course |
||
114 | int16_t CompassHeading = -1; // negative angle indicates invalid data. |
||
115 | int16_t CompassCourse = -1; |
||
116 | int16_t CompassOffCourse = 0; |
||
117 | uint8_t CompassCalState = 0; |
||
118 | uint8_t FunnelCourse = 0; |
||
119 | uint16_t BadCompassHeading = 500; |
||
120 | int32_t YawGyroHeading; // Yaw Gyro Integral supported by compass |
||
121 | int16_t YawGyroDrift; |
||
122 | |||
123 | |||
124 | int16_t NaviAccNick = 0, NaviAccRoll = 0, NaviCntAcc = 0; |
||
125 | |||
126 | |||
127 | // MK flags |
||
128 | uint16_t ModelIsFlying = 0; |
||
129 | uint8_t volatile MKFlags = 0; |
||
130 | |||
131 | int32_t TurnOver180Nick = 250000L, TurnOver180Roll = 250000L; |
||
132 | |||
133 | uint8_t GyroPFactor, GyroIFactor; // the PD factors for the attitude control |
||
134 | uint8_t GyroYawPFactor, GyroYawIFactor; // the PD factors for the yae control |
||
135 | |||
136 | int16_t Ki = 10300 / 33; |
||
137 | |||
138 | int16_t Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0, Poti5 = 0, Poti6 = 0, Poti7 = 0, Poti8 = 0; |
||
139 | |||
140 | |||
141 | uint8_t RequiredMotors = 0; |
||
142 | |||
143 | |||
144 | // stick values derived by rc channels readings |
||
145 | int16_t StickNick = 0, StickRoll = 0, StickYaw = 0, StickGas = 0; |
||
146 | int16_t GPSStickNick = 0, GPSStickRoll = 0; |
||
147 | |||
148 | int16_t MaxStickNick = 0, MaxStickRoll = 0; |
||
149 | |||
150 | // stick values derived by uart inputs |
||
151 | int16_t ExternStickNick = 0, ExternStickRoll = 0, ExternStickYaw = 0, ExternHeightValue = -20; |
||
152 | |||
153 | int16_t ReadingHeight = 0; |
||
154 | int16_t SetPointHeight = 0; |
||
155 | |||
156 | int16_t AttitudeCorrectionRoll = 0, AttitudeCorrectionNick = 0; |
||
157 | |||
158 | uint8_t LoopingNick = 0, LoopingRoll = 0; |
||
159 | uint8_t LoopingLeft = 0, LoopingRight = 0, LoopingDown = 0, LoopingTop = 0; |
||
160 | |||
161 | |||
162 | fc_param_t FCParam = {48,251,16,58,64,8,150,150,2,10,0,0,0,0,0,0,0,0,100,70,90,65,64,100,0,0,0}; |
||
163 | |||
164 | |||
165 | |||
166 | /************************************************************************/ |
||
167 | /* Filter for motor value smoothing */ |
||
168 | /************************************************************************/ |
||
169 | int16_t MotorSmoothing(int16_t newvalue, int16_t oldvalue) |
||
170 | { |
||
171 | int16_t motor; |
||
172 | if(newvalue > oldvalue) motor = (1 * (int16_t)oldvalue + newvalue) / 2; //mean of old and new |
||
173 | else motor = newvalue - (oldvalue - newvalue) * 1; // 2 * new - old |
||
174 | return(motor); |
||
175 | } |
||
176 | |||
177 | /************************************************************************/ |
||
178 | /* Creates numbeeps beeps at the speaker */ |
||
179 | /************************************************************************/ |
||
180 | void Beep(uint8_t numbeeps) |
||
181 | { |
||
182 | while(numbeeps--) |
||
183 | { |
||
184 | if(MKFlags & MKFLAG_MOTOR_RUN) return; //auf keinen Fall bei laufenden Motoren! |
||
185 | BeepTime = 100; // 0.1 second |
||
186 | Delay_ms(250); // blocks 250 ms as pause to next beep, |
||
187 | // this will block the flight control loop, |
||
188 | // therefore do not use this function if motors are running |
||
189 | } |
||
190 | } |
||
191 | |||
192 | /************************************************************************/ |
||
193 | /* Neutral Readings */ |
||
194 | /************************************************************************/ |
||
195 | void SetNeutral(uint8_t AccAdjustment) |
||
196 | { |
||
197 | uint8_t i; |
||
198 | int32_t Sum_1, Sum_2 = 0, Sum_3; |
||
199 | |||
200 | Servo_Off(); // disable servo output |
||
201 | |||
202 | AdBiasAccNick = 0; |
||
203 | AdBiasAccRoll = 0; |
||
204 | AdBiasAccTop = 0; |
||
205 | |||
206 | BiasHiResGyroNick = 0; |
||
207 | BiasHiResGyroRoll = 0; |
||
208 | AdBiasGyroYaw = 0; |
||
209 | |||
210 | FCParam.AxisCoupling1 = 0; |
||
211 | FCParam.AxisCoupling2 = 0; |
||
212 | |||
213 | ExpandBaro = 0; |
||
214 | |||
215 | // sample values with bias set to zero |
||
216 | Delay_ms_Mess(100); |
||
217 | |||
218 | if(BoardRelease == 13) SearchDacGyroOffset(); |
||
219 | |||
220 | if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL)) // Height Control activated? |
||
221 | { |
||
222 | if((ReadingAirPressure > 950) || (ReadingAirPressure < 750)) SearchAirPressureOffset(); |
||
223 | } |
||
224 | |||
225 | // determine gyro bias by averaging (require no rotation movement) |
||
226 | #define GYRO_BIAS_AVERAGE 32 |
||
227 | Sum_1 = 0; |
||
228 | Sum_2 = 0; |
||
229 | Sum_3 = 0; |
||
230 | for(i=0; i < GYRO_BIAS_AVERAGE; i++) |
||
231 | { |
||
232 | Delay_ms_Mess(10); |
||
233 | Sum_1 += AdValueGyroNick * HIRES_GYRO_AMPLIFY; |
||
234 | Sum_2 += AdValueGyroRoll * HIRES_GYRO_AMPLIFY; |
||
235 | Sum_3 += AdValueGyroYaw; |
||
236 | } |
||
237 | BiasHiResGyroNick = (int16_t)((Sum_1 + GYRO_BIAS_AVERAGE / 2) / GYRO_BIAS_AVERAGE); |
||
238 | BiasHiResGyroRoll = (int16_t)((Sum_2 + GYRO_BIAS_AVERAGE / 2) / GYRO_BIAS_AVERAGE); |
||
239 | AdBiasGyroYaw = (int16_t)((Sum_3 + GYRO_BIAS_AVERAGE / 2) / GYRO_BIAS_AVERAGE); |
||
240 | |||
241 | if(AccAdjustment) |
||
242 | { |
||
243 | // determine acc bias by averaging (require horizontal adjustment in nick and roll attitude) |
||
244 | #define ACC_BIAS_AVERAGE 10 |
||
245 | Sum_1 = 0; |
||
246 | Sum_2 = 0; |
||
247 | Sum_3 = 0; |
||
248 | for(i=0; i < ACC_BIAS_AVERAGE; i++) |
||
249 | { |
||
250 | Delay_ms_Mess(10); |
||
251 | Sum_1 += AdValueAccNick; |
||
252 | Sum_2 += AdValueAccRoll; |
||
253 | Sum_3 += AdValueAccZ; |
||
254 | } |
||
255 | // use abs() to avoid negative bias settings because of adc sign flip in adc.c |
||
256 | AdBiasAccNick = (int16_t)((abs(Sum_1) + ACC_BIAS_AVERAGE / 2) / ACC_BIAS_AVERAGE); |
||
257 | AdBiasAccRoll = (int16_t)((abs(Sum_2) + ACC_BIAS_AVERAGE / 2) / ACC_BIAS_AVERAGE); |
||
258 | AdBiasAccTop = (int16_t)((abs(Sum_3) + ACC_BIAS_AVERAGE / 2) / ACC_BIAS_AVERAGE); |
||
259 | |||
260 | // Save ACC neutral settings to eeprom |
||
261 | SetParamWord(PID_ACC_NICK, (uint16_t)AdBiasAccNick); |
||
262 | SetParamWord(PID_ACC_ROLL, (uint16_t)AdBiasAccRoll); |
||
263 | SetParamWord(PID_ACC_TOP, (uint16_t)AdBiasAccTop); |
||
264 | } |
||
265 | else // restore from eeprom |
||
266 | { |
||
267 | AdBiasAccNick = (int16_t)GetParamWord(PID_ACC_NICK); |
||
268 | AdBiasAccRoll = (int16_t)GetParamWord(PID_ACC_ROLL); |
||
269 | AdBiasAccTop = (int16_t)GetParamWord(PID_ACC_TOP); |
||
270 | } |
||
271 | // setting acc bias values has an influence in the analog.c ISR |
||
272 | // therefore run measurement for 100ms to achive stable readings |
||
273 | Delay_ms_Mess(100); |
||
274 | |||
275 | // reset acc averaging and integrals |
||
276 | AccNick = ACC_AMPLIFY * (int32_t)AdValueAccNick; |
||
277 | AccRoll = ACC_AMPLIFY * (int32_t)AdValueAccRoll; |
||
278 | AccTop = AdValueAccTop; |
||
279 | ReadingIntegralTop = AdValueAccTop; |
||
280 | |||
281 | // and gyro readings |
||
282 | GyroNick = 0; |
||
283 | GyroRoll = 0; |
||
284 | GyroYaw = 0; |
||
285 | |||
286 | // reset gyro integrals to acc guessing |
||
287 | IntegralGyroNick = ParamSet.GyroAccFactor * (int32_t)AccNick; |
||
288 | IntegralGyroRoll = ParamSet.GyroAccFactor * (int32_t)AccRoll; |
||
289 | //ReadingIntegralGyroNick = IntegralGyroNick; |
||
290 | //ReadingIntegralGyroRoll = IntegralGyroRoll; |
||
291 | ReadingIntegralGyroNick2 = IntegralGyroNick; |
||
292 | ReadingIntegralGyroRoll2 = IntegralGyroRoll; |
||
293 | ReadingIntegralGyroYaw = 0; |
||
294 | |||
295 | |||
296 | StartAirPressure = AirPressure; |
||
297 | HeightD = 0; |
||
298 | |||
299 | // update compass course to current heading |
||
300 | CompassCourse = CompassHeading; |
||
301 | // Inititialize YawGyroIntegral value with current compass heading |
||
302 | YawGyroHeading = (int32_t)CompassHeading * GYRO_DEG_FACTOR; |
||
303 | YawGyroDrift = 0; |
||
304 | |||
305 | BeepTime = 50; |
||
306 | |||
307 | TurnOver180Nick = ((int32_t) ParamSet.AngleTurnOverNick * 2500L) +15000L; |
||
308 | TurnOver180Roll = ((int32_t) ParamSet.AngleTurnOverRoll * 2500L) +15000L; |
||
309 | |||
310 | ExternHeightValue = 0; |
||
311 | |||
312 | GPSStickNick = 0; |
||
313 | GPSStickRoll = 0; |
||
314 | |||
315 | MKFlags |= MKFLAG_CALIBRATE; |
||
316 | |||
317 | FCParam.KalmanK = -1; |
||
318 | FCParam.KalmanMaxDrift = 0; |
||
319 | FCParam.KalmanMaxFusion = 32; |
||
320 | |||
321 | Poti1 = PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110; |
||
322 | Poti2 = PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110; |
||
323 | Poti3 = PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110; |
||
324 | Poti4 = PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110; |
||
325 | |||
326 | Servo_On(); //enable servo output |
||
327 | RC_Quality = 100; |
||
328 | } |
||
329 | |||
330 | /************************************************************************/ |
||
331 | /* Averaging Measurement Readings */ |
||
332 | /************************************************************************/ |
||
333 | void Mean(void) |
||
334 | { |
||
335 | int32_t tmpl = 0, tmpl2 = 0, tmp13 = 0, tmp14 = 0; |
||
336 | int16_t FilterGyroNick, FilterGyroRoll; |
||
337 | static int16_t Last_GyroRoll = 0, Last_GyroNick = 0; |
||
338 | int16_t d2Nick, d2Roll; |
||
339 | int32_t AngleNick, AngleRoll; |
||
340 | int16_t CouplingNickRoll = 0, CouplingRollNick = 0; |
||
341 | |||
342 | // Get bias free gyro readings |
||
343 | GyroNick = HiResGyroNick / HIRES_GYRO_AMPLIFY; // unfiltered gyro rate |
||
344 | FilterGyroNick = FilterHiResGyroNick / HIRES_GYRO_AMPLIFY; // use filtered gyro rate |
||
345 | |||
346 | // handle rotation rates that violate adc ranges |
||
347 | if(AdValueGyroNick < 15) GyroNick = -1000; |
||
348 | if(AdValueGyroNick < 7) GyroNick = -2000; |
||
349 | if(BoardRelease == 10) |
||
350 | { |
||
351 | if(AdValueGyroNick > 1010) GyroNick = +1000; |
||
352 | if(AdValueGyroNick > 1017) GyroNick = +2000; |
||
353 | } |
||
354 | else |
||
355 | { |
||
356 | if(AdValueGyroNick > 2000) GyroNick = +1000; |
||
357 | if(AdValueGyroNick > 2015) GyroNick = +2000; |
||
358 | } |
||
359 | |||
360 | GyroRoll = HiResGyroRoll / HIRES_GYRO_AMPLIFY; // unfiltered gyro rate |
||
361 | FilterGyroRoll = FilterHiResGyroRoll / HIRES_GYRO_AMPLIFY; // use filtered gyro rate |
||
362 | // handle rotation rates that violate adc ranges |
||
363 | if(AdValueGyroRoll < 15) GyroRoll = -1000; |
||
364 | if(AdValueGyroRoll < 7) GyroRoll = -2000; |
||
365 | if(BoardRelease == 10) |
||
366 | { |
||
367 | if(AdValueGyroRoll > 1010) GyroRoll = +1000; |
||
368 | if(AdValueGyroRoll > 1017) GyroRoll = +2000; |
||
369 | } |
||
370 | else |
||
371 | { |
||
372 | if(AdValueGyroRoll > 2000) GyroRoll = +1000; |
||
373 | if(AdValueGyroRoll > 2015) GyroRoll = +2000; |
||
374 | } |
||
375 | |||
376 | GyroYaw = AdBiasGyroYaw - AdValueGyroYaw; |
||
377 | |||
378 | // Acceleration Sensor |
||
379 | // lowpass acc measurement and scale AccNick/AccRoll by a factor of ACC_AMPLIFY to have a better resolution |
||
380 | AccNick = ((int32_t)AccNick * 3 + ((ACC_AMPLIFY * (int32_t)AdValueAccNick))) / 4L; |
||
381 | AccRoll = ((int32_t)AccRoll * 3 + ((ACC_AMPLIFY * (int32_t)AdValueAccRoll))) / 4L; |
||
382 | AccTop = ((int32_t)AccTop * 3 + ((int32_t)AdValueAccTop)) / 4L; |
||
383 | |||
384 | // sum acc sensor readings for later averaging |
||
385 | MeanAccNick += ACC_AMPLIFY * AdValueAccNick; |
||
386 | MeanAccRoll += ACC_AMPLIFY * AdValueAccRoll; |
||
387 | |||
388 | NaviAccNick += AdValueAccNick; |
||
389 | NaviAccRoll += AdValueAccRoll; |
||
390 | NaviCntAcc++; |
||
391 | |||
392 | |||
393 | // enable ADC to meassure next readings, before that point all variables should be read that are written by the ADC ISR |
||
394 | ADC_Enable(); |
||
395 | ADReady = 0; |
||
396 | |||
397 | // limit angle readings for axis coupling calculations |
||
398 | #define ANGLE_LIMIT 93000L // aprox. 93000/GYRO_DEG_FACTOR = 82 deg |
||
399 | |||
400 | AngleNick = ReadingIntegralGyroNick; |
||
401 | CHECK_MIN_MAX(AngleNick, -ANGLE_LIMIT, ANGLE_LIMIT); |
||
402 | |||
403 | AngleRoll = ReadingIntegralGyroRoll; |
||
404 | CHECK_MIN_MAX(AngleRoll, -ANGLE_LIMIT, ANGLE_LIMIT); |
||
405 | |||
406 | |||
407 | // Yaw |
||
408 | // calculate yaw gyro integral (~ to rotation angle) |
||
409 | YawGyroHeading += GyroYaw; |
||
410 | ReadingIntegralGyroYaw += GyroYaw; |
||
411 | |||
412 | |||
413 | // Coupling fraction |
||
414 | if(! LoopingNick && !LoopingRoll && (ParamSet.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) |
||
415 | { |
||
416 | tmp13 = (FilterGyroRoll * AngleNick) / 2048L; |
||
417 | tmp13 *= FCParam.AxisCoupling2; // 65 |
||
418 | tmp13 /= 4096L; |
||
419 | CouplingNickRoll = tmp13; |
||
420 | |||
421 | tmp14 = (FilterGyroNick * AngleRoll) / 2048L; |
||
422 | tmp14 *= FCParam.AxisCoupling2; // 65 |
||
423 | tmp14 /= 4096L; |
||
424 | CouplingRollNick = tmp14; |
||
425 | |||
426 | tmp14 -= tmp13; |
||
427 | YawGyroHeading += tmp14; |
||
428 | if(!FCParam.AxisCouplingYawCorrection) ReadingIntegralGyroYaw -= tmp14 / 2; // force yaw |
||
429 | |||
430 | tmpl = ((GyroYaw + tmp14) * AngleNick) / 2048L; |
||
431 | tmpl *= FCParam.AxisCoupling1; |
||
432 | tmpl /= 4096L; |
||
433 | |||
434 | tmpl2 = ((GyroYaw + tmp14) * AngleRoll) / 2048L; |
||
435 | tmpl2 *= FCParam.AxisCoupling1; |
||
436 | tmpl2 /= 4096L; |
||
437 | if(abs(GyroYaw > 64)) |
||
438 | { |
||
439 | if(labs(tmpl) > 128 || labs(tmpl2) > 128) FunnelCourse = 1; |
||
440 | } |
||
441 | |||
442 | TrimNick = -tmpl2 + tmpl / 100L; |
||
443 | TrimRoll = tmpl - tmpl2 / 100L; |
||
444 | } |
||
445 | else |
||
446 | { |
||
447 | CouplingNickRoll = 0; |
||
448 | CouplingRollNick = 0; |
||
449 | TrimNick = 0; |
||
450 | TrimRoll = 0; |
||
451 | } |
||
452 | |||
453 | |||
454 | // Yaw |
||
455 | |||
456 | // limit YawGyroHeading proportional to 0° to 360° |
||
457 | if(YawGyroHeading >= (360L * GYRO_DEG_FACTOR)) YawGyroHeading -= 360L * GYRO_DEG_FACTOR; // 360° Wrap |
||
458 | if(YawGyroHeading < 0) YawGyroHeading += 360L * GYRO_DEG_FACTOR; |
||
459 | |||
460 | // Roll |
||
461 | ReadingIntegralGyroRoll2 += FilterGyroRoll + TrimRoll; |
||
462 | ReadingIntegralGyroRoll += FilterGyroRoll + TrimRoll- AttitudeCorrectionRoll; |
||
463 | if(ReadingIntegralGyroRoll > TurnOver180Roll) |
||
464 | { |
||
465 | ReadingIntegralGyroRoll = -(TurnOver180Roll - 10000L); |
||
466 | ReadingIntegralGyroRoll2 = ReadingIntegralGyroRoll; |
||
467 | } |
||
468 | if(ReadingIntegralGyroRoll < -TurnOver180Roll) |
||
469 | { |
||
470 | ReadingIntegralGyroRoll = (TurnOver180Roll - 10000L); |
||
471 | ReadingIntegralGyroRoll2 = ReadingIntegralGyroRoll; |
||
472 | } |
||
473 | |||
474 | // Nick |
||
475 | ReadingIntegralGyroNick2 += FilterGyroNick + TrimNick; |
||
476 | ReadingIntegralGyroNick += FilterGyroNick + TrimNick - AttitudeCorrectionNick; |
||
477 | if(ReadingIntegralGyroNick > TurnOver180Nick) |
||
478 | { |
||
479 | ReadingIntegralGyroNick = -(TurnOver180Nick - 25000L); |
||
480 | ReadingIntegralGyroNick2 = ReadingIntegralGyroNick; |
||
481 | } |
||
482 | if(ReadingIntegralGyroNick < -TurnOver180Nick) |
||
483 | { |
||
484 | ReadingIntegralGyroNick = (TurnOver180Nick - 25000L); |
||
485 | ReadingIntegralGyroNick2 = ReadingIntegralGyroNick; |
||
486 | } |
||
487 | |||
488 | IntegralGyroYaw = ReadingIntegralGyroYaw; |
||
489 | IntegralGyroNick = ReadingIntegralGyroNick; |
||
490 | IntegralGyroRoll = ReadingIntegralGyroRoll; |
||
491 | IntegralGyroNick2 = ReadingIntegralGyroNick2; |
||
492 | IntegralGyroRoll2 = ReadingIntegralGyroRoll2; |
||
493 | |||
494 | |||
495 | #define D_LIMIT 128 |
||
496 | |||
497 | if(FCParam.GyroD) |
||
498 | { |
||
499 | d2Nick = (HiResGyroNick - Last_GyroNick); // change of gyro rate |
||
500 | Last_GyroNick = (Last_GyroNick + HiResGyroNick) / 2; |
||
501 | CHECK_MIN_MAX(d2Nick, -D_LIMIT, D_LIMIT); |
||
502 | GyroNick += (d2Nick * (int16_t)FCParam.GyroD) / 16; |
||
503 | |||
504 | d2Roll = (HiResGyroRoll - Last_GyroRoll); // change of gyro rate |
||
505 | Last_GyroRoll = (Last_GyroRoll + HiResGyroRoll) / 2; |
||
506 | CHECK_MIN_MAX(d2Roll, -D_LIMIT, D_LIMIT); |
||
507 | GyroRoll += (d2Roll * (int16_t)FCParam.GyroD) / 16; |
||
508 | |||
509 | HiResGyroNick += (d2Nick * (int16_t)FCParam.GyroD); |
||
510 | HiResGyroRoll += (d2Roll * (int16_t)FCParam.GyroD); |
||
511 | } |
||
512 | |||
513 | // Increase the roll/nick rate virtually proportional to the coupling to suppress a faster rotation |
||
514 | if(FilterGyroNick > 0) TrimNick += ((int32_t)abs(CouplingRollNick) * FCParam.AxisCouplingYawCorrection) / 64L; |
||
515 | else TrimNick -= ((int32_t)abs(CouplingRollNick) * FCParam.AxisCouplingYawCorrection) / 64L; |
||
516 | if(FilterGyroRoll > 0) TrimRoll += ((int32_t)abs(CouplingNickRoll) * FCParam.AxisCouplingYawCorrection) / 64L; |
||
517 | else TrimRoll -= ((int32_t)abs(CouplingNickRoll) * FCParam.AxisCouplingYawCorrection) / 64L; |
||
518 | |||
519 | // increase the nick/roll rates virtually from the threshold of 245 to slow down higher rotation rates |
||
520 | if((ParamSet.GlobalConfig & CFG_ROTARY_RATE_LIMITER) && ! LoopingNick && !LoopingRoll) |
||
521 | { |
||
522 | if(FilterGyroNick > 256) GyroNick += 1 * (FilterGyroNick - 256); |
||
523 | else if(FilterGyroNick < -256) GyroNick += 1 * (FilterGyroNick + 256); |
||
524 | if(FilterGyroRoll > 256) GyroRoll += 1 * (FilterGyroRoll - 256); |
||
525 | else if(FilterGyroRoll < -256) GyroRoll += 1 * (FilterGyroRoll + 256); |
||
526 | } |
||
527 | |||
528 | } |
||
529 | |||
530 | |||
531 | /************************************************************************/ |
||
532 | /* Transmit Motor Data via I2C */ |
||
533 | /************************************************************************/ |
||
534 | void SendMotorData(void) |
||
535 | { |
||
536 | uint8_t i; |
||
537 | if(!(MKFlags & MKFLAG_MOTOR_RUN)) |
||
538 | { |
||
539 | MKFlags &= ~(MKFLAG_FLY|MKFLAG_START); // clear flag FLY and START if motors are off |
||
540 | for(i = 0; i < MAX_MOTORS; i++) |
||
541 | { |
||
542 | if(!MotorTest_Active) Motor[i].SetPoint = 0; |
||
543 | else Motor[i].SetPoint = MotorTest[i]; |
||
544 | } |
||
545 | if(MotorTest_Active) MotorTest_Active--; |
||
546 | } |
||
547 | |||
548 | DebugOut.Analog[12] = Motor[0].SetPoint; // Front |
||
549 | DebugOut.Analog[13] = Motor[1].SetPoint; // Rear |
||
550 | DebugOut.Analog[14] = Motor[3].SetPoint; // Left |
||
551 | DebugOut.Analog[15] = Motor[2].SetPoint; // Right |
||
552 | //Start I2C Interrupt Mode |
||
553 | I2C_Start(TWI_STATE_MOTOR_TX); |
||
554 | } |
||
555 | |||
556 | |||
557 | /************************************************************************/ |
||
558 | /* Map the parameter to poti values */ |
||
559 | /************************************************************************/ |
||
560 | void ParameterMapping(void) |
||
561 | { |
||
562 | if(RC_Quality > 160) // do the mapping of RC-Potis only if the rc-signal is ok |
||
563 | // else the last updated values are used |
||
564 | { |
||
565 | //update poti values by rc-signals |
||
566 | #define CHK_POTI_MM(b,a,min,max) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a; if(b <= min) b = min; else if(b >= max) b = max;} |
||
567 | #define CHK_POTI(b,a) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a;} |
||
568 | CHK_POTI(FCParam.MaxHeight,ParamSet.MaxHeight); |
||
569 | CHK_POTI_MM(FCParam.HeightD,ParamSet.HeightD,0,100); |
||
570 | CHK_POTI_MM(FCParam.HeightP,ParamSet.HeightP,0,100); |
||
571 | CHK_POTI(FCParam.Height_ACC_Effect,ParamSet.Height_ACC_Effect); |
||
572 | CHK_POTI(FCParam.CompassYawEffect,ParamSet.CompassYawEffect); |
||
573 | CHK_POTI_MM(FCParam.GyroP,ParamSet.GyroP,10,255); |
||
574 | CHK_POTI(FCParam.GyroI,ParamSet.GyroI); |
||
575 | CHK_POTI(FCParam.GyroD,ParamSet.GyroD); |
||
576 | CHK_POTI(FCParam.IFactor,ParamSet.IFactor); |
||
577 | CHK_POTI(FCParam.UserParam1,ParamSet.UserParam1); |
||
578 | CHK_POTI(FCParam.UserParam2,ParamSet.UserParam2); |
||
579 | CHK_POTI(FCParam.UserParam3,ParamSet.UserParam3); |
||
580 | CHK_POTI(FCParam.UserParam4,ParamSet.UserParam4); |
||
581 | CHK_POTI(FCParam.UserParam5,ParamSet.UserParam5); |
||
582 | CHK_POTI(FCParam.UserParam6,ParamSet.UserParam6); |
||
583 | CHK_POTI(FCParam.UserParam7,ParamSet.UserParam7); |
||
584 | CHK_POTI(FCParam.UserParam8,ParamSet.UserParam8); |
||
585 | CHK_POTI(FCParam.ServoNickControl,ParamSet.ServoNickControl); |
||
586 | CHK_POTI(FCParam.LoopGasLimit,ParamSet.LoopGasLimit); |
||
587 | CHK_POTI(FCParam.AxisCoupling1,ParamSet.AxisCoupling1); |
||
588 | CHK_POTI(FCParam.AxisCoupling2,ParamSet.AxisCoupling2); |
||
589 | CHK_POTI(FCParam.AxisCouplingYawCorrection,ParamSet.AxisCouplingYawCorrection); |
||
590 | CHK_POTI(FCParam.DynamicStability,ParamSet.DynamicStability); |
||
591 | CHK_POTI_MM(FCParam.J16Timing,ParamSet.J16Timing,1,255); |
||
592 | CHK_POTI_MM(FCParam.J17Timing,ParamSet.J17Timing,1,255); |
||
593 | #if (defined (USE_KILLAGREG) || defined (USE_MK3MAG)) |
||
594 | CHK_POTI(FCParam.NaviGpsModeControl,ParamSet.NaviGpsModeControl); |
||
595 | CHK_POTI(FCParam.NaviGpsGain,ParamSet.NaviGpsGain); |
||
596 | CHK_POTI(FCParam.NaviGpsP,ParamSet.NaviGpsP); |
||
597 | CHK_POTI(FCParam.NaviGpsI,ParamSet.NaviGpsI); |
||
598 | CHK_POTI(FCParam.NaviGpsD,ParamSet.NaviGpsD); |
||
599 | CHK_POTI(FCParam.NaviGpsACC,ParamSet.NaviGpsACC); |
||
600 | CHK_POTI_MM(FCParam.NaviOperatingRadius,ParamSet.NaviOperatingRadius,10, 255); |
||
601 | CHK_POTI(FCParam.NaviWindCorrection,ParamSet.NaviWindCorrection); |
||
602 | CHK_POTI(FCParam.NaviSpeedCompensation,ParamSet.NaviSpeedCompensation); |
||
603 | #endif |
||
604 | CHK_POTI(FCParam.ExternalControl,ParamSet.ExternalControl); |
||
605 | Ki = 10300 / ( FCParam.IFactor + 1 ); |
||
606 | } |
||
607 | } |
||
608 | |||
609 | |||
610 | void SetCompassCalState(void) |
||
611 | { |
||
612 | static uint8_t stick = 1; |
||
613 | |||
614 | // if nick is centered or top set stick to zero |
||
615 | if(PPM_in[ParamSet.ChannelAssignment[CH_NICK]] > -20) stick = 0; |
||
616 | // if nick is down trigger to next cal state |
||
617 | if((PPM_in[ParamSet.ChannelAssignment[CH_NICK]] < -70) && !stick) |
||
618 | { |
||
619 | stick = 1; |
||
620 | CompassCalState++; |
||
621 | if(CompassCalState < 5) Beep(CompassCalState); |
||
622 | else BeepTime = 1000; |
||
623 | } |
||
624 | } |
||
625 | |||
626 | |||
627 | |||
628 | /************************************************************************/ |
||
629 | /* MotorControl */ |
||
630 | /************************************************************************/ |
||
631 | void MotorControl(void) |
||
632 | { |
||
633 | int16_t h, tmp_int; |
||
634 | |||
635 | // Mixer Fractions that are combined for Motor Control |
||
636 | int16_t YawMixFraction, GasMixFraction, NickMixFraction, RollMixFraction; |
||
637 | |||
638 | // PID controller variables |
||
639 | int16_t DiffNick, DiffRoll; |
||
640 | int16_t PDPartNick, PDPartRoll, PDPartYaw, PPartNick, PPartRoll; |
||
641 | static int32_t IPartNick = 0, IPartRoll = 0; |
||
642 | |||
643 | static int32_t SetPointYaw = 0; |
||
644 | static int32_t IntegralGyroNickError = 0, IntegralGyroRollError = 0; |
||
645 | static int32_t CorrectionNick, CorrectionRoll; |
||
646 | static uint16_t RcLostTimer; |
||
647 | static uint8_t delay_neutral = 0, delay_startmotors = 0, delay_stopmotors = 0; |
||
648 | static uint8_t HeightControlActive = 0; |
||
649 | static int16_t HeightControlGas = 0; |
||
650 | static int8_t TimerDebugOut = 0; |
||
651 | static uint16_t UpdateCompassCourse = 0; |
||
652 | // high resolution motor values for smoothing of PID motor outputs |
||
653 | static int16_t MotorValue[MAX_MOTORS]; |
||
654 | uint8_t i; |
||
655 | |||
656 | Mean(); |
||
657 | GRN_ON; |
||
658 | |||
659 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
660 | // determine gas value |
||
661 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
662 | GasMixFraction = StickGas; |
||
663 | if(GasMixFraction < ParamSet.GasMin + 10) GasMixFraction = ParamSet.GasMin + 10; |
||
664 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
665 | // RC-signal is bad |
||
666 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
667 | if(RC_Quality < 120) // the rc-frame signal is not reveived or noisy |
||
668 | { |
||
669 | if(!PcAccess) // if also no PC-Access via UART |
||
670 | { |
||
671 | if(BeepModulation == 0xFFFF) |
||
672 | { |
||
673 | BeepTime = 15000; // 1.5 seconds |
||
674 | BeepModulation = 0x0C00; |
||
675 | } |
||
676 | } |
||
677 | if(RcLostTimer) RcLostTimer--; // decremtent timer after rc sigal lost |
||
678 | else // rc lost countdown finished |
||
679 | { |
||
680 | MKFlags &= ~(MKFLAG_MOTOR_RUN|MKFLAG_EMERGENCY_LANDING); // clear motor run flag that stop the motors in SendMotorData() |
||
681 | } |
||
682 | RED_ON; // set red led |
||
683 | if(ModelIsFlying > 1000) // wahrscheinlich in der Luft --> langsam absenken |
||
684 | { |
||
685 | GasMixFraction = ParamSet.EmergencyGas; // set emergency gas |
||
686 | MKFlags |= (MKFLAG_EMERGENCY_LANDING); // ser flag fpr emergency landing |
||
687 | // set neutral rc inputs |
||
688 | PPM_diff[ParamSet.ChannelAssignment[CH_NICK]] = 0; |
||
689 | PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] = 0; |
||
690 | PPM_diff[ParamSet.ChannelAssignment[CH_YAW]] = 0; |
||
691 | PPM_in[ParamSet.ChannelAssignment[CH_NICK]] = 0; |
||
692 | PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] = 0; |
||
693 | PPM_in[ParamSet.ChannelAssignment[CH_YAW]] = 0; |
||
694 | } |
||
695 | else MKFlags &= ~(MKFLAG_MOTOR_RUN); // clear motor run flag that stop the motors in SendMotorData() |
||
696 | } // eof RC_Quality < 120 |
||
697 | else |
||
698 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
699 | // RC-signal is good |
||
700 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
701 | if(RC_Quality > 140) |
||
702 | { |
||
703 | MKFlags &= ~(MKFLAG_EMERGENCY_LANDING); // clear flag for emergency landing |
||
704 | // reset emergency timer |
||
705 | RcLostTimer = ParamSet.EmergencyGasDuration * 50; |
||
706 | if(GasMixFraction > 40 && (MKFlags & MKFLAG_MOTOR_RUN) ) |
||
707 | { |
||
708 | if(ModelIsFlying < 0xFFFF) ModelIsFlying++; |
||
709 | } |
||
710 | if(ModelIsFlying < 256) |
||
711 | { |
||
712 | IPartNick = 0; |
||
713 | IPartRoll = 0; |
||
714 | StickYaw = 0; |
||
715 | if(ModelIsFlying == 250) |
||
716 | { |
||
717 | UpdateCompassCourse = 1; |
||
718 | ReadingIntegralGyroYaw = 0; |
||
719 | SetPointYaw = 0; |
||
720 | } |
||
721 | } |
||
722 | else MKFlags |= (MKFLAG_FLY); // set fly flag |
||
723 | |||
724 | if(Poti1 < PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110 && Poti1) Poti1--; |
||
725 | if(Poti2 < PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110 && Poti2) Poti2--; |
||
726 | if(Poti3 < PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110 && Poti3) Poti3--; |
||
727 | if(Poti4 < PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110) Poti4++; else if(Poti4 > PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110 && Poti4) Poti4--; |
||
728 | //PPM24-Extension |
||
729 | if(Poti5 < PPM_in[9] + 110) Poti5++; else if(Poti5 > PPM_in[9] + 110 && Poti5) Poti5--; |
||
730 | if(Poti6 < PPM_in[10] + 110) Poti6++; else if(Poti6 > PPM_in[10] + 110 && Poti6) Poti6--; |
||
731 | if(Poti7 < PPM_in[11] + 110) Poti7++; else if(Poti7 > PPM_in[11] + 110 && Poti7) Poti7--; |
||
732 | if(Poti8 < PPM_in[12] + 110) Poti8++; else if(Poti8 > PPM_in[12] + 110 && Poti8) Poti8--; |
||
733 | //limit poti values |
||
734 | if(Poti1 < 0) Poti1 = 0; else if(Poti1 > 255) Poti1 = 255; |
||
735 | if(Poti2 < 0) Poti2 = 0; else if(Poti2 > 255) Poti2 = 255; |
||
736 | if(Poti3 < 0) Poti3 = 0; else if(Poti3 > 255) Poti3 = 255; |
||
737 | if(Poti4 < 0) Poti4 = 0; else if(Poti4 > 255) Poti4 = 255; |
||
738 | //PPM24-Extension |
||
739 | if(Poti5 < 0) Poti5 = 0; else if(Poti5 > 255) Poti5 = 255; |
||
740 | if(Poti6 < 0) Poti6 = 0; else if(Poti6 > 255) Poti6 = 255; |
||
741 | if(Poti7 < 0) Poti7 = 0; else if(Poti7 > 255) Poti7 = 255; |
||
742 | if(Poti8 < 0) Poti8 = 0; else if(Poti8 > 255) Poti8 = 255; |
||
743 | |||
744 | // if motors are off and the gas stick is in the upper position |
||
745 | if((PPM_in[ParamSet.ChannelAssignment[CH_GAS]] > 80) && !(MKFlags & MKFLAG_MOTOR_RUN) ) |
||
746 | { |
||
747 | // and if the yaw stick is in the leftmost position |
||
748 | if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75) |
||
749 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
750 | // calibrate the neutral readings of all attitude sensors |
||
751 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
752 | { |
||
753 | // gas/yaw joystick is top left |
||
754 | // _________ |
||
755 | // |x | |
||
756 | // | | |
||
757 | // | | |
||
758 | // | | |
||
759 | // | | |
||
760 | // ¯¯¯¯¯¯¯¯¯ |
||
761 | if(++delay_neutral > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s) |
||
762 | { |
||
763 | delay_neutral = 0; |
||
764 | GRN_OFF; |
||
765 | ModelIsFlying = 0; |
||
766 | // check roll/nick stick position |
||
767 | // if nick stick is top or roll stick is left or right --> change parameter setting |
||
768 | // according to roll/nick stick position |
||
769 | if(PPM_in[ParamSet.ChannelAssignment[CH_NICK]] > 70 || abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > 70) |
||
770 | { |
||
771 | uint8_t setting = 1; // default |
||
772 | // nick/roll joystick |
||
773 | // _________ |
||
774 | // |2 3 4| |
||
775 | // | | |
||
776 | // |1 5| |
||
777 | // | | |
||
778 | // | | |
||
779 | // ¯¯¯¯¯¯¯¯¯ |
||
780 | // roll stick leftmost and nick stick centered --> setting 1 |
||
781 | if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_NICK]] < 70) setting = 1; |
||
782 | // roll stick leftmost and nick stick topmost --> setting 2 |
||
783 | if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_NICK]] > 70) setting = 2; |
||
784 | // roll stick centered an nick stick topmost --> setting 3 |
||
785 | if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < 70 && PPM_in[ParamSet.ChannelAssignment[CH_NICK]] > 70) setting = 3; |
||
786 | // roll stick rightmost and nick stick topmost --> setting 4 |
||
787 | if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_NICK]] > 70) setting = 4; |
||
788 | // roll stick rightmost and nick stick centered --> setting 5 |
||
789 | if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_NICK]] < 70) setting = 5; |
||
790 | // update active parameter set in eeprom |
||
791 | SetActiveParamSet(setting); |
||
792 | ParamSet_ReadFromEEProm(GetActiveParamSet()); |
||
793 | SetNeutral(NO_ACC_CALIB); |
||
794 | Beep(GetActiveParamSet()); |
||
795 | } |
||
796 | else |
||
797 | { |
||
798 | if(ParamSet.GlobalConfig & (CFG_COMPASS_ACTIVE|CFG_GPS_ACTIVE)) |
||
799 | { |
||
800 | // if roll stick is centered and nick stick is down |
||
801 | if (abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) < 30 && PPM_in[ParamSet.ChannelAssignment[CH_NICK]] < -70) |
||
802 | { |
||
803 | // nick/roll joystick |
||
804 | // _________ |
||
805 | // | | |
||
806 | // | | |
||
807 | // | | |
||
808 | // | | |
||
809 | // | x | |
||
810 | // ¯¯¯¯¯¯¯¯¯ |
||
811 | // enable calibration state of compass |
||
812 | CompassCalState = 1; |
||
813 | BeepTime = 1000; |
||
814 | } |
||
815 | else // nick and roll are centered |
||
816 | { |
||
817 | ParamSet_ReadFromEEProm(GetActiveParamSet()); |
||
818 | SetNeutral(NO_ACC_CALIB); |
||
819 | Beep(GetActiveParamSet()); |
||
820 | } |
||
821 | } |
||
822 | else // nick and roll are centered |
||
823 | { |
||
824 | ParamSet_ReadFromEEProm(GetActiveParamSet()); |
||
825 | SetNeutral(NO_ACC_CALIB); |
||
826 | Beep(GetActiveParamSet()); |
||
827 | } |
||
828 | } |
||
829 | } |
||
830 | } |
||
831 | // and if the yaw stick is in the rightmost position |
||
832 | // save the ACC neutral setting to eeprom |
||
833 | else if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75) |
||
834 | { |
||
835 | // gas/yaw joystick is top right |
||
836 | // _________ |
||
837 | // | x| |
||
838 | // | | |
||
839 | // | | |
||
840 | // | | |
||
841 | // | | |
||
842 | // ¯¯¯¯¯¯¯¯¯ |
||
843 | if(++delay_neutral > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s) |
||
844 | { |
||
845 | delay_neutral = 0; |
||
846 | GRN_OFF; |
||
847 | ModelIsFlying = 0; |
||
848 | SetNeutral(ACC_CALIB); |
||
849 | Beep(GetActiveParamSet()); |
||
850 | } |
||
851 | } |
||
852 | else delay_neutral = 0; |
||
853 | } |
||
854 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
855 | // gas stick is down |
||
856 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
857 | if(PPM_in[ParamSet.ChannelAssignment[CH_GAS]] < -85) |
||
858 | { |
||
859 | if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75) |
||
860 | { |
||
861 | // gas/yaw joystick is bottom right |
||
862 | // _________ |
||
863 | // | | |
||
864 | // | | |
||
865 | // | | |
||
866 | // | | |
||
867 | // | x| |
||
868 | // ¯¯¯¯¯¯¯¯¯ |
||
869 | // Start Motors |
||
870 | if(++delay_startmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s) |
||
871 | { |
||
872 | delay_startmotors = 200; // do not repeat if once executed |
||
873 | ModelIsFlying = 1; |
||
874 | MKFlags |= (MKFLAG_MOTOR_RUN|MKFLAG_START); // set flag RUN and START |
||
875 | SetPointYaw = 0; |
||
876 | ReadingIntegralGyroYaw = 0; |
||
877 | ReadingIntegralGyroNick = ParamSet.GyroAccFactor * (int32_t)AccNick; |
||
878 | ReadingIntegralGyroRoll = ParamSet.GyroAccFactor * (int32_t)AccRoll; |
||
879 | ReadingIntegralGyroNick2 = IntegralGyroNick; |
||
880 | ReadingIntegralGyroRoll2 = IntegralGyroRoll; |
||
881 | IPartNick = 0; |
||
882 | IPartRoll = 0; |
||
883 | } |
||
884 | } |
||
885 | else delay_startmotors = 0; // reset delay timer if sticks are not in this position |
||
886 | |||
887 | if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75) |
||
888 | { |
||
889 | // gas/yaw joystick is bottom left |
||
890 | // _________ |
||
891 | // | | |
||
892 | // | | |
||
893 | // | | |
||
894 | // | | |
||
895 | // |x | |
||
896 | // ¯¯¯¯¯¯¯¯¯ |
||
897 | // Stop Motors |
||
898 | if(++delay_stopmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s) |
||
899 | { |
||
900 | delay_stopmotors = 200; // do not repeat if once executed |
||
901 | ModelIsFlying = 0; |
||
902 | MKFlags &= ~(MKFLAG_MOTOR_RUN); |
||
903 | } |
||
904 | } |
||
905 | else delay_stopmotors = 0; // reset delay timer if sticks are not in this position |
||
906 | } |
||
907 | // remapping of paameters only if the signal rc-sigbnal conditions are good |
||
908 | } // eof RC_Quality > 150 |
||
909 | |||
910 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
911 | // new values from RC |
||
912 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
913 | if(!NewPpmData-- || (MKFlags & MKFLAG_EMERGENCY_LANDING) ) // NewData = 0 means new data from RC |
||
914 | { |
||
1240 | killagreg | 915 | static int16_t stick_nick = 0, stick_roll = 0; |
916 | |||
1227 | killagreg | 917 | ParameterMapping(); // remapping params (online poti replacement) |
1240 | killagreg | 918 | |
1227 | killagreg | 919 | // calculate Stick inputs by rc channels (P) and changing of rc channels (D) |
1240 | killagreg | 920 | stick_nick = (stick_nick * 3 + PPM_in[ParamSet.ChannelAssignment[CH_NICK]] * ParamSet.StickP) / 4; |
921 | stick_nick += PPM_diff[ParamSet.ChannelAssignment[CH_NICK]] * ParamSet.StickD; |
||
922 | StickNick = stick_nick - GPSStickNick; |
||
1227 | killagreg | 923 | |
1240 | killagreg | 924 | stick_roll = (stick_roll * 3 + PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.StickP) / 4; |
925 | stick_roll += PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.StickD; |
||
926 | StickRoll = stick_roll - GPSStickRoll; |
||
1227 | killagreg | 927 | |
928 | // mapping of yaw |
||
929 | StickYaw = -PPM_in[ParamSet.ChannelAssignment[CH_YAW]]; |
||
930 | // (range of -2 .. 2 is set to zero, to avoid unwanted yaw trimming on compass correction) |
||
931 | if(ParamSet.GlobalConfig & (CFG_COMPASS_ACTIVE|CFG_GPS_ACTIVE)) |
||
932 | { |
||
933 | if (StickYaw > 2) StickYaw-= 2; |
||
934 | else if (StickYaw< -2) StickYaw += 2; |
||
935 | else StickYaw = 0; |
||
936 | } |
||
937 | |||
938 | // mapping of gas |
||
939 | StickGas = PPM_in[ParamSet.ChannelAssignment[CH_GAS]] + 120;// shift to positive numbers |
||
940 | |||
941 | // update gyro control loop factors |
||
942 | GyroPFactor = FCParam.GyroP + 10; |
||
943 | GyroIFactor = FCParam.GyroI; |
||
944 | GyroYawPFactor = FCParam.GyroP + 10; |
||
945 | GyroYawIFactor = FCParam.GyroI; |
||
946 | |||
947 | |||
948 | //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
949 | //+ Analog control via serial communication |
||
950 | //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
951 | |||
952 | if(ExternControl.Config & 0x01 && FCParam.ExternalControl > 128) |
||
953 | { |
||
954 | StickNick += (int16_t) ExternControl.Nick * (int16_t) ParamSet.StickP; |
||
955 | StickRoll += (int16_t) ExternControl.Roll * (int16_t) ParamSet.StickP; |
||
956 | StickYaw += ExternControl.Yaw; |
||
957 | ExternHeightValue = (int16_t) ExternControl.Height * (int16_t)ParamSet.Height_Gain; |
||
958 | if(ExternControl.Gas < StickGas) StickGas = ExternControl.Gas; |
||
959 | } |
||
960 | if(StickGas < 0) StickGas = 0; |
||
961 | |||
962 | // disable I part of gyro control feedback |
||
963 | if(ParamSet.GlobalConfig & CFG_HEADING_HOLD) GyroIFactor = 0; |
||
964 | |||
965 | // update max stick positions for nick and roll |
||
966 | if(abs(StickNick / STICK_GAIN) > MaxStickNick) |
||
967 | { |
||
968 | MaxStickNick = abs(StickNick)/STICK_GAIN; |
||
969 | if(MaxStickNick > 100) MaxStickNick = 100; |
||
970 | } |
||
971 | else MaxStickNick--; |
||
972 | if(abs(StickRoll / STICK_GAIN) > MaxStickRoll) |
||
973 | { |
||
974 | MaxStickRoll = abs(StickRoll)/STICK_GAIN; |
||
975 | if(MaxStickRoll > 100) MaxStickRoll = 100; |
||
976 | } |
||
977 | else MaxStickRoll--; |
||
978 | |||
979 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
980 | // Looping? |
||
981 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
982 | |||
983 | if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > ParamSet.LoopThreshold) && ParamSet.BitConfig & CFG_LOOP_LEFT) LoopingLeft = 1; |
||
984 | else |
||
985 | { |
||
986 | if(LoopingLeft) // Hysteresis |
||
987 | { |
||
988 | if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) LoopingLeft = 0; |
||
989 | } |
||
990 | } |
||
991 | if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < -ParamSet.LoopThreshold) && ParamSet.BitConfig & CFG_LOOP_RIGHT) LoopingRight = 1; |
||
992 | else |
||
993 | { |
||
994 | if(LoopingRight) // Hysteresis |
||
995 | { |
||
996 | if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) LoopingRight = 0; |
||
997 | } |
||
998 | } |
||
999 | |||
1000 | if((PPM_in[ParamSet.ChannelAssignment[CH_NICK]] > ParamSet.LoopThreshold) && ParamSet.BitConfig & CFG_LOOP_UP) LoopingTop = 1; |
||
1001 | else |
||
1002 | { |
||
1003 | if(LoopingTop) // Hysteresis |
||
1004 | { |
||
1005 | if((PPM_in[ParamSet.ChannelAssignment[CH_NICK]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) LoopingTop = 0; |
||
1006 | } |
||
1007 | } |
||
1008 | if((PPM_in[ParamSet.ChannelAssignment[CH_NICK]] < -ParamSet.LoopThreshold) && ParamSet.BitConfig & CFG_LOOP_DOWN) LoopingDown = 1; |
||
1009 | else |
||
1010 | { |
||
1011 | if(LoopingDown) // Hysteresis |
||
1012 | { |
||
1013 | if(PPM_in[ParamSet.ChannelAssignment[CH_NICK]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) LoopingDown = 0; |
||
1014 | } |
||
1015 | } |
||
1016 | |||
1017 | if(LoopingLeft || LoopingRight) LoopingRoll = 1; else LoopingRoll = 0; |
||
1018 | if(LoopingTop || LoopingDown) { LoopingNick = 1; LoopingRoll = 0; LoopingLeft = 0; LoopingRight = 0;} else LoopingNick = 0; |
||
1019 | } // End of new RC-Values or Emergency Landing |
||
1020 | |||
1021 | |||
1022 | if(LoopingRoll || LoopingNick) |
||
1023 | { |
||
1024 | if(GasMixFraction > ParamSet.LoopGasLimit) GasMixFraction = ParamSet.LoopGasLimit; |
||
1025 | FunnelCourse = 1; |
||
1026 | } |
||
1027 | |||
1028 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1029 | // in case of emergency landing |
||
1030 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1031 | // set all inputs to save values |
||
1032 | if(MKFlags & MKFLAG_EMERGENCY_LANDING) |
||
1033 | { |
||
1034 | StickYaw = 0; |
||
1035 | StickNick = 0; |
||
1036 | StickRoll = 0; |
||
1037 | GyroPFactor = 90; |
||
1038 | GyroIFactor = 120; |
||
1039 | GyroYawPFactor = 90; |
||
1040 | GyroYawIFactor = 120; |
||
1041 | LoopingRoll = 0; |
||
1042 | LoopingNick = 0; |
||
1043 | MaxStickNick = 0; |
||
1044 | MaxStickRoll = 0; |
||
1045 | } |
||
1046 | |||
1047 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1048 | // Trim Gyro-Integrals to ACC-Signals |
||
1049 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1050 | |||
1051 | #define BALANCE_NUMBER 256L |
||
1052 | // sum for averaging |
||
1053 | MeanIntegralGyroNick += IntegralGyroNick; |
||
1054 | MeanIntegralGyroRoll += IntegralGyroRoll; |
||
1055 | |||
1056 | if( LoopingNick || LoopingRoll) // if looping in any direction |
||
1057 | { |
||
1058 | // reset averaging for acc and gyro integral as well as gyro integral acc correction |
||
1059 | MeasurementCounter = 0; |
||
1060 | |||
1061 | MeanAccNick = 0; |
||
1062 | MeanAccRoll = 0; |
||
1063 | |||
1064 | MeanIntegralGyroNick = 0; |
||
1065 | MeanIntegralGyroRoll = 0; |
||
1066 | |||
1067 | ReadingIntegralGyroNick2 = ReadingIntegralGyroNick; |
||
1068 | ReadingIntegralGyroRoll2 = ReadingIntegralGyroRoll; |
||
1069 | |||
1070 | AttitudeCorrectionNick = 0; |
||
1071 | AttitudeCorrectionRoll = 0; |
||
1072 | } |
||
1073 | |||
1074 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1075 | if(! LoopingNick && !LoopingRoll && ( (AdValueAccZ > 512) || (MKFlags & MKFLAG_MOTOR_RUN) ) ) // if not lopping in any direction |
||
1076 | { |
||
1077 | int32_t tmp_long, tmp_long2; |
||
1078 | if( FCParam.KalmanK != -1) |
||
1079 | { |
||
1080 | // determine the deviation of gyro integral from averaged acceleration sensor |
||
1081 | tmp_long = (int32_t)(IntegralGyroNick / ParamSet.GyroAccFactor - (int32_t)AccNick); |
||
1082 | tmp_long = (tmp_long * FCParam.KalmanK) / (32 * 16); |
||
1083 | tmp_long2 = (int32_t)(IntegralGyroRoll / ParamSet.GyroAccFactor - (int32_t)AccRoll); |
||
1084 | tmp_long2 = (tmp_long2 * FCParam.KalmanK) / (32 * 16); |
||
1085 | |||
1086 | if((MaxStickNick > 64) || (MaxStickRoll > 64)) // reduce effect during stick commands |
||
1087 | { |
||
1088 | tmp_long /= 2; |
||
1089 | tmp_long2 /= 2; |
||
1090 | } |
||
1091 | if(abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25) // reduce further if yaw stick is active |
||
1092 | { |
||
1093 | tmp_long /= 3; |
||
1094 | tmp_long2 /= 3; |
||
1095 | } |
||
1096 | // limit correction effect |
||
1097 | if(tmp_long > (int32_t)FCParam.KalmanMaxFusion) tmp_long = (int32_t)FCParam.KalmanMaxFusion; |
||
1098 | if(tmp_long < -(int32_t)FCParam.KalmanMaxFusion) tmp_long =-(int32_t)FCParam.KalmanMaxFusion; |
||
1099 | if(tmp_long2 > (int32_t)FCParam.KalmanMaxFusion) tmp_long2 = (int32_t)FCParam.KalmanMaxFusion; |
||
1100 | if(tmp_long2 <-(int32_t)FCParam.KalmanMaxFusion) tmp_long2 =-(int32_t)FCParam.KalmanMaxFusion; |
||
1101 | } |
||
1102 | else |
||
1103 | { |
||
1104 | // determine the deviation of gyro integral from acceleration sensor |
||
1105 | tmp_long = (int32_t)(IntegralGyroNick / ParamSet.GyroAccFactor - (int32_t)AccNick); |
||
1106 | tmp_long /= 16; |
||
1107 | tmp_long2 = (int32_t)(IntegralGyroRoll / ParamSet.GyroAccFactor - (int32_t)AccRoll); |
||
1108 | tmp_long2 /= 16; |
||
1109 | |||
1110 | if((MaxStickNick > 64) || (MaxStickRoll > 64)) // reduce effect during stick commands |
||
1111 | { |
||
1112 | tmp_long /= 3; |
||
1113 | tmp_long2 /= 3; |
||
1114 | } |
||
1115 | if(abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25) // reduce further if yaw stick is active |
||
1116 | { |
||
1117 | tmp_long /= 3; |
||
1118 | tmp_long2 /= 3; |
||
1119 | } |
||
1120 | |||
1121 | #define BALANCE 32 |
||
1122 | // limit correction effect |
||
1123 | CHECK_MIN_MAX(tmp_long, -BALANCE, BALANCE); |
||
1124 | CHECK_MIN_MAX(tmp_long2, -BALANCE, BALANCE); |
||
1125 | } |
||
1126 | // correct current readings |
||
1127 | ReadingIntegralGyroNick -= tmp_long; |
||
1128 | ReadingIntegralGyroRoll -= tmp_long2; |
||
1129 | } |
||
1130 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1131 | // MeasurementCounter is incremented in the isr of analog.c |
||
1132 | if(MeasurementCounter >= BALANCE_NUMBER) // averaging number has reached |
||
1133 | { |
||
1134 | static int16_t cnt = 0; |
||
1135 | static int8_t last_n_p, last_n_n, last_r_p, last_r_n; |
||
1136 | static int32_t MeanIntegralGyroNick_old, MeanIntegralGyroRoll_old; |
||
1137 | |||
1138 | // if not lopping in any direction (this should be always the case, |
||
1139 | // because the Measurement counter is reset to 0 if looping in any direction is active.) |
||
1140 | if(! LoopingNick && !LoopingRoll && !FunnelCourse && ParamSet.DriftComp) |
||
1141 | { |
||
1142 | // Calculate mean value of the gyro integrals |
||
1143 | MeanIntegralGyroNick /= BALANCE_NUMBER; |
||
1144 | MeanIntegralGyroRoll /= BALANCE_NUMBER; |
||
1145 | |||
1146 | // Calculate mean of the acceleration values scaled to the gyro integrals |
||
1147 | MeanAccNick = (ParamSet.GyroAccFactor * MeanAccNick) / BALANCE_NUMBER; |
||
1148 | MeanAccRoll = (ParamSet.GyroAccFactor * MeanAccRoll) / BALANCE_NUMBER; |
||
1149 | |||
1150 | // Nick ++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1151 | // Calculate deviation of the averaged gyro integral and the averaged acceleration integral |
||
1152 | IntegralGyroNickError = (int32_t)(MeanIntegralGyroNick - (int32_t)MeanAccNick); |
||
1153 | CorrectionNick = IntegralGyroNickError / ParamSet.GyroAccTrim; |
||
1154 | AttitudeCorrectionNick = CorrectionNick / BALANCE_NUMBER; |
||
1155 | // Roll ++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1156 | // Calculate deviation of the averaged gyro integral and the averaged acceleration integral |
||
1157 | IntegralGyroRollError = (int32_t)(MeanIntegralGyroRoll - (int32_t)MeanAccRoll); |
||
1158 | CorrectionRoll = IntegralGyroRollError / ParamSet.GyroAccTrim; |
||
1159 | AttitudeCorrectionRoll = CorrectionRoll / BALANCE_NUMBER; |
||
1160 | |||
1161 | if(((MaxStickNick > 64) || (MaxStickRoll > 64) || (abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25)) && (FCParam.KalmanK == -1) ) |
||
1162 | { |
||
1163 | AttitudeCorrectionNick /= 2; |
||
1164 | AttitudeCorrectionRoll /= 2; |
||
1165 | } |
||
1166 | |||
1167 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1168 | // Gyro-Drift ermitteln |
||
1169 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1170 | // deviation of gyro nick integral (IntegralGyroNick is corrected by averaged acc sensor) |
||
1171 | IntegralGyroNickError = IntegralGyroNick2 - IntegralGyroNick; |
||
1172 | ReadingIntegralGyroNick2 -= IntegralGyroNickError; |
||
1173 | // deviation of gyro nick integral (IntegralGyroNick is corrected by averaged acc sensor) |
||
1174 | IntegralGyroRollError = IntegralGyroRoll2 - IntegralGyroRoll; |
||
1175 | ReadingIntegralGyroRoll2 -= IntegralGyroRollError; |
||
1176 | |||
1177 | if(ParamSet.DriftComp) |
||
1178 | { |
||
1179 | if(YawGyroDrift > BALANCE_NUMBER/2) AdBiasGyroYaw++; |
||
1180 | if(YawGyroDrift < -BALANCE_NUMBER/2) AdBiasGyroYaw--; |
||
1181 | } |
||
1182 | YawGyroDrift = 0; |
||
1183 | |||
1184 | #define ERROR_LIMIT0 (BALANCE_NUMBER / 2) |
||
1185 | #define ERROR_LIMIT1 (BALANCE_NUMBER * 2) |
||
1186 | #define ERROR_LIMIT2 (BALANCE_NUMBER * 16) |
||
1187 | #define MOVEMENT_LIMIT 20000 |
||
1188 | // Nick +++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1189 | cnt = 1; |
||
1190 | if(IntegralGyroNickError > ERROR_LIMIT1) cnt = 4; |
||
1191 | CorrectionNick = 0; |
||
1192 | if((labs(MeanIntegralGyroNick_old - MeanIntegralGyroNick) < MOVEMENT_LIMIT) || (FCParam.KalmanMaxDrift > 3 * 8)) |
||
1193 | { |
||
1194 | if(IntegralGyroNickError > ERROR_LIMIT2) |
||
1195 | { |
||
1196 | if(last_n_p) |
||
1197 | { |
||
1198 | cnt += labs(IntegralGyroNickError) / (ERROR_LIMIT2 / 8); |
||
1199 | CorrectionNick = IntegralGyroNickError / 8; |
||
1200 | if(CorrectionNick > 5000) CorrectionNick = 5000; |
||
1201 | AttitudeCorrectionNick += CorrectionNick / BALANCE_NUMBER; |
||
1202 | } |
||
1203 | else last_n_p = 1; |
||
1204 | } |
||
1205 | else last_n_p = 0; |
||
1206 | if(IntegralGyroNickError < -ERROR_LIMIT2) |
||
1207 | { |
||
1208 | if(last_n_n) |
||
1209 | { |
||
1210 | cnt += labs(IntegralGyroNickError) / (ERROR_LIMIT2 / 8); |
||
1211 | CorrectionNick = IntegralGyroNickError / 8; |
||
1212 | if(CorrectionNick < -5000) CorrectionNick = -5000; |
||
1213 | AttitudeCorrectionNick += CorrectionNick / BALANCE_NUMBER; |
||
1214 | } |
||
1215 | else last_n_n = 1; |
||
1216 | } |
||
1217 | else last_n_n = 0; |
||
1218 | } |
||
1219 | else |
||
1220 | { |
||
1221 | cnt = 0; |
||
1222 | BadCompassHeading = 1000; |
||
1223 | } |
||
1224 | if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp; |
||
1225 | if(FCParam.KalmanMaxDrift) if(cnt > FCParam.KalmanMaxDrift) cnt = FCParam.KalmanMaxDrift; |
||
1226 | // correct Gyro Offsets |
||
1227 | if(IntegralGyroNickError > ERROR_LIMIT0) BiasHiResGyroNick += cnt; |
||
1228 | if(IntegralGyroNickError < -ERROR_LIMIT0) BiasHiResGyroNick -= cnt; |
||
1229 | |||
1230 | // Roll +++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1231 | cnt = 1; |
||
1232 | if(IntegralGyroRollError > ERROR_LIMIT1) cnt = 4; |
||
1233 | CorrectionRoll = 0; |
||
1234 | if((labs(MeanIntegralGyroRoll_old - MeanIntegralGyroRoll) < MOVEMENT_LIMIT) || (FCParam.KalmanMaxDrift > 3 * 8)) |
||
1235 | { |
||
1236 | if(IntegralGyroRollError > ERROR_LIMIT2) |
||
1237 | { |
||
1238 | if(last_r_p) |
||
1239 | { |
||
1240 | cnt += labs(IntegralGyroRollError) / (ERROR_LIMIT2 / 8); |
||
1241 | CorrectionRoll = IntegralGyroRollError / 8; |
||
1242 | if(CorrectionRoll > 5000) CorrectionRoll = 5000; |
||
1243 | AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER; |
||
1244 | } |
||
1245 | else last_r_p = 1; |
||
1246 | } |
||
1247 | else last_r_p = 0; |
||
1248 | if(IntegralGyroRollError < -ERROR_LIMIT2) |
||
1249 | { |
||
1250 | if(last_r_n) |
||
1251 | { |
||
1252 | cnt += labs(IntegralGyroRollError) / (ERROR_LIMIT2 / 8); |
||
1253 | CorrectionRoll = IntegralGyroRollError / 8; |
||
1254 | if(CorrectionRoll < -5000) CorrectionRoll = -5000; |
||
1255 | AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER; |
||
1256 | } |
||
1257 | else last_r_n = 1; |
||
1258 | } |
||
1259 | else last_r_n = 0; |
||
1260 | } |
||
1261 | else |
||
1262 | { |
||
1263 | cnt = 0; |
||
1264 | BadCompassHeading = 1000; |
||
1265 | } |
||
1266 | // correct Gyro Offsets |
||
1267 | if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp; |
||
1268 | if(FCParam.KalmanMaxDrift) if(cnt > FCParam.KalmanMaxDrift) cnt = FCParam.KalmanMaxDrift; |
||
1269 | if(IntegralGyroRollError > ERROR_LIMIT0) BiasHiResGyroRoll += cnt; |
||
1270 | if(IntegralGyroRollError < -ERROR_LIMIT0) BiasHiResGyroRoll -= cnt; |
||
1271 | |||
1272 | } |
||
1273 | else // looping is active |
||
1274 | { |
||
1275 | AttitudeCorrectionRoll = 0; |
||
1276 | AttitudeCorrectionNick = 0; |
||
1277 | FunnelCourse = 0; |
||
1278 | } |
||
1279 | |||
1280 | // if GyroIFactor == 0 , for example at Heading Hold, ignore attitude correction |
||
1281 | if(!GyroIFactor) |
||
1282 | { |
||
1283 | AttitudeCorrectionRoll = 0; |
||
1284 | AttitudeCorrectionNick = 0; |
||
1285 | } |
||
1286 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1287 | MeanIntegralGyroNick_old = MeanIntegralGyroNick; |
||
1288 | MeanIntegralGyroRoll_old = MeanIntegralGyroRoll; |
||
1289 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1290 | // reset variables used for next averaging |
||
1291 | MeanAccNick = 0; |
||
1292 | MeanAccRoll = 0; |
||
1293 | MeanIntegralGyroNick = 0; |
||
1294 | MeanIntegralGyroRoll = 0; |
||
1295 | MeasurementCounter = 0; |
||
1296 | } // end of averaging |
||
1297 | |||
1298 | |||
1299 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1300 | // Yawing |
||
1301 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1302 | if(abs(StickYaw) > 15 ) // yaw stick is activated |
||
1303 | { |
||
1304 | BadCompassHeading = 1000; |
||
1305 | if(!(ParamSet.GlobalConfig & CFG_COMPASS_FIX)) |
||
1306 | { |
||
1307 | UpdateCompassCourse = 1; |
||
1308 | } |
||
1309 | } |
||
1310 | // exponential stick sensitivity in yawring rate |
||
1311 | tmp_int = (int32_t) ParamSet.StickYawP * ((int32_t)StickYaw * abs(StickYaw)) / 512L; // expo y = ax + bx² |
||
1312 | tmp_int += (ParamSet.StickYawP * StickYaw) / 4; |
||
1313 | SetPointYaw = tmp_int; |
||
1314 | // trimm drift of ReadingIntegralGyroYaw with SetPointYaw(StickYaw) |
||
1315 | ReadingIntegralGyroYaw -= tmp_int; |
||
1316 | // limit the effect |
||
1317 | CHECK_MIN_MAX(ReadingIntegralGyroYaw, -50000, 50000) |
||
1318 | |||
1319 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1320 | // Compass |
||
1321 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1322 | // compass code is used if Compass option is selected |
||
1323 | if(ParamSet.GlobalConfig & (CFG_COMPASS_ACTIVE|CFG_GPS_ACTIVE)) |
||
1324 | { |
||
1325 | int16_t w, v, r,correction, error; |
||
1326 | |||
1327 | if(CompassCalState && !(MKFlags & MKFLAG_MOTOR_RUN) ) |
||
1328 | { |
||
1329 | SetCompassCalState(); |
||
1330 | #ifdef USE_KILLAGREG |
||
1331 | MM3_Calibrate(); |
||
1332 | #endif |
||
1333 | } |
||
1334 | else |
||
1335 | { |
||
1336 | #ifdef USE_KILLAGREG |
||
1337 | static uint8_t updCompass = 0; |
||
1338 | if (!updCompass--) |
||
1339 | { |
||
1340 | updCompass = 49; // update only at 2ms*50 = 100ms (10Hz) |
||
1341 | MM3_Heading(); |
||
1342 | } |
||
1343 | #endif |
||
1344 | |||
1345 | // get maximum attitude angle |
||
1346 | w = abs(IntegralGyroNick / 512); |
||
1347 | v = abs(IntegralGyroRoll / 512); |
||
1348 | if(v > w) w = v; |
||
1349 | correction = w / 8 + 1; |
||
1350 | // calculate the deviation of the yaw gyro heading and the compass heading |
||
1351 | if (CompassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined |
||
1352 | else error = ((540 + CompassHeading - (YawGyroHeading / GYRO_DEG_FACTOR)) % 360) - 180; |
||
1353 | if(abs(GyroYaw) > 128) // spinning fast |
||
1354 | { |
||
1355 | error = 0; |
||
1356 | } |
||
1357 | if(!BadCompassHeading && w < 25) |
||
1358 | { |
||
1359 | YawGyroDrift += error; |
||
1360 | if(UpdateCompassCourse) |
||
1361 | { |
||
1362 | BeepTime = 200; |
||
1363 | YawGyroHeading = (int32_t)CompassHeading * GYRO_DEG_FACTOR; |
||
1364 | CompassCourse = (int16_t)(YawGyroHeading / GYRO_DEG_FACTOR); |
||
1365 | UpdateCompassCourse = 0; |
||
1366 | } |
||
1367 | } |
||
1368 | YawGyroHeading += (error * 8) / correction; |
||
1369 | w = (w * FCParam.CompassYawEffect) / 32; |
||
1370 | w = FCParam.CompassYawEffect - w; |
||
1371 | if(w >= 0) |
||
1372 | { |
||
1373 | if(!BadCompassHeading) |
||
1374 | { |
||
1375 | v = 64 + (MaxStickNick + MaxStickRoll) / 8; |
||
1376 | // calc course deviation |
||
1377 | r = ((540 + (YawGyroHeading / GYRO_DEG_FACTOR) - CompassCourse) % 360) - 180; |
||
1378 | v = (r * w) / v; // align to compass course |
||
1379 | // limit yaw rate |
||
1380 | w = 3 * FCParam.CompassYawEffect; |
||
1381 | if (v > w) v = w; |
||
1382 | else if (v < -w) v = -w; |
||
1383 | ReadingIntegralGyroYaw += v; |
||
1384 | } |
||
1385 | else |
||
1386 | { // wait a while |
||
1387 | BadCompassHeading--; |
||
1388 | } |
||
1389 | } |
||
1390 | else |
||
1391 | { // ignore compass at extreme attitudes for a while |
||
1392 | BadCompassHeading = 500; |
||
1393 | } |
||
1394 | } |
||
1395 | } |
||
1396 | |||
1397 | #if (defined (USE_KILLAGREG) || defined (USE_MK3MAG)) |
||
1398 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1399 | // GPS |
||
1400 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1401 | if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE) |
||
1402 | { |
||
1403 | GPS_Main(); |
||
1404 | MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START); |
||
1405 | } |
||
1406 | else |
||
1407 | { |
||
1408 | GPSStickNick = 0; |
||
1409 | GPSStickRoll = 0; |
||
1410 | } |
||
1411 | #endif |
||
1412 | |||
1413 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1414 | // Debugwerte zuordnen |
||
1415 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1416 | if(!TimerDebugOut--) |
||
1417 | { |
||
1418 | TimerDebugOut = 24; // update debug outputs every 25*2ms = 50 ms (20Hz) |
||
1419 | DebugOut.Analog[0] = (10 * IntegralGyroNick) / GYRO_DEG_FACTOR; // in 0.1 deg |
||
1420 | DebugOut.Analog[1] = (10 * IntegralGyroRoll) / GYRO_DEG_FACTOR; // in 0.1 deg |
||
1421 | DebugOut.Analog[2] = (10 * AccNick) / ACC_DEG_FACTOR; // in 0.1 deg |
||
1422 | DebugOut.Analog[3] = (10 * AccRoll) / ACC_DEG_FACTOR; // in 0.1 deg |
||
1423 | DebugOut.Analog[4] = GyroYaw; |
||
1424 | DebugOut.Analog[5] = ReadingHeight; |
||
1425 | DebugOut.Analog[6] = (ReadingIntegralTop / 512); |
||
1426 | DebugOut.Analog[8] = CompassHeading; |
||
1427 | DebugOut.Analog[9] = UBat; |
||
1428 | DebugOut.Analog[10] = RC_Quality; |
||
1429 | DebugOut.Analog[11] = YawGyroHeading / GYRO_DEG_FACTOR; |
||
1430 | DebugOut.Analog[19] = CompassCalState; |
||
1431 | // DebugOut.Analog[24] = GyroNick/2; |
||
1432 | // DebugOut.Analog[25] = GyroRoll/2; |
||
1433 | DebugOut.Analog[27] = (int16_t)FCParam.KalmanMaxDrift; |
||
1434 | // DebugOut.Analog[28] = (int16_t)FCParam.KalmanMaxFusion; |
||
1435 | DebugOut.Analog[30] = GPSStickNick; |
||
1436 | DebugOut.Analog[31] = GPSStickRoll; |
||
1437 | } |
||
1438 | |||
1439 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1440 | // calculate control feedback from angle (gyro integral) and agular velocity (gyro signal) |
||
1441 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1442 | |||
1443 | #define TRIM_LIMIT 200 |
||
1444 | CHECK_MIN_MAX(TrimNick, -TRIM_LIMIT, TRIM_LIMIT); |
||
1445 | CHECK_MIN_MAX(TrimRoll, -TRIM_LIMIT, TRIM_LIMIT); |
||
1446 | |||
1447 | if(FunnelCourse) |
||
1448 | { |
||
1449 | IPartNick = 0; |
||
1450 | IPartRoll = 0; |
||
1451 | } |
||
1452 | |||
1453 | if(! LoopingNick) |
||
1454 | { |
||
1455 | PPartNick = (IntegralGyroNick * GyroIFactor) / (44000 / STICK_GAIN); // P-Part |
||
1456 | } |
||
1457 | else |
||
1458 | { |
||
1459 | PPartNick = 0; |
||
1460 | } |
||
1461 | PDPartNick = PPartNick + (int32_t)((int32_t)GyroNick * GyroPFactor + (int32_t)TrimNick * 128L) / (256L / STICK_GAIN); // +D-Part |
||
1462 | |||
1463 | if(!LoopingRoll) |
||
1464 | { |
||
1465 | PPartRoll = (IntegralGyroRoll * GyroIFactor) / (44000 / STICK_GAIN); // P-Part |
||
1466 | } |
||
1467 | else |
||
1468 | { |
||
1469 | PPartRoll = 0; |
||
1470 | } |
||
1471 | PDPartRoll = PPartRoll + (int32_t)((int32_t)GyroRoll * GyroPFactor + (int32_t)TrimRoll * 128L) / (256L / STICK_GAIN); // +D-Part |
||
1472 | |||
1473 | PDPartYaw = (int32_t)(GyroYaw * 2 * (int32_t)GyroYawPFactor) / (256L / STICK_GAIN) + (int32_t)(IntegralGyroYaw * GyroYawIFactor) / (2 * (44000 / STICK_GAIN)); |
||
1474 | |||
1475 | //DebugOut.Analog[21] = PDPartNick; |
||
1476 | //DebugOut.Analog[22] = PDPartRoll; |
||
1477 | |||
1478 | // limit control feedback |
||
1479 | #define SENSOR_LIMIT (4096 * 4) |
||
1480 | CHECK_MIN_MAX(PDPartNick, -SENSOR_LIMIT, SENSOR_LIMIT); |
||
1481 | CHECK_MIN_MAX(PDPartRoll, -SENSOR_LIMIT, SENSOR_LIMIT); |
||
1482 | CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT); |
||
1483 | |||
1484 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1485 | // all BL-Ctrl connected? |
||
1486 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1487 | if(MissingMotor) |
||
1488 | { |
||
1489 | // if we are in the lift off condition |
||
1490 | if( (ModelIsFlying > 1) && (ModelIsFlying < 50) && (GasMixFraction > 0) ) |
||
1491 | ModelIsFlying = 1; // keep within lift off condition |
||
1492 | GasMixFraction = ParamSet.GasMin; // reduce gas to min to avoid lift of |
||
1493 | } |
||
1494 | |||
1495 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1496 | // Height Control |
||
1497 | // The height control algorithm reduces the gas but does not increase the gas. |
||
1498 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1499 | |||
1500 | GasMixFraction *= STICK_GAIN; |
||
1501 | |||
1502 | // if height control is activated and no emergency landing is active |
||
1503 | if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL) && !(MKFlags & MKFLAG_EMERGENCY_LANDING) ) |
||
1504 | { |
||
1505 | int tmp_int; |
||
1506 | static uint8_t delay = 100; |
||
1507 | // if height control is activated by an rc channel |
||
1508 | if(ParamSet.GlobalConfig & CFG_HEIGHT_SWITCH) |
||
1509 | { // check if parameter is less than activation threshold |
||
1510 | if( |
||
1511 | ( (ParamSet.BitConfig & CFG_HEIGHT_3SWITCH) && ( (FCParam.MaxHeight > 80) && (FCParam.MaxHeight < 140) ) )|| // for 3-state switch height control is only disabled in center position |
||
1512 | (!(ParamSet.BitConfig & CFG_HEIGHT_3SWITCH) && (FCParam.MaxHeight < 50) ) // for 2-State switch height control is disabled in lower position |
||
1513 | ) |
||
1514 | { //hight control not active |
||
1515 | if(!delay--) |
||
1516 | { |
||
1517 | // measurement of air pressure close to upper limit and no overflow in correction of the new OCR0A value occurs |
||
1518 | if( (ReadingAirPressure > 1000) && (OCR0A < 255) ) |
||
1519 | { // increase offset |
||
1520 | if(OCR0A < 244) |
||
1521 | { |
||
1522 | ExpandBaro -= 10; |
||
1523 | OCR0A = PressureSensorOffset - ExpandBaro; |
||
1524 | } |
||
1525 | else |
||
1526 | { |
||
1527 | OCR0A = 254; |
||
1528 | } |
||
1529 | BeepTime = 300; |
||
1530 | delay = 250; |
||
1531 | } |
||
1532 | // measurement of air pressure close to lower limit and |
||
1533 | else if( (ReadingAirPressure < 100) && (OCR0A > 1) ) |
||
1534 | { // decrease offset |
||
1535 | if(OCR0A > 10) |
||
1536 | { |
||
1537 | ExpandBaro += 10; |
||
1538 | OCR0A = PressureSensorOffset - ExpandBaro; |
||
1539 | } |
||
1540 | else |
||
1541 | { |
||
1542 | OCR0A = 1; |
||
1543 | } |
||
1544 | BeepTime = 300; |
||
1545 | delay = 250; |
||
1546 | } |
||
1547 | else |
||
1548 | { |
||
1549 | SetPointHeight = ReadingHeight - 20; // update SetPoint with current reading |
||
1550 | HeightControlActive = 0; // disable height control |
||
1551 | delay = 1; |
||
1552 | } |
||
1553 | } |
||
1554 | } |
||
1555 | else |
||
1556 | { //hight control not active |
||
1557 | HeightControlActive = 1; // enable height control |
||
1558 | delay = 200; |
||
1559 | } |
||
1560 | } |
||
1561 | else // no switchable height control |
||
1562 | { |
||
1563 | SetPointHeight = ((int16_t) ExternHeightValue + (int16_t) FCParam.MaxHeight) * (int16_t)ParamSet.Height_Gain - 20; |
||
1564 | HeightControlActive = 1; |
||
1565 | } |
||
1566 | // get current height |
||
1567 | h = ReadingHeight; |
||
1568 | // if current height is above the setpoint reduce gas |
||
1569 | if((h > SetPointHeight) && HeightControlActive) |
||
1570 | { |
||
1571 | // height difference -> P control part |
||
1572 | h = ((h - SetPointHeight) * (int16_t) FCParam.HeightP) / (16 / STICK_GAIN); |
||
1573 | h = GasMixFraction - h; // reduce gas |
||
1574 | // height gradient --> D control part |
||
1575 | //h -= (HeightD * FCParam.HeightD) / (8 / STICK_GAIN); // D control part |
||
1576 | h -= (HeightD) / (8 / STICK_GAIN); // D control part |
||
1577 | // acceleration sensor effect |
||
1578 | tmp_int = ((ReadingIntegralTop / 128) * (int32_t) FCParam.Height_ACC_Effect) / (128 / STICK_GAIN); |
||
1579 | if(tmp_int > 70 * STICK_GAIN) tmp_int = 70 * STICK_GAIN; |
||
1580 | else if(tmp_int < -(70 * STICK_GAIN)) tmp_int = -(70 * STICK_GAIN); |
||
1581 | h -= tmp_int; |
||
1582 | // update height control gas |
||
1583 | HeightControlGas = (HeightControlGas*15 + h) / 16; |
||
1584 | // limit gas reduction |
||
1585 | if(HeightControlGas < ParamSet.HeightMinGas * STICK_GAIN) |
||
1586 | { |
||
1587 | if(GasMixFraction >= ParamSet.HeightMinGas * STICK_GAIN) HeightControlGas = ParamSet.HeightMinGas * STICK_GAIN; |
||
1588 | // allows landing also if gas stick is reduced below min gas on height control |
||
1589 | if(GasMixFraction < ParamSet.HeightMinGas * STICK_GAIN) HeightControlGas = GasMixFraction; |
||
1590 | } |
||
1591 | // limit gas to stick setting |
||
1592 | if(HeightControlGas > GasMixFraction) HeightControlGas = GasMixFraction; |
||
1593 | GasMixFraction = HeightControlGas; |
||
1594 | } |
||
1595 | } |
||
1596 | // limit gas to parameter setting |
||
1597 | if(GasMixFraction > (ParamSet.GasMax - 20) * STICK_GAIN) GasMixFraction = (ParamSet.GasMax - 20) * STICK_GAIN; |
||
1598 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1599 | // + Mixer and PI-Controller |
||
1600 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1601 | DebugOut.Analog[7] = GasMixFraction; |
||
1602 | |||
1603 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1604 | // Yaw-Fraction |
||
1605 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1606 | YawMixFraction = PDPartYaw - SetPointYaw * STICK_GAIN; // yaw controller |
||
1607 | #define MIN_YAWGAS (40 * STICK_GAIN) // yaw also below this gas value |
||
1608 | // limit YawMixFraction |
||
1609 | if(GasMixFraction > MIN_YAWGAS) |
||
1610 | { |
||
1611 | CHECK_MIN_MAX(YawMixFraction, -(GasMixFraction / 2), (GasMixFraction / 2)); |
||
1612 | } |
||
1613 | else |
||
1614 | { |
||
1615 | CHECK_MIN_MAX(YawMixFraction, -(MIN_YAWGAS / 2), (MIN_YAWGAS / 2)); |
||
1616 | } |
||
1617 | tmp_int = ParamSet.GasMax * STICK_GAIN; |
||
1618 | CHECK_MIN_MAX(YawMixFraction, -(tmp_int - GasMixFraction), (tmp_int - GasMixFraction)); |
||
1619 | |||
1620 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1621 | // Nick-Axis |
||
1622 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1623 | DiffNick = PDPartNick - StickNick; // get difference |
||
1624 | if(GyroIFactor) IPartNick += PPartNick - StickNick; // I-part for attitude control |
||
1625 | else IPartNick += DiffNick; // I-part for head holding |
||
1626 | CHECK_MIN_MAX(IPartNick, -(STICK_GAIN * 16000L), (STICK_GAIN * 16000L)); |
||
1627 | NickMixFraction = DiffNick + (IPartNick / Ki); // PID-controller for nick |
||
1628 | |||
1629 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1630 | // Roll-Axis |
||
1631 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1632 | DiffRoll = PDPartRoll - StickRoll; // get difference |
||
1633 | if(GyroIFactor) IPartRoll += PPartRoll - StickRoll; // I-part for attitude control |
||
1634 | else IPartRoll += DiffRoll; // I-part for head holding |
||
1635 | CHECK_MIN_MAX(IPartRoll, -(STICK_GAIN * 16000L), (STICK_GAIN * 16000L)); |
||
1636 | RollMixFraction = DiffRoll + (IPartRoll / Ki); // PID-controller for roll |
||
1637 | |||
1638 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1639 | // Limiter |
||
1640 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1641 | tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(GasMixFraction + abs(YawMixFraction) / 2)) / 64; |
||
1642 | CHECK_MIN_MAX(NickMixFraction, -tmp_int, tmp_int); |
||
1643 | CHECK_MIN_MAX(RollMixFraction, -tmp_int, tmp_int); |
||
1644 | |||
1645 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1646 | // Universal Mixer |
||
1647 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
||
1648 | for(i = 0; i < MAX_MOTORS; i++) |
||
1649 | { |
||
1650 | int16_t tmp; |
||
1651 | if(Mixer.Motor[i][MIX_GAS] > 0) // if gas then mixer |
||
1652 | { |
||
1653 | tmp = ((int32_t)GasMixFraction * Mixer.Motor[i][MIX_GAS] ) / 64L; |
||
1654 | tmp += ((int32_t)NickMixFraction * Mixer.Motor[i][MIX_NICK]) / 64L; |
||
1655 | tmp += ((int32_t)RollMixFraction * Mixer.Motor[i][MIX_ROLL]) / 64L; |
||
1656 | tmp += ((int32_t)YawMixFraction * Mixer.Motor[i][MIX_YAW] ) / 64L; |
||
1657 | MotorValue[i] = MotorSmoothing(tmp, MotorValue[i]); // Spike Filter |
||
1658 | tmp = MotorValue[i] / STICK_GAIN; |
||
1659 | CHECK_MIN_MAX(tmp, ParamSet.GasMin, ParamSet.GasMax); |
||
1660 | Motor[i].SetPoint = tmp; |
||
1661 | } |
||
1662 | else Motor[i].SetPoint = 0; |
||
1663 | } |
||
1664 | } |
||
1665 |