Subversion Repositories FlightCtrl

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2751 - 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + www.MikroKopter.com
3
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4
// + Software Nutzungsbedingungen (english version: see below)
5
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
6
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
7
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool 
8
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
9
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
10
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
11
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
12
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
13
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
14
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
15
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
16
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
17
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
18
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand 
19
// + des Mitverschuldens offen.
20
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
21
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
22
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
23
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
24
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
25
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
26
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
27
// +  Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Software LICENSING TERMS
30
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
31
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
32
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware 
33
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
34
// + The Software may only be used with the Licensor's products.
35
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
36
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
37
// + agreement shall be the property of the Licensor.
38
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
39
// + features that can be used to identify the program may not be altered or defaced by the customer.
40
// + The customer shall be responsible for taking reasonable precautions
41
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
42
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
43
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
44
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
45
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
46
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
47
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
48
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
49
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
50
// + #### END OF LICENSING TERMS ####
51
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
52
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
53
 
54
#include <avr/io.h>
55
#include <avr/interrupt.h>
56
#include <util/twi.h>
57
#include "eeprom.h"
58
#include "twimaster.h"
59
#include "fc.h"
60
#include "analog.h"
61
#include "uart.h"
62
#include "timer0.h"
63
#include "main.h"
64
 
65
volatile uint8_t twi_state      = TWI_STATE_MOTOR_TX, ReadBlSize = 9;
66
volatile uint8_t dac_channel    = 0;
67
volatile uint8_t motor_write    = 0;
68
volatile uint8_t motor_read     = 0;
69
volatile uint8_t I2C_TransferActive = 0;
70
uint8_t Max_I2C_Packets = 12;
71
 
72
volatile uint16_t I2CTimeout = 100;
73
 
74
uint8_t MissingMotor  = 0;
75
 
76
volatile uint8_t BLFlags = 0;
77
 
78
MotorData_t Motor[MAX_MOTORS];
79
RedundantBl_t RedundantMotor[MAX_MOTORS];
80
 
81
// bit mask for witch BL the configuration should be sent
82
volatile uint16_t BLConfig_WriteMask = 0;
83
// bit mask for witch BL the configuration should be read
84
volatile uint16_t BLConfig_ReadMask = 0;
85
// buffer for BL Configuration
86
BLConfig_t BLConfig;
87
 
88
#define I2C_WriteByte(byte) {TWDR = byte; TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);}
89
#define I2C_ReceiveByte() {TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE) | (1<<TWEA);}
90
#define I2C_ReceiveLastByte() {TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);}
91
 
92
#define SCL_CLOCK  200000L
93
#define I2C_TIMEOUT 30000
94
#define TWI_BASE_ADDRESS 0x52
95
 
96
/**************************************************/
97
/*   Initialize I2C (TWI)                         */
98
/**************************************************/
99
 
100
void I2C_Init(char clear)
101
{
102
        uint8_t i;
103
        uint8_t sreg = SREG;
104
        cli();
105
 
106
        // SDA is INPUT
107
        DDRC  &= ~(1<<DDC1);
108
        // SCL is output
109
        DDRC |= (1<<DDC0);
110
        // pull up SDA
111
        PORTC |= (1<<PORTC0)|(1<<PORTC1);
112
 
113
        // TWI Status Register
114
        // prescaler 1 (TWPS1 = 0, TWPS0 = 0)
115
        TWSR &= ~((1<<TWPS1)|(1<<TWPS0));
116
 
117
        // set TWI Bit Rate Register
118
        TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
119
 
120
        twi_state               = TWI_STATE_MOTOR_TX;
121
        motor_write     = 0;
122
        motor_read              = 0;
123
 
124
        if(clear) for(i=0; i < MAX_MOTORS; i++)
125
        {
126
                Motor[i].Version                = 0;
127
                Motor[i].SetPoint               = 0;
128
                Motor[i].SetPointLowerBits      = 0;
129
                Motor[i].State                  = 0;
130
                Motor[i].ReadMode               = BL_READMODE_STATUS;
131
                Motor[i].Current                = 0;
132
                Motor[i].MaxPWM                 = 0;
133
                Motor[i].Temperature    = 0;
134
                Motor[i].NotReadyCnt    = 0;
135
        Motor[i].RPM                    = 0;
136
        Motor[i].reserved1              = 0;
137
        Motor[i].Voltage                = 0;
138
        Motor[i].SlaveI2cError  = 0;
139
        Motor[i].VersionMajor   = 0;
140
        Motor[i].VersionMinor   = 0;
141
        }
142
    sei();
143
        SREG = sreg;
144
}
145
 
146
void I2C_Reset(void)
147
{
148
        // stop i2c bus
149
        I2C_Stop(TWI_STATE_MOTOR_TX);
150
        TWCR = (1<<TWINT); // reset to original state incl. interrupt flag reset
151
        TWAMR = 0;
152
        TWAR = 0;
153
        TWDR = 0;
154
        TWSR = 0;
155
        TWBR = 0;
156
    I2C_TransferActive = 0;
157
        I2C_Init(0);
158
        I2C_WriteByte(0);
159
        BLFlags |= BLFLAG_READ_VERSION;
160
}
161
 
162
/****************************************/
163
/*        I2C ISR                       */
164
/****************************************/
165
ISR (TWI_vect)
166
{
167
        static uint8_t missing_motor = 0, motor_read_temperature = 0;
168
        static uint8_t *pBuff = 0;
169
        static uint8_t BuffLen = 0;
170
        static uint8_t max_packets = 0;
171
    switch (twi_state++)
172
        {
173
                // Master Transmit
174
        case 0: // TWI_STATE_MOTOR_TX
175
            I2C_TransferActive = 1;
176
                        // skip motor if not used in mixer
177
                        while((Mixer.Motor[motor_write][MIX_GAS] <= 0) && (motor_write < MAX_MOTORS)) motor_write++;
178
                        motor_write %= MAX_MOTORS;
179
                        if(++max_packets > Max_I2C_Packets) // writing finished, read now
180
                        {
181
                                max_packets = 0;
182
                                BLConfig_WriteMask = 0; // reset configuration bitmask
183
//motor_write = 0; // reset motor write counter for next cycle
184
                                twi_state = TWI_STATE_MOTOR_RX;
185
                                I2C_WriteByte(TWI_BASE_ADDRESS + TW_READ + (motor_read<<1) ); // select slave address in rx mode
186
                        }
187
                        else I2C_WriteByte(TWI_BASE_ADDRESS + TW_WRITE + (motor_write<<1) ); // select slave address in tx mode
188
                        break;
189
        case 1: // Send Data to Slave
190
                        I2C_WriteByte(Motor[motor_write].SetPoint); // transmit setpoint
191
                        // if old version has been detected
192
                        if(!(Motor[motor_write].Version & MOTOR_STATE_NEW_PROTOCOL_MASK))
193
                        {
194
                                twi_state = 4; //jump over sending more data
195
                        }
196
                        // the new version has been detected
197
                        else if(!( (Motor[motor_write].SetPointLowerBits && (RequiredMotors < 7)) || BLConfig_WriteMask || BLConfig_ReadMask )  )
198
                        {       // or LowerBits are zero and no BlConfig should be sent (saves round trip time)
199
                                twi_state = 4; //jump over sending more data
200
                        }
201
                        break;
202
        case 2: // lower bits of setpoint (higher resolution)
203
                        if ((0x0001<<motor_write) & BLConfig_ReadMask)
204
                        {
205
                                Motor[motor_write].ReadMode = BL_READMODE_CONFIG; // configuration request
206
                        }
207
                        else
208
                        {
209
                                Motor[motor_write].ReadMode = BL_READMODE_STATUS; // normal status request
210
                        }
211
                        // send read mode and the lower bits of setpoint
212
                I2C_WriteByte((Motor[motor_write].ReadMode<<3)|(Motor[motor_write].SetPointLowerBits & 0x07));
213
                        // configuration tranmission request?
214
                        if((0x0001<<motor_write) & BLConfig_WriteMask)
215
                        {       // redirect tx pointer to configuration data
216
                                pBuff = (uint8_t*)&BLConfig; // select config for motor
217
                                BuffLen = sizeof(BLConfig_t);
218
                        }
219
                        else
220
                        {       // jump to end of transmission for that motor
221
                                twi_state = 4;
222
                        }
223
                        break;
224
                case 3: // send configuration
225
                        I2C_WriteByte(*pBuff);
226
                        pBuff++;
227
                        if(--BuffLen > 0) twi_state = 3; // if there are some bytes left
228
                        break;
229
        case 4: // repeat case 0-4 for all motors
230
                        if(TWSR == TW_MT_DATA_NACK) // Data transmitted, NACK received
231
                        {
232
                                if(!missing_motor) missing_motor = motor_write + 1;
233
                                if((Motor[motor_write].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[motor_write].State++; // increment error counter and handle overflow
234
                        }
235
                        I2C_Stop(TWI_STATE_MOTOR_TX);
236
                        I2CTimeout = 10;
237
                        motor_write++; // next motor
238
                        I2C_Start(TWI_STATE_MOTOR_TX); // Repeated start -> switch slave or switch Master Transmit -> Master Receive
239
                        break;
240
       // Master Receive Data
241
        case 5: // TWI_STATE_MOTOR_RX
242
                        if(TWSR != TW_MR_SLA_ACK) //  SLA+R transmitted but no ACK received
243
                        {       // no response from the addressed slave received
244
                                Motor[motor_read].State &= ~MOTOR_STATE_PRESENT_MASK; // clear present bit
245
                                if(++motor_read >= MAX_MOTORS)
246
                                {       // all motors read
247
                                        motor_read = 0;                 // restart from beginning
248
                                        BLConfig_ReadMask = 0;  // reset read configuration bitmask
249
                                        if(++motor_read_temperature >= MAX_MOTORS)
250
                                        {
251
                                                motor_read_temperature = 0;
252
                                                BLFlags &= ~BLFLAG_READ_VERSION;
253
                                        }
254
                                }
255
                                BLFlags |= BLFLAG_TX_COMPLETE;
256
                                I2C_Stop(TWI_STATE_MOTOR_TX);
257
                                I2C_TransferActive = 0;
258
                        }
259
                        else
260
                        {       // motor successfully addressed
261
                                Motor[motor_read].State |= MOTOR_STATE_PRESENT_MASK; // set present bit
262
                                if(Motor[motor_read].Version & MOTOR_STATE_NEW_PROTOCOL_MASK)
263
                                {
264
                                        // new BL found
265
                                        switch(Motor[motor_read].ReadMode)
266
                                        {
267
                                                case BL_READMODE_CONFIG:
268
                                                        pBuff = (uint8_t*)&BLConfig;
269
                                                        BuffLen = sizeof(BLConfig_t);
270
                                                        Motor[motor_read].ReadMode = BL_READMODE_STATUS; // only once
271
                                                        break;
272
                                                case BL_READMODE_STATUS:
273
                                                        pBuff = (uint8_t*)&(Motor[motor_read].Current);
274
                                                        if(motor_read == motor_read_temperature) BuffLen = ReadBlSize; // read Current, MaxPwm & Temp (is 3 or 9)
275
                                                        else BuffLen = 1;// read Current only
276
                                                        break;
277
                                        }
278
                                }
279
                                else // old BL version
280
                                {
281
                                        pBuff = (uint8_t*)&(Motor[motor_read].Current);
282
                                        if((BLFlags & BLFLAG_READ_VERSION) || (motor_read == motor_read_temperature)) BuffLen = 2; // Current & MaxPwm
283
                                        else BuffLen = 1; // read Current only
284
                                }
285
                                if(BuffLen == 1)
286
                                {
287
                                        I2C_ReceiveLastByte();  // read last byte
288
                                }
289
                                else
290
                                {
291
                                        I2C_ReceiveByte();              // read next byte
292
                                }
293
                        }
294
                        MissingMotor = missing_motor;
295
                        missing_motor = 0;
296
                        break;
297
                case 6: // receive bytes
298
                        *pBuff = TWDR;
299
                        pBuff++; // set Pointer to next element : Motor[].Current,Motor[].Temperature
300
                        BuffLen--;
301
                        if(BuffLen>1)
302
                        {
303
                                I2C_ReceiveByte(); // read next byte
304
                        }
305
                        else if (BuffLen == 1)
306
                        {
307
                                I2C_ReceiveLastByte();  // read last byte
308
                        }
309
                        else // nothing left -> ready
310
                        {
311
                                if(BLFlags & BLFLAG_READ_VERSION)
312
                                {
313
                                        if(!(FC_StatusFlags & FC_STATUS_MOTOR_RUN))
314
                     {
315
                                           if((Motor[motor_read].MaxPWM & 252) == 248) Motor[motor_read].Version |= MOTOR_STATE_NEW_PROTOCOL_MASK;
316
                                           else Motor[motor_read].Version = 0;
317
                       if(Motor[motor_read].MaxPWM == 248) Motor[motor_read].Version |= (MOTOR_STATE_FAST_MODE | MOTOR_STATE_BL30);
318
                                           else
319
                       if(Motor[motor_read].MaxPWM == 249) Motor[motor_read].Version |= MOTOR_STATE_BL30;
320
                                         }  
321
                                }
322
 
323
                if(FC_StatusFlags & FC_STATUS_FLY)
324
                                           {
325
                                        // Starting -> 40
326
                                            // I2C-Setpoint is zero -> 250
327
                                            // 255 -> Running and no Redundancy
328
                                                // 254 -> Running and active Redundancy
329
                                            if(Motor[motor_read].MaxPWM < 254)
330
                                                 {
331
                                                  Motor[motor_read].NotReadyCnt++;
332
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
333
                                                  SpeakHoTT = SPEAK_ERR_MOTOR;
334
#endif
335
                                                 }
336
                                           }
337
                                if(++motor_read >= MAX_MOTORS)
338
                                {
339
                                        motor_read = 0;                 // restart from beginning
340
                                        BLConfig_ReadMask = 0;  // reset read configuration bitmask
341
                                        if(++motor_read_temperature >= MAX_MOTORS)
342
                                        {
343
                                                motor_read_temperature = 0;
344
                                                BLFlags &= ~BLFLAG_READ_VERSION;
345
                                        }
346
                                }
347
                                I2C_Stop(TWI_STATE_MOTOR_TX);
348
                                BLFlags |= BLFLAG_TX_COMPLETE;
349
                I2C_TransferActive = 0;
350
                                return;
351
                        }
352
                        twi_state = 6; // if there are some bytes left
353
                        break;
354
/*
355
                // writing Gyro-Offsets
356
                case 18:
357
                        I2C_WriteByte(0x98); // Address the DAC
358
                        break;
359
 
360
                case 19:
361
                        I2C_WriteByte(0x10 + (dac_channel * 2)); // Select DAC Channel (0x10 = A, 0x12 = B, 0x14 = C)
362
                        break;
363
 
364
                case 20:
365
                        switch(dac_channel)
366
                        {
367
                                case 0:
368
                                                I2C_WriteByte(AnalogOffsetNick); // 1st byte for Channel A
369
                                                break;
370
                                case 1:
371
                                                I2C_WriteByte(AnalogOffsetRoll); // 1st byte for Channel B
372
                                                break;
373
                                case 2:
374
                                                I2C_WriteByte(AnalogOffsetGier); // 1st byte for Channel C
375
                                                break;
376
                        }
377
                        break;
378
 
379
                case 21:
380
                        I2C_WriteByte(0x80); // 2nd byte for all channels is 0x80
381
                        break;
382
 
383
                case 22:
384
                        I2C_Stop(TWI_STATE_MOTOR_TX);
385
                        I2C_TransferActive = 0;
386
                        I2CTimeout = 10;
387
                        // repeat case 18...22 until all DAC Channels are updated
388
                        if(dac_channel < 2)
389
                        {
390
                                dac_channel ++;         // jump to next channel
391
                                I2C_Start(TWI_STATE_GYRO_OFFSET_TX);            // start transmission for next channel
392
                        }
393
                        else
394
                        {
395
                                dac_channel = 0; // reset dac channel counter
396
                                BLFlags |= BLFLAG_TX_COMPLETE;
397
                        }
398
                        break;
399
*/
400
        default:
401
                        I2C_Stop(TWI_STATE_MOTOR_TX);
402
                        BLFlags |= BLFLAG_TX_COMPLETE;
403
                        I2CTimeout = 10;
404
                        motor_write = 0;
405
                        motor_read = 0;
406
                        I2C_TransferActive = 0;
407
                        break;
408
        }
409
 
410
}
411
 
412
 
413
uint8_t I2C_WriteBLConfig(uint8_t motor)
414
{
415
        uint8_t i, packets;
416
        uint16_t timer;
417
        if(MotorenEin || PC_MotortestActive) return(BLCONFIG_ERR_MOTOR_RUNNING);        // not when motors are running!
418
        if(motor > MAX_MOTORS) return (BLCONFIG_ERR_MOTOR_NOT_EXIST);                   // motor does not exist!
419
        if(motor)
420
        {
421
                if(!(Motor[motor-1].State & MOTOR_STATE_PRESENT_MASK)) return(BLCONFIG_ERR_MOTOR_NOT_EXIST); // motor does not exist!
422
                if(!(Motor[motor-1].Version & MOTOR_STATE_NEW_PROTOCOL_MASK)) return(BLCONFIG_ERR_HW_NOT_COMPATIBLE); // not a new BL!
423
        }
424
        // check BL configuration to send
425
        if((BLConfig.Revision & 0x0B) != BLCONFIG_REVISION) return (BLCONFIG_ERR_SW_NOT_COMPATIBLE); // bad revison
426
        i = RAM_Checksum((uint8_t*)&BLConfig, sizeof(BLConfig_t) - 1);
427
        if(i != BLConfig.crc) return(BLCONFIG_ERR_CHECKSUM); // bad checksum
428
 
429
    packets = Max_I2C_Packets;
430
        Max_I2C_Packets = MAX_MOTORS;
431
        I2CTimeout = 100;
432
 
433
        timer = SetDelay(100);
434
        while(!(BLFlags & BLFLAG_TX_COMPLETE) && !CheckDelay(timer));   //wait for complete transfer
435
 
436
        // prepare the bitmask
437
        if(!motor) BLConfig_WriteMask = 0x0FFF;                 // 0 means all -> all motors at once with the same configuration
438
        else BLConfig_WriteMask = 0x0001<<(motor-1);    //only one specific motor
439
 
440
        motor_write = 0;
441
        motor_read      = 0;
442
        // needs at least MAX_MOTORS loops of 2 ms (12*2ms = 24ms)
443
        timer = SetDelay(1000);
444
        do
445
        {
446
                I2C_Start(TWI_STATE_MOTOR_TX); // start an i2c transmission
447
                while(!(BLFlags & BLFLAG_TX_COMPLETE)  && !CheckDelay(timer)); //wait for complete transfer
448
        } while(BLConfig_WriteMask  && !CheckDelay(timer)); // repeat until the BL config has been sent
449
    Max_I2C_Packets = packets;
450
        if(BLConfig_WriteMask) return(BLCONFIG_ERR_MOTOR_NOT_EXIST);
451
        return(BLCONFIG_SUCCESS);
452
}
453
 
454
uint8_t I2C_ReadBLConfig(uint8_t motor)
455
{
456
        uint8_t i;
457
        uint16_t timer;
458
 
459
        if(MotorenEin || PC_MotortestActive) return(BLCONFIG_ERR_MOTOR_RUNNING); // not when motors are running!
460
        if(motor > MAX_MOTORS) return (BLCONFIG_ERR_MOTOR_NOT_EXIST);           // motor does not exist!
461
        if(motor == 0) return (BLCONFIG_ERR_READ_NOT_POSSIBLE);
462
        if(!(Motor[motor-1].State & MOTOR_STATE_PRESENT_MASK)) return(BLCONFIG_ERR_MOTOR_NOT_EXIST); // motor does not exist!
463
        if(!(Motor[motor-1].Version & MOTOR_STATE_NEW_PROTOCOL_MASK)) return(BLCONFIG_ERR_HW_NOT_COMPATIBLE); // not a new BL!
464
 
465
        timer = SetDelay(1000);
466
        while(!(BLFlags & BLFLAG_TX_COMPLETE) && !CheckDelay(timer));                           //wait for complete transfer
467
 
468
        // prepare the bitmask
469
        BLConfig_ReadMask = 0x0001<<(motor-1);
470
 
471
        motor_write = 0;
472
        motor_read      = 0;
473
        BLConfig.Revision = 0; // bad revision
474
        BLConfig.crc = 0;          // bad checksum
475
        // needs at least MAX_MOTORS loops of 2 ms (12*2ms = 24ms)
476
        do
477
        {
478
                I2C_Start(TWI_STATE_MOTOR_TX); // start an i2c transmission
479
                while(!(BLFlags & BLFLAG_TX_COMPLETE) && !CheckDelay(timer)); //wait for complete transfer
480
        } while(BLConfig_ReadMask && !CheckDelay(timer)); // repeat until the BL config has been received from all motors
481
        // validate result
482
        if((BLConfig.Revision & 0x0B) != BLCONFIG_REVISION) return (BLCONFIG_ERR_SW_NOT_COMPATIBLE); // bad revison
483
        i = RAM_Checksum((uint8_t*)&BLConfig, sizeof(BLConfig_t) - 1);
484
        if(i != BLConfig.crc) return(BLCONFIG_ERR_CHECKSUM); // bad checksum
485
        return(BLCONFIG_SUCCESS);
486
}
487