Subversion Repositories Projects

Rev

Rev 2199 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2136 - 1
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3
 
4
//############################################################################
5
//# HISTORY  gps.c
6
//#
2200 - 7
//# 20.09.2015 Startet
8
//# - add Routine um einen Offset in Meter zu den aktuellen Koordinaten dazurechnen
9
//#    followme_calculate_offset(...)
10
//#
2136 - 11
//# 03.08.2015 cebra
12
//# - add: Routine um aus gegebenen Koordinaten mit Abstand und Winkel eine ZielKoordinate zu berechnen
13
//#    int nmea_move_horz(
14
//#    const nmeaPOS *start_pos,   /**< Start position in radians */
15
//#    nmeaPOS *end_pos,           /**< Result position in radians */
16
//#    double azimuth,             /**< Azimuth (degree) [0, 359] */
17
//#    double distance)             /**< Distance (km) */
18
//#
19
//# 27.06.2014 OG - NEU
20
//# - chg: auf #include "../gps/mymath.h" angepasst
21
//#
22
//# 20.06.2014 OG - NEU
23
//############################################################################
24
 
25
 
26
#include "../cpu.h"
27
#include <string.h>
28
#include <util/delay.h>
29
#include <avr/interrupt.h>
30
#include <stdlib.h>
31
#include <math.h>
32
#include "../main.h"
33
 
34
#include "../mk-data-structs.h"
35
#include "../gps/mymath.h"
36
#include "gps.h"
37
 
38
 
39
/*
40
// definiert in: mk_data-stucts.h
41
typedef struct
42
{
43
    u16 Distance;       // distance to target in cm
44
    s16 Bearing;        // course to target in deg
45
} __attribute__((packed)) GPS_PosDev_t;
46
*/
47
 
48
/*
49
// definiert in: mk_data-stucts.h
50
typedef struct
51
{
52
    s32 Longitude;      // in 1E-7 deg
53
    s32 Latitude;       // in 1E-7 deg
54
    s32 Altitude;       // in mm
55
    u8 Status;          // validity of data
56
} __attribute__((packed)) GPS_Pos_t;
57
*/
58
 
59
 
60
//--------------------------------------------------------------
61
 
62
#define NMEA_PI                     (3.141592653589793)             /**< PI value */
63
#define NMEA_PI180                  (NMEA_PI / 180)                 /**< PI division by 180 */
64
#define NMEA_EARTHRADIUS_KM         (6378)                          /**< Earth's mean radius in km */
65
#define R                           (6371)
66
#define NMEA_EARTHRADIUS_M          (NMEA_EARTHRADIUS_KM * 1000)    /**< Earth's mean radius in m */
67
#define NMEA_EARTH_SEMIMAJORAXIS_M  (6378137.0)                     /**< Earth's semi-major axis in m according WGS84 */
68
#define NMEA_EARTH_SEMIMAJORAXIS_KM (NMEA_EARTHMAJORAXIS_KM / 1000) /**< Earth's semi-major axis in km according WGS 84 */
69
#define NMEA_EARTH_FLATTENING       (1 / 298.257223563)             /**< Earth's flattening according WGS 84 */
70
#define NMEA_DOP_FACTOR             (5)                             /**< Factor for translating DOP to meters */
71
 
2196 - 72
 
73
// Definitonen für FollowMeStep2
74
#define LONG_DIV                    10000000
75
#define LAT_DIV                     LONG_DIV
2199 - 76
#define FOLLOWME_M2DEG              111111
77
#define FOLLOWME_ROUND_100          100
2196 - 78
 
79
 
2136 - 80
# define NMEA_POSIX(x)  x
81
 
82
 
83
 
84
/**
85
 * \fn nmea_degree2radian
86
 * \brief Convert degree to radian
87
 */
88
double nmea_degree2radian(double val)
89
{ return (val * NMEA_PI180); }
90
 
91
 
92
//------------------------------------------------------------------------------------------
93
nmeaPOS NMEApos;
94
nmeaPOS NMEATarget;
95
 
96
/**
97
 * \brief Horizontal move of point position
98
 */
99
int nmea_move_horz(
100
    const nmeaPOS *start_pos,   /**< Start position in radians */
101
    nmeaPOS *end_pos,           /**< Result position in radians */
102
    double azimuth,             /**< Azimuth (degree) [0, 359] */
103
    double distance             /**< Distance (km) */
104
    )
105
{
106
    nmeaPOS p1 = *start_pos;
107
    int RetVal = 1;
108
 
109
    distance /= NMEA_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */
110
    azimuth = nmea_degree2radian(azimuth);
111
 
112
    end_pos->lat = asin( sin(p1.lat) * cos(distance) + cos(p1.lat) * sin(distance) * cos(azimuth));
113
 
114
    end_pos->lon = p1.lon + atan2( sin(azimuth) * sin(distance) * cos(p1.lat), cos(distance) - sin(p1.lat) * sin(end_pos->lat));
115
 
116
    if(NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon))
117
    {
118
        end_pos->lat = 0; end_pos->lon = 0;
119
        RetVal = 0;
120
    }
121
 
122
    return RetVal;
123
}
124
 
125
 
2196 - 126
// Berechnet die Position der Kopters für FollowMeStep2
127
// Momentan wird die gleich Position ausgegeben
2200 - 128
// Benutzt die c_cos_8192 der FC
129
// TODO: move to followme.c
2136 - 130
 
2200 - 131
uint8_t followme_calculate_offset(
132
    const nmeaPOS *pPktPos,     /**< Start position in radians */
2196 - 133
    nmeaPOS *target_pos,        /**< Result position in radians */
134
    int d_lat,                  /**< Distance lat(m) */
2200 - 135
    int d_long                  /**< Distance long(m) */
2196 - 136
    )
137
{
2200 - 138
        nmeaPOS pktPos = *pPktPos;
139
 
140
    target_pos->lat = pktPos.lat + ( d_lat * ( LAT_DIV  / FOLLOWME_M2DEG ) );
141
    target_pos->lon = pktPos.lon + ( d_long * ( LONG_DIV  / FOLLOWME_M2DEG ) * 8192 ) / abs ( c_cos_8192( (int16_t)(pktPos.lat / LONG_DIV ) ) );
2196 - 142
 
143
        return 1;
144
}
145
 
146
 
2136 - 147
//###############################################################################################
148
 
149
 
150
 
151
//--------------------------------------------------------------
152
GPS_PosDev_t gps_Deviation( GPS_Pos_t pos1, GPS_Pos_t pos2 )
153
{
154
    int32_t      lat1, lon1, lat2, lon2;
155
    int32_t      d1, dlat;
156
    GPS_PosDev_t PosDev;
157
 
158
    lon1 = pos1.Longitude;
159
    lat1 = pos1.Latitude;
160
 
161
    lon2 = pos2.Longitude;
162
    lat2 = pos2.Latitude;
163
 
164
    d1   = (1359 * (int32_t)(c_cos_8192((lat1 + lat2) / 20000000)) * ((lon1 - lon2)/10))/ 10000000;
165
    dlat = (1113 * (lat1 - lat2) / 10000);
166
 
167
    PosDev.Bearing  = (my_atan2(d1, dlat) + 540) % 360;         // 360 +180 besserer Vergleich mit MkCockpit
168
    PosDev.Distance = sqrt32( d1 * d1 + dlat * dlat );          //
169
    //PosDev.Distance = sqrt32( d1 * d1 + dlat * dlat ) * 10;       // *10 um von dm auf cm zu kommen
170
 
171
    return PosDev;
172
}
173
 
174
 
175
///**
176
// * \brief Calculate distance between two points
177
// * \return Distance in meters
178
// */
179
//int32_t nmea_distance(
180
//        const nmeaPOS *from_pos,    /**< From position in radians */
181
//        const nmeaPOS *to_pos       /**< To position in radians */
182
//        )
183
//{
184
//  int32_t dist = ((int32_t)NMEA_EARTHRADIUS_M) * acos(
185
//        sin(to_pos->lat) * sin(from_pos->lat) +
186
//        cos(to_pos->lat) * cos(from_pos->lat) * cos(to_pos->lon - from_pos->lon)
187
//        );
188
//    return dist;
189
//}
190
 
191
 
192
 
193
//// Berechnung von Distanz und Winkel aus GPS-Daten home(MK eingeschaltet)
194
//// zur aktuellen Position(nach Motorstart)
195
//geo_t calc_geo(HomePos_t *home, GPS_Pos_t *pos)
196
//{ double lat1, lon1, lat2, lon2, d1, dlat;
197
//        geo_t geo;
198
//
199
//        lon1 = MK_pos.Home_Lon;
200
//        lat1 = MK_pos.Home_Lat;
201
//        lon2 = (double)pos->Longitude   / 10000000.0;
202
//        lat2 = (double)pos->Latitude    / 10000000.0;
203
//
204
//        // Formel verwendet von http://www.kompf.de/gps/distcalc.html
205
//        // 111.3 km = Abstand zweier Breitenkreise und/oder zweier Längenkreise am Äquator
206
//        // es wird jedoch in Meter weiter gerechnet
207
//        d1       = 111300 * (double)cos((double)(lat1 + lat2) / 2 * DEG_TO_RAD) * (lon1 - lon2);
208
//        dlat = 111300 * (double)(lat1 - lat2);
209
//        // returns a value in metres http://www.kompf.de/gps/distcalc.html
210
//        geo.bearing = fmod((RAD_TO_DEG * (double)atan2(d1, dlat)) + 180, 360); // +180 besserer Vergleich mit MkCockpit
211
//        if (geo.bearing > 360) geo.bearing -= 360; // bekam schon Werte über 400
212
//        geo.distance = sqrt(d1 * d1 + dlat * dlat);
213
//        return(geo);
214
//}
215
 
216
// Berechnung von Distanz und Winkel aus GPS-Daten home(MK eingeschaltet)
217
// zur aktuellen Position(nach Motorstart)
218
//--------------------------------------------------------------
219
//--------------------------------------------------------------
220
 
221
/*
222
geo_t calc_geo( HomePos_t *home, GPS_Pos_t *pos )
223
{
224
    int32_t lat1, lon1, lat2, lon2;
225
        int32_t d1, dlat;
226
        geo_t geo;
227
 
228
        lon1 = home->Home_Lon;
229
        lat1 = home->Home_Lat;
230
        lon2 = pos->Longitude;
231
        lat2 = pos->Latitude;
232
 
233
        if( !CheckGPS )
234
        {
235
            writex_gpspos(  0, 3, home->Home_Lat , MNORMAL,  0,0);    // Anzeige: Breitengrad (Latitude)
236
            writex_gpspos( 11, 3, home->Home_Lon , MNORMAL,  0,0);    // Anzeige: Laengengrad (Longitude)
237
            writex_gpspos(  0, 4, pos->Latitude  , MNORMAL,  0,0);    // Anzeige: Breitengrad (Latitude)
238
            writex_gpspos( 11, 4, pos->Longitude , MNORMAL,  0,0);    // Anzeige: Laengengrad (Longitude)
239
 
240
            //lcd_puts_at (0, 3, my_itoa(home->Home_Lat, 10, 7, 7), 0);     // 30.05.2014 OG: my_itoa() gibt es nicht mehr
241
            //lcd_puts_at (11, 3, my_itoa(home->Home_Lon, 10, 7, 7), 0);    // 30.05.2014 OG: my_itoa() gibt es nicht mehr
242
            //lcd_puts_at (0, 4, my_itoa(pos->Latitude, 10, 7, 7), 0);      // 30.05.2014 OG: my_itoa() gibt es nicht mehr
243
            //lcd_puts_at (11, 4, my_itoa(pos->Longitude, 10, 7, 7), 0);    // 30.05.2014 OG: my_itoa() gibt es nicht mehr
244
        }
245
 
246
        // Formel verwendet von http://www.kompf.de/gps/distcalc.html
247
        // 111.3 km = Abstand zweier Breitenkreise und/oder zweier Langenkreise am Äquator
248
        // es wird jedoch in dm Meter weiter gerechnet
249
        // (tlon1 - tlon2)/10) sonst uint32_t-Ãœberlauf bei cos(0) gleich 1
250
        d1       = (1359 * (int32_t)(c_cos_8192((lat1 + lat2) / 20000000)) * ((lon1 - lon2)/10))/ 10000000;
251
        dlat = 1113 * (lat1 - lat2) / 10000;
252
        geo.bearing = (my_atan2(d1, dlat) + 540) % 360; // 360 +180 besserer Vergleich mit MkCockpit
253
        geo.distance = sqrt32(d1 * d1 + dlat * dlat);
254
        if( !CheckGPS )
255
        {
256
            lcd_printp_at (0, 5, PSTR("Bear:"), 0);
257
 
258
            lcdx_printf_at_P( 5, 5, MNORMAL, 0,0, PSTR("%3d"), geo.bearing );
259
            //lcd_puts_at (5, 5, my_itoa((uint32_t)geo.bearing, 3, 0, 0), 0);       // 30.05.2014 OG: my_itoa() gibt es nicht mehr
260
 
261
            lcd_printp_at (8, 5, PSTR("\x1e"), 0);
262
            lcd_printp_at (9, 5, PSTR("Dist:"), 0);
263
 
264
            lcdx_printf_at_P( 15, 5, MNORMAL, 0,0, PSTR("%3d"), geo.distance );
265
            //lcd_puts_at (15, 5, my_itoa((uint32_t)geo.distance, 3, 1, 1), 0);     // 30.05.2014 OG: my_itoa() gibt es nicht mehr
266
 
267
            lcd_printp_at (20, 5, PSTR("m"), 0);
268
        }
269
 
270
 
271
        return(geo);
272
}
273
*/
274