Subversion Repositories Projects

Rev

Rev 2204 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2136 - 1
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3
 
4
//############################################################################
5
//# HISTORY  gps.c
6
//#
2200 - 7
//# 20.09.2015 Startet
8
//# - add Routine um einen Offset in Meter zu den aktuellen Koordinaten dazurechnen
9
//#    followme_calculate_offset(...)
10
//#
2136 - 11
//# 03.08.2015 cebra
12
//# - add: Routine um aus gegebenen Koordinaten mit Abstand und Winkel eine ZielKoordinate zu berechnen
13
//#    int nmea_move_horz(
14
//#    const nmeaPOS *start_pos,   /**< Start position in radians */
15
//#    nmeaPOS *end_pos,           /**< Result position in radians */
16
//#    double azimuth,             /**< Azimuth (degree) [0, 359] */
17
//#    double distance)             /**< Distance (km) */
18
//#
19
//# 27.06.2014 OG - NEU
20
//# - chg: auf #include "../gps/mymath.h" angepasst
21
//#
22
//# 20.06.2014 OG - NEU
23
//############################################################################
24
 
25
 
26
#include "../cpu.h"
27
#include <string.h>
28
#include <util/delay.h>
29
#include <avr/interrupt.h>
30
#include <stdlib.h>
31
#include <math.h>
32
#include "../main.h"
33
 
34
#include "../mk-data-structs.h"
35
#include "../gps/mymath.h"
36
#include "gps.h"
37
 
38
 
39
/*
40
// definiert in: mk_data-stucts.h
41
typedef struct
42
{
43
    u16 Distance;       // distance to target in cm
44
    s16 Bearing;        // course to target in deg
45
} __attribute__((packed)) GPS_PosDev_t;
46
*/
47
 
48
/*
49
// definiert in: mk_data-stucts.h
50
typedef struct
51
{
52
    s32 Longitude;      // in 1E-7 deg
53
    s32 Latitude;       // in 1E-7 deg
54
    s32 Altitude;       // in mm
55
    u8 Status;          // validity of data
56
} __attribute__((packed)) GPS_Pos_t;
57
*/
58
 
59
 
60
//--------------------------------------------------------------
61
 
62
#define NMEA_PI                     (3.141592653589793)             /**< PI value */
63
#define NMEA_PI180                  (NMEA_PI / 180)                 /**< PI division by 180 */
64
#define NMEA_EARTHRADIUS_KM         (6378)                          /**< Earth's mean radius in km */
65
#define R                           (6371)
66
#define NMEA_EARTHRADIUS_M          (NMEA_EARTHRADIUS_KM * 1000)    /**< Earth's mean radius in m */
67
#define NMEA_EARTH_SEMIMAJORAXIS_M  (6378137.0)                     /**< Earth's semi-major axis in m according WGS84 */
68
#define NMEA_EARTH_SEMIMAJORAXIS_KM (NMEA_EARTHMAJORAXIS_KM / 1000) /**< Earth's semi-major axis in km according WGS 84 */
69
#define NMEA_EARTH_FLATTENING       (1 / 298.257223563)             /**< Earth's flattening according WGS 84 */
70
#define NMEA_DOP_FACTOR             (5)                             /**< Factor for translating DOP to meters */
71
 
2196 - 72
 
73
// Definitonen für FollowMeStep2
74
#define LONG_DIV                    10000000
75
#define LAT_DIV                     LONG_DIV
2199 - 76
#define FOLLOWME_M2DEG              111111
77
#define FOLLOWME_ROUND_100          100
2196 - 78
 
79
 
2136 - 80
# define NMEA_POSIX(x)  x
81
 
82
 
83
 
84
/**
85
 * \fn nmea_degree2radian
86
 * \brief Convert degree to radian
87
 */
88
double nmea_degree2radian(double val)
89
{ return (val * NMEA_PI180); }
90
 
91
 
92
//------------------------------------------------------------------------------------------
93
nmeaPOS NMEApos;
94
nmeaPOS NMEATarget;
95
 
96
/**
97
 * \brief Horizontal move of point position
98
 */
99
int nmea_move_horz(
100
    const nmeaPOS *start_pos,   /**< Start position in radians */
101
    nmeaPOS *end_pos,           /**< Result position in radians */
102
    double azimuth,             /**< Azimuth (degree) [0, 359] */
103
    double distance             /**< Distance (km) */
104
    )
105
{
106
    nmeaPOS p1 = *start_pos;
107
    int RetVal = 1;
108
 
109
    distance /= NMEA_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */
110
    azimuth = nmea_degree2radian(azimuth);
111
 
112
    end_pos->lat = asin( sin(p1.lat) * cos(distance) + cos(p1.lat) * sin(distance) * cos(azimuth));
113
 
114
    end_pos->lon = p1.lon + atan2( sin(azimuth) * sin(distance) * cos(p1.lat), cos(distance) - sin(p1.lat) * sin(end_pos->lat));
115
 
116
    if(NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon))
117
    {
118
        end_pos->lat = 0; end_pos->lon = 0;
119
        RetVal = 0;
120
    }
121
 
122
    return RetVal;
123
}
124
 
125
 
2204 - 126
 
127
 
128
 
129
// Fügt den Startpostition einen Offset hinzu und gibt es als Zielposition zurück
130
//
2200 - 131
// Benutzt die c_cos_8192 der FC
132
// TODO: move to followme.c
2204 - 133
// TODO: *8192 optimieren
2136 - 134
 
2204 - 135
uint8_t followme_add_offset(
136
    const nmeaPOS *pPktPos,                     /**< Start position in radians */
137
    nmeaPOS *target_pos,                        /**< Result position in radians */
138
        positionOffset *pFollowMeOffset         /**< Position Offset in Millimeters */
2196 - 139
    )
140
{
2200 - 141
        nmeaPOS pktPos = *pPktPos;
2204 - 142
        positionOffset followMeOffset = * pFollowMeOffset;
2200 - 143
 
2205 - 144
    target_pos->lat = pktPos.lat + ( ( followMeOffset.offset_lat * ( LAT_DIV  / FOLLOWME_M2DEG ) ) ) / 1000;
145
    target_pos->lon = pktPos.lon + ( ( followMeOffset.offset_long * ( LONG_DIV  / FOLLOWME_M2DEG ) * (8192/1000) ) / my_abs( c_cos_8192( (pktPos.lat / LONG_DIV ) ) ) );
2196 - 146
        return 1;
147
}
148
 
2205 - 149
int16_t my_abs(int16_t input)
150
{
151
        if(input < 0)
152
                return -input;
153
        else
154
                return input;
155
}
2196 - 156
 
2204 - 157
// Rechnet einen Offset aus Radius und Winkel nach Lat/Long
158
// Benutzt die c_cos_8192 und c_sin_8192 der FC
159
// TODO: move to followme.c
160
 
161
uint8_t followme_calculate_offset(
2205 - 162
                int32_t radius,                         // in mm
163
                int16_t angle,                          // in Grad °
2204 - 164
                positionOffset *followMeOffset
165
                )
166
{
167
        angle %= 360;                   // map angle to 0° - 360°
168
 
2205 - 169
        followMeOffset->offset_lat = ( radius * c_cos_8192( angle ) ) / 8192;
170
        followMeOffset->offset_long = ( radius * c_sin_8192( angle ) ) / 8192;
2204 - 171
 
172
        return 1;
173
}
174
 
175
 
2136 - 176
//###############################################################################################
177
 
178
 
179
 
180
//--------------------------------------------------------------
181
GPS_PosDev_t gps_Deviation( GPS_Pos_t pos1, GPS_Pos_t pos2 )
182
{
183
    int32_t      lat1, lon1, lat2, lon2;
184
    int32_t      d1, dlat;
185
    GPS_PosDev_t PosDev;
186
 
187
    lon1 = pos1.Longitude;
188
    lat1 = pos1.Latitude;
189
 
190
    lon2 = pos2.Longitude;
191
    lat2 = pos2.Latitude;
192
 
193
    d1   = (1359 * (int32_t)(c_cos_8192((lat1 + lat2) / 20000000)) * ((lon1 - lon2)/10))/ 10000000;
194
    dlat = (1113 * (lat1 - lat2) / 10000);
195
 
196
    PosDev.Bearing  = (my_atan2(d1, dlat) + 540) % 360;         // 360 +180 besserer Vergleich mit MkCockpit
197
    PosDev.Distance = sqrt32( d1 * d1 + dlat * dlat );          //
198
    //PosDev.Distance = sqrt32( d1 * d1 + dlat * dlat ) * 10;       // *10 um von dm auf cm zu kommen
199
 
200
    return PosDev;
201
}
202
 
203
 
204
///**
205
// * \brief Calculate distance between two points
206
// * \return Distance in meters
207
// */
208
//int32_t nmea_distance(
209
//        const nmeaPOS *from_pos,    /**< From position in radians */
210
//        const nmeaPOS *to_pos       /**< To position in radians */
211
//        )
212
//{
213
//  int32_t dist = ((int32_t)NMEA_EARTHRADIUS_M) * acos(
214
//        sin(to_pos->lat) * sin(from_pos->lat) +
215
//        cos(to_pos->lat) * cos(from_pos->lat) * cos(to_pos->lon - from_pos->lon)
216
//        );
217
//    return dist;
218
//}
219
 
220
 
221
 
222
//// Berechnung von Distanz und Winkel aus GPS-Daten home(MK eingeschaltet)
223
//// zur aktuellen Position(nach Motorstart)
224
//geo_t calc_geo(HomePos_t *home, GPS_Pos_t *pos)
225
//{ double lat1, lon1, lat2, lon2, d1, dlat;
226
//        geo_t geo;
227
//
228
//        lon1 = MK_pos.Home_Lon;
229
//        lat1 = MK_pos.Home_Lat;
230
//        lon2 = (double)pos->Longitude   / 10000000.0;
231
//        lat2 = (double)pos->Latitude    / 10000000.0;
232
//
233
//        // Formel verwendet von http://www.kompf.de/gps/distcalc.html
234
//        // 111.3 km = Abstand zweier Breitenkreise und/oder zweier Längenkreise am Äquator
235
//        // es wird jedoch in Meter weiter gerechnet
236
//        d1       = 111300 * (double)cos((double)(lat1 + lat2) / 2 * DEG_TO_RAD) * (lon1 - lon2);
237
//        dlat = 111300 * (double)(lat1 - lat2);
238
//        // returns a value in metres http://www.kompf.de/gps/distcalc.html
239
//        geo.bearing = fmod((RAD_TO_DEG * (double)atan2(d1, dlat)) + 180, 360); // +180 besserer Vergleich mit MkCockpit
240
//        if (geo.bearing > 360) geo.bearing -= 360; // bekam schon Werte über 400
241
//        geo.distance = sqrt(d1 * d1 + dlat * dlat);
242
//        return(geo);
243
//}
244
 
245
// Berechnung von Distanz und Winkel aus GPS-Daten home(MK eingeschaltet)
246
// zur aktuellen Position(nach Motorstart)
247
//--------------------------------------------------------------
248
//--------------------------------------------------------------
249
 
250
/*
251
geo_t calc_geo( HomePos_t *home, GPS_Pos_t *pos )
252
{
253
    int32_t lat1, lon1, lat2, lon2;
254
        int32_t d1, dlat;
255
        geo_t geo;
256
 
257
        lon1 = home->Home_Lon;
258
        lat1 = home->Home_Lat;
259
        lon2 = pos->Longitude;
260
        lat2 = pos->Latitude;
261
 
262
        if( !CheckGPS )
263
        {
264
            writex_gpspos(  0, 3, home->Home_Lat , MNORMAL,  0,0);    // Anzeige: Breitengrad (Latitude)
265
            writex_gpspos( 11, 3, home->Home_Lon , MNORMAL,  0,0);    // Anzeige: Laengengrad (Longitude)
266
            writex_gpspos(  0, 4, pos->Latitude  , MNORMAL,  0,0);    // Anzeige: Breitengrad (Latitude)
267
            writex_gpspos( 11, 4, pos->Longitude , MNORMAL,  0,0);    // Anzeige: Laengengrad (Longitude)
268
 
269
            //lcd_puts_at (0, 3, my_itoa(home->Home_Lat, 10, 7, 7), 0);     // 30.05.2014 OG: my_itoa() gibt es nicht mehr
270
            //lcd_puts_at (11, 3, my_itoa(home->Home_Lon, 10, 7, 7), 0);    // 30.05.2014 OG: my_itoa() gibt es nicht mehr
271
            //lcd_puts_at (0, 4, my_itoa(pos->Latitude, 10, 7, 7), 0);      // 30.05.2014 OG: my_itoa() gibt es nicht mehr
272
            //lcd_puts_at (11, 4, my_itoa(pos->Longitude, 10, 7, 7), 0);    // 30.05.2014 OG: my_itoa() gibt es nicht mehr
273
        }
274
 
275
        // Formel verwendet von http://www.kompf.de/gps/distcalc.html
276
        // 111.3 km = Abstand zweier Breitenkreise und/oder zweier Langenkreise am Äquator
277
        // es wird jedoch in dm Meter weiter gerechnet
278
        // (tlon1 - tlon2)/10) sonst uint32_t-Ãœberlauf bei cos(0) gleich 1
279
        d1       = (1359 * (int32_t)(c_cos_8192((lat1 + lat2) / 20000000)) * ((lon1 - lon2)/10))/ 10000000;
280
        dlat = 1113 * (lat1 - lat2) / 10000;
281
        geo.bearing = (my_atan2(d1, dlat) + 540) % 360; // 360 +180 besserer Vergleich mit MkCockpit
282
        geo.distance = sqrt32(d1 * d1 + dlat * dlat);
283
        if( !CheckGPS )
284
        {
285
            lcd_printp_at (0, 5, PSTR("Bear:"), 0);
286
 
287
            lcdx_printf_at_P( 5, 5, MNORMAL, 0,0, PSTR("%3d"), geo.bearing );
288
            //lcd_puts_at (5, 5, my_itoa((uint32_t)geo.bearing, 3, 0, 0), 0);       // 30.05.2014 OG: my_itoa() gibt es nicht mehr
289
 
290
            lcd_printp_at (8, 5, PSTR("\x1e"), 0);
291
            lcd_printp_at (9, 5, PSTR("Dist:"), 0);
292
 
293
            lcdx_printf_at_P( 15, 5, MNORMAL, 0,0, PSTR("%3d"), geo.distance );
294
            //lcd_puts_at (15, 5, my_itoa((uint32_t)geo.distance, 3, 1, 1), 0);     // 30.05.2014 OG: my_itoa() gibt es nicht mehr
295
 
296
            lcd_printp_at (20, 5, PSTR("m"), 0);
297
        }
298
 
299
 
300
        return(geo);
301
}
302
*/
303