Rev 964 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
967 | - | 1 | ////////////////////////////////////// |
2 | // LocoHead - Mathias Kreider, 2011 // |
||
3 | // // |
||
4 | // headtracker.c // |
||
5 | // I2C, angular and filter functions// |
||
6 | ////////////////////////////////////// |
||
7 | |||
964 | - | 8 | #include "vector.h" |
9 | #include <math.h> |
||
10 | #include <inttypes.h> |
||
11 | #include <avr/io.h> |
||
12 | #include <stdlib.h> |
||
13 | |||
14 | extern vector m_max; |
||
15 | extern vector m_min; |
||
16 | |||
17 | |||
18 | void i2c_start() { |
||
19 | TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); // send start condition |
||
20 | while (!(TWCR & (1 << TWINT))); |
||
21 | } |
||
22 | |||
23 | void i2c_write_byte(char byte) { |
||
24 | TWDR = byte; |
||
25 | TWCR = (1 << TWINT) | (1 << TWEN); // start address transmission |
||
26 | while (!(TWCR & (1 << TWINT))); |
||
27 | } |
||
28 | |||
29 | char i2c_read_byte() { |
||
30 | TWCR = (1 << TWINT) | (1 << TWEA) | (1 << TWEN); // start data reception, transmit ACK |
||
31 | while (!(TWCR & (1 << TWINT))); |
||
32 | return TWDR; |
||
33 | } |
||
34 | |||
35 | char i2c_read_last_byte() { |
||
36 | TWCR = (1 << TWINT) | (1 << TWEN); // start data reception |
||
37 | while (!(TWCR & (1 << TWINT))); |
||
38 | return TWDR; |
||
39 | } |
||
40 | |||
41 | void i2c_stop() { |
||
42 | TWCR = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN); // send stop condition |
||
43 | } |
||
44 | |||
45 | |||
46 | // Returns a set of acceleration and raw magnetic readings from the cmp01a. |
||
47 | void read_data_raw(vector *a, vector *m) |
||
48 | { |
||
49 | // read accelerometer values |
||
50 | i2c_start(); |
||
51 | i2c_write_byte(0x30); // write acc |
||
52 | i2c_write_byte(0xa8); // OUT_X_L_A, MSB set to enable auto-increment |
||
53 | i2c_start(); // repeated start |
||
54 | i2c_write_byte(0x31); // read acc |
||
55 | unsigned char axl = i2c_read_byte(); |
||
56 | unsigned char axh = i2c_read_byte(); |
||
57 | unsigned char ayl = i2c_read_byte(); |
||
58 | unsigned char ayh = i2c_read_byte(); |
||
59 | unsigned char azl = i2c_read_byte(); |
||
60 | unsigned char azh = i2c_read_last_byte(); |
||
61 | i2c_stop(); |
||
62 | |||
63 | // read magnetometer values |
||
64 | i2c_start(); |
||
65 | i2c_write_byte(0x3C); // write mag |
||
66 | i2c_write_byte(0x03); // OUTXH_M |
||
67 | i2c_start(); // repeated start |
||
68 | i2c_write_byte(0x3D); // read mag |
||
69 | unsigned char mxh = i2c_read_byte(); |
||
70 | unsigned char mxl = i2c_read_byte(); |
||
71 | unsigned char myh = i2c_read_byte(); |
||
72 | unsigned char myl = i2c_read_byte(); |
||
73 | unsigned char mzh = i2c_read_byte(); |
||
74 | unsigned char mzl = i2c_read_last_byte(); |
||
75 | i2c_stop(); |
||
76 | |||
77 | a->x = axh << 8 | axl; |
||
78 | a->y = ayh << 8 | ayl; |
||
79 | a->z = azh << 8 | azl; |
||
80 | m->x = mxh << 8 | mxl; |
||
81 | m->y = myh << 8 | myl; |
||
82 | m->z = mzh << 8 | mzl; |
||
83 | } |
||
84 | |||
85 | float IIR2(float x, float* z) |
||
86 | { |
||
87 | |||
88 | //const for butterworth lowpass fc 0.5Hz |
||
89 | // const float a[3] = {1.0000, -1.8521, 0.8623}; |
||
90 | // const float b[3] = {0.0026, 0.0051, 0.0026}; |
||
91 | |||
92 | //const for butterworth lowpass fc 2Hz |
||
93 | const float a[3] = {1.0000, -1.4190, 0.5533}; |
||
94 | const float b[3] = {0.0336, 0.0671, 0.0336}; |
||
95 | |||
96 | |||
97 | float y,r; |
||
98 | |||
99 | r = a[1]*z[0]+a[2]*z[1]; |
||
100 | y = b[0]*(x-r)+b[1]*z[0]+b[2]*z[1]; |
||
101 | z[1]= z[0]; |
||
102 | z[0]= x-r; |
||
103 | |||
104 | return y; |
||
105 | |||
106 | } |
||
107 | |||
108 | |||
109 | //cancels out movemt below threshold while using step sum to |
||
110 | int thr_filter(int x, int * x_reg, int * y_reg) |
||
111 | { |
||
112 | int y; |
||
113 | int diff; |
||
114 | int sum = 0; |
||
115 | |||
116 | const int thr = 4; |
||
117 | const int lmt = 5; |
||
118 | |||
119 | diff = x - *x_reg; |
||
120 | |||
121 | if(abs(diff) <= thr) |
||
122 | { |
||
123 | sum += diff; |
||
124 | if(abs(sum) >= lmt) |
||
125 | { |
||
126 | sum = 0; |
||
127 | y = x; |
||
128 | } |
||
129 | else y = *y_reg; |
||
130 | } |
||
131 | else |
||
132 | { |
||
133 | y = x; |
||
134 | sum = 0; |
||
135 | } |
||
136 | |||
137 | |||
138 | *x_reg = x; |
||
139 | *y_reg = y; |
||
140 | |||
141 | return y; |
||
142 | } |
||
143 | |||
144 | |||
145 | // Returns corrected and low-pass filtered magnetometer and accelerometer values |
||
146 | void read_data(vector *a, vector *m) |
||
147 | { |
||
148 | //interal state buffers for IIR axis filtering |
||
149 | static float zm_x[2] = {0.0, 0.0}; |
||
150 | static float zm_y[2] = {0.0, 0.0}; |
||
151 | static float zm_z[2] = {0.0, 0.0}; |
||
152 | static float za_x[2] = {0.0, 0.0}; |
||
153 | static float za_y[2] = {0.0, 0.0}; |
||
154 | static float za_z[2] = {0.0, 0.0}; |
||
155 | |||
156 | |||
157 | read_data_raw(a, m); |
||
158 | |||
159 | //low pass filter acc |
||
160 | a->x = IIR2(a->x, za_x); |
||
161 | a->y = IIR2(a->y, za_y); |
||
162 | a->z = IIR2(a->z, za_z); |
||
163 | |||
164 | //compensate scale and offset, low pass filter mag |
||
165 | m->x = IIR2(((m->x - m_min.x) / (m_max.x - m_min.x) * 2 - 1.0), zm_x); |
||
166 | m->y = IIR2(((m->y - m_min.y) / (m_max.y - m_min.y) * 2 - 1.0), zm_y); |
||
167 | m->z = IIR2(((m->z - m_min.z) / (m_max.z - m_min.z) * 2 - 1.0), zm_z); |
||
168 | } |
||
169 | |||
170 | |||
171 | |||
172 | float get_heading(const vector *a, const vector *m, const vector *p) |
||
173 | { |
||
174 | vector E; |
||
175 | vector N; |
||
176 | |||
177 | // cross magnetic vector (magnetic north + inclination) with "down" (acceleration vector) to produce "west" |
||
178 | // -- right hand rule says |
||
179 | |||
180 | vector_cross(m, a, &E); |
||
181 | vector_normalize(&E); |
||
182 | |||
183 | // cross "down" with "east" to produce "north" (parallel to the ground) |
||
184 | vector_cross(a, &E, &N); |
||
185 | vector_normalize(&N); |
||
186 | |||
187 | // compute heading |
||
188 | |||
189 | float heading = atan2(vector_dot(&E, p), vector_dot(&N, p)) * 180.0 / M_PI; |
||
190 | return heading; |
||
191 | |||
192 | } |
||
193 | |||
194 | float get_perpendicular(const vector *a, const vector *d, const vector *q) |
||
195 | { |
||
196 | |||
197 | |||
198 | float sign = 0.0; |
||
199 | vector norma = *a; |
||
200 | |||
201 | if (q->x == 0.0) {norma.x = 0.0; sign = norma.y;}// cancel out movement on undesired axis |
||
202 | else if (q->y == 0.0) {norma.y = 0.0; sign = norma.x;} |
||
203 | vector_normalize(&norma); |
||
204 | |||
205 | |||
206 | // compute angle |
||
207 | float angle = acos(vector_dot(&norma,d)) * 180.0/M_PI; |
||
208 | if(sign >= 0.0) angle *= -1; |
||
209 | |||
210 | return angle; |
||
211 | |||
212 | } |
||
213 | |||
214 | int get_us(float angle, float deg_min, float deg_max, int pwm_min,int pwm_max) |
||
215 | { |
||
216 | //adjust sign change of angular function to new zero offset |
||
217 | if(angle < -180.0) angle += 360.0; |
||
218 | if(angle >= 180.0) angle -= 360.0; |
||
219 | |||
220 | //crop |
||
221 | if(angle < deg_min) angle = deg_min; |
||
222 | else if (angle > deg_max) angle = deg_max; |
||
223 | |||
224 | //scale to pwm |
||
225 | float ratio = ((float)(pwm_max - pwm_min)) / (deg_max - deg_min); |
||
226 | int diff = ((int)((angle-deg_min) * ratio)); |
||
227 | |||
228 | return pwm_min + diff; |
||
229 | } |