Subversion Repositories Projects

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1702 - 1
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
2
 
3
// Copyright 2010 Michael Smith, all rights reserved.
4
 
5
//      This library is free software; you can redistribute it and / or
6
//      modify it under the terms of the GNU Lesser General Public
7
//      License as published by the Free Software Foundation; either
8
//      version 2.1 of the License, or (at your option) any later version.
9
 
10
// Derived closely from:
11
/****************************************
12
 * 2D Vector Classes
13
 * By Bill Perone (billperone@yahoo.com)
14
 * Original: 9-16-2002
15
 * Revised: 19-11-2003
16
 *          18-12-2003
17
 *          06-06-2004
18
 *
19
 * © 2003, This code is provided "as is" and you can use it freely as long as
20
 * credit is given to Bill Perone in the application it is used in
21
 ****************************************/
22
 
23
#ifndef VECTOR2_H
24
#define VECTOR2_H
25
 
26
#include <math.h>
27
 
28
template <typename T>
29
struct Vector2
30
{
31
        T x, y;
32
 
33
        // trivial ctor
34
        Vector2<T>() { x = y = 0; }
35
 
36
        // setting ctor
37
        Vector2<T>(const T x0, const T y0): x(x0), y(y0) {}
38
 
39
        // function call operator
40
        void operator ()(const T x0, const T y0)
41
        {       x= x0; y= y0;   }
42
 
43
        // test for equality
44
        bool operator==(const Vector2<T> &v)
45
        {       return (x==v.x && y==v.y);      }
46
 
47
        // test for inequality
48
        bool operator!=(const Vector2<T> &v)
49
        {       return (x!=v.x || y!=v.y);      }
50
 
51
        // negation
52
        Vector2<T> operator -(void) const
53
        {       return Vector2<T>(-x, -y);      }
54
 
55
        // addition
56
        Vector2<T> operator +(const Vector2<T> &v) const
57
        {       return Vector2<T>(x+v.x, y+v.y);        }
58
 
59
        // subtraction
60
        Vector2<T> operator -(const Vector2<T> &v) const
61
        {   return Vector2<T>(x-v.x, y-v.y);    }
62
 
63
        // uniform scaling
64
        Vector2<T> operator *(const T num) const
65
        {
66
                Vector2<T> temp(*this);
67
                return temp*=num;
68
        }
69
 
70
        // uniform scaling
71
        Vector2<T> operator /(const T num) const
72
        {
73
                Vector2<T> temp(*this);
74
                return temp/=num;
75
        }
76
 
77
        // addition
78
        Vector2<T> &operator +=(const Vector2<T> &v)
79
        {
80
                x+=v.x; y+=v.y;
81
                return *this;
82
        }
83
 
84
        // subtraction
85
        Vector2<T> &operator -=(const Vector2<T> &v)
86
        {
87
                x-=v.x; y-=v.y;
88
                return *this;
89
        }
90
 
91
        // uniform scaling
92
        Vector2<T> &operator *=(const T num)
93
        {
94
                x*=num; y*=num;
95
                return *this;
96
        }
97
 
98
        // uniform scaling
99
        Vector2<T> &operator /=(const T num)
100
        {
101
                x/=num; y/=num;
102
                return *this;
103
        }
104
 
105
        // dot product
106
        T operator *(const Vector2<T> &v) const
107
        {       return x*v.x + y*v.y;   }
108
 
109
        // gets the length of this vector squared
110
        T length_squared() const
111
        {       return (T)(*this * *this);   }
112
 
113
        // gets the length of this vector
114
        T length() const
115
        {       return (T)sqrt(*this * *this);   }
116
 
117
        // normalizes this vector
118
        void normalize()
119
        {       *this/=length();        }
120
 
121
        // returns the normalized vector
122
        Vector2<T> normalized() const
123
        {   return  *this/length();  }
124
 
125
        // reflects this vector about n
126
        void reflect(const Vector2<T> &n)
127
        {
128
                Vector2<T> orig(*this);
129
                project(n);
130
                *this= *this*2 - orig;
131
        }
132
 
133
        // projects this vector onto v
134
        void project(const Vector2<T> &v)
135
        {       *this= v * (*this * v)/(v*v);   }
136
 
137
        // returns this vector projected onto v
138
        Vector2<T> projected(const Vector2<T> &v)
139
        {   return v * (*this * v)/(v*v);       }
140
 
141
        // computes the angle between 2 arbitrary vectors
142
        T angle(const Vector2<T> &v1, const Vector2<T> &v2)
143
        {   return (T)acosf((v1*v2) / (v1.length()*v2.length()));  }
144
 
145
        // computes the angle between 2 normalized arbitrary vectors
146
        T angle_normalized(const Vector2<T> &v1, const Vector2<T> &v2)
147
        {   return (T)acosf(v1*v2);  }
148
 
149
};
150
 
151
typedef Vector2<int16_t>        Vector2i;
152
typedef Vector2<uint16_t>       Vector2ui;
153
typedef Vector2<int32_t>        Vector2l;
154
typedef Vector2<uint32_t>       Vector2ul;
155
typedef Vector2<float>          Vector2f;
156
 
157
#endif // VECTOR2_H