Rev 902 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
771 | - | 1 | /**************************************************************************** |
1437 | - | 2 | * Copyright (C) 2009-2012 by Claas Anders "CaScAdE" Rathje * |
771 | - | 3 | * admiralcascade@gmail.com * |
4 | * Project-URL: http://www.mylifesucks.de/oss/c-strom/ * |
||
5 | * * |
||
6 | * This program is free software; you can redistribute it and/or modify * |
||
7 | * it under the terms of the GNU General Public License as published by * |
||
8 | * the Free Software Foundation; either version 2 of the License. * |
||
9 | * * |
||
10 | * This program is distributed in the hope that it will be useful, * |
||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
||
13 | * GNU General Public License for more details. * |
||
14 | * * |
||
15 | * You should have received a copy of the GNU General Public License * |
||
16 | * along with this program; if not, write to the * |
||
17 | * Free Software Foundation, Inc., * |
||
18 | * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * |
||
19 | * * |
||
20 | * Thanks to: * |
||
21 | * Klaus "akku" Buettner for the hardware * |
||
22 | * All people at http://www.rn-wissen.de especially for the i2c stuff * |
||
23 | * * |
||
24 | ****************************************************************************/ |
||
25 | |||
26 | #include <avr/io.h> |
||
27 | #include <avr/eeprom.h> |
||
28 | #include <avr/pgmspace.h> |
||
29 | #include <avr/interrupt.h> |
||
30 | #include <util/delay.h> |
||
31 | #include <stdlib.h> |
||
32 | #include <string.h> |
||
33 | #include "C-Strom.h" |
||
34 | #include "spi_union.h" |
||
35 | #include "i2c_slave.h" |
||
36 | |||
37 | uint8_t EEMEM ee_checkbyte1 = CHECKBYTE1; |
||
38 | uint8_t EEMEM ee_checkbyte2 = CHECKBYTE2; |
||
39 | uint16_t EEMEM ee_cal_ampere = 512; |
||
40 | uint8_t EEMEM ee_sensor = 50; |
||
41 | uint8_t EEMEM ee_prim_r1 = 47, ee_prim_r2 = 150; |
||
42 | uint8_t EEMEM ee_anin_r1 = 47, ee_anin_r2 = 150; |
||
43 | uint8_t EEMEM ee_config = 0; |
||
44 | |||
45 | volatile uint8_t CSTROM_FLAGS = 0; |
||
46 | volatile uint8_t CSTROM_CONFIG = 0; |
||
47 | |||
48 | // we could use ee_cal_ampere but eeprom is slow :) |
||
49 | volatile uint16_t cal_ampere = 512; |
||
50 | volatile uint8_t sensor = 50; |
||
51 | volatile uint8_t prim_r1 = 47, prim_r2 = 150; |
||
52 | volatile uint8_t anin_r1 = 47, anin_r2 = 150; |
||
53 | volatile int16_t ampere, volt, anin_volt, transfer_ampere; |
||
54 | volatile int32_t transfer_mah, mah; |
||
55 | volatile int16_t average_ampere = 0; |
||
56 | volatile uint8_t hwver = 10; |
||
57 | // global space for int conversion to string |
||
58 | char s[10]; |
||
59 | |||
60 | // spi buffer |
||
61 | union SPI_buffer_t SPI_buffer; |
||
62 | |||
63 | // PD7 High |
||
64 | void PD7_H() { |
||
65 | PORTD |= (1 << PD7); |
||
66 | } |
||
67 | |||
68 | // PD7 Low |
||
69 | void PD7_L() { |
||
70 | PORTD &= ~(1 << PD7); |
||
71 | } |
||
72 | |||
73 | void (*LED_ON)(void) = PD7_H; |
||
74 | void (*LED_OFF)(void) = PD7_L; |
||
75 | |||
76 | |||
77 | void ampere_calibrate(); |
||
78 | void save_eeprom(); |
||
79 | void help(uint8_t); |
||
80 | |||
81 | /*ISR(__vector_default) { |
||
82 | asm("nop"); |
||
83 | }*/ |
||
84 | |||
85 | /** |
||
86 | * decimal itoa for 10th values |
||
87 | */ |
||
88 | char *itoa_dec(int val, char* s) { |
||
89 | itoa(val, s, 10); |
||
90 | //char x = 0; |
||
91 | for (uint8_t i = 0; i < 9; i++) { |
||
92 | if (s[i] == 0 && i > 0) { |
||
93 | if (i == 1) { |
||
94 | s[i+1] = s[i-1]; |
||
95 | s[i-1] = '0'; |
||
96 | s[i] = '.'; |
||
97 | s[i+2] = 0; |
||
98 | } else { |
||
99 | s[i] = s[i-1]; |
||
100 | s[i-1] = '.'; |
||
101 | s[i+1] = 0; |
||
102 | } |
||
103 | break; |
||
104 | } |
||
105 | } |
||
106 | return s; |
||
107 | } |
||
108 | |||
109 | /** |
||
110 | * init uart |
||
111 | */ |
||
112 | void uart_init() { |
||
113 | UBRRL = (F_CPU / (16UL * BAUD_RATE)) - 1; |
||
114 | |||
115 | // Enable receiver and transmitter; enable RX interrupt |
||
116 | UCSRB = (1 << RXEN) | (1 << TXEN) | (1 << RXCIE); |
||
117 | |||
118 | //asynchronous 8N1 |
||
119 | UCSRC = (1 << URSEL) | (3 << UCSZ0); |
||
120 | } |
||
121 | |||
122 | /** |
||
123 | * send a single <character> through uart |
||
124 | */ |
||
125 | void uart_putc(unsigned char character) { |
||
126 | // wait until UDR ready |
||
127 | while (!(UCSRA & (1 << UDRE))); |
||
128 | UDR = character; |
||
129 | } |
||
130 | |||
131 | /** |
||
132 | * send a <string> throught uart |
||
133 | */ |
||
134 | void uart_puts(char *s) { |
||
135 | while (*s) { |
||
136 | uart_putc(*s); |
||
137 | s++; |
||
138 | } |
||
139 | } |
||
140 | |||
141 | /** |
||
142 | * send a <string> from pgm space throught uart |
||
143 | */ |
||
144 | void uart_puts_pgm(char *string) { |
||
145 | while (pgm_read_byte(string) != 0x00) |
||
146 | uart_putc(pgm_read_byte(string++)); |
||
147 | } |
||
148 | |||
149 | /** |
||
150 | * change the sensor type |
||
151 | */ |
||
152 | void sensor_change(uint8_t new_value) { |
||
153 | if (new_value < 10) new_value = 0; |
||
154 | else if (new_value > 250) new_value = 250; |
||
155 | sensor = new_value; |
||
156 | uart_puts_pgm(PSTR("\r\nSensor is now: ")); |
||
157 | uart_puts(itoa(sensor, s, 10)); |
||
158 | uart_puts("A\r\n"); |
||
159 | } |
||
160 | |||
161 | /** |
||
162 | * change the r2 value |
||
163 | */ |
||
164 | void r2_change(uint8_t which, uint8_t new_value) { |
||
165 | if (which == V_ANIN) { |
||
166 | uart_puts_pgm(PSTR("\r\nANIN R2 is now: ")); |
||
167 | anin_r2 = new_value; |
||
168 | uart_puts(itoa_dec(anin_r2, s)); |
||
169 | } else { |
||
170 | uart_puts_pgm(PSTR("\r\nPRIMARY R2 is now: ")); |
||
171 | prim_r2 = new_value; |
||
172 | uart_puts(itoa_dec(prim_r2, s)); |
||
173 | } |
||
174 | uart_puts_pgm(PSTR("kOhm\r\n")); |
||
175 | } |
||
176 | |||
177 | /** |
||
178 | * enable/disable TWI |
||
179 | */ |
||
180 | void twi_change() { |
||
181 | uart_puts_pgm(PSTR("\r\nTWI turned ")); |
||
182 | if (CSTROM_CONFIG & CSTROM_TWI) { |
||
183 | uart_puts_pgm(PSTR("ON")); |
||
184 | } else { |
||
185 | uart_puts_pgm(PSTR("OFF")); |
||
186 | } |
||
187 | uart_puts_pgm(PSTR(". Please restart...\r\n")); |
||
188 | } |
||
189 | |||
190 | |||
191 | |||
192 | |||
193 | /** |
||
194 | * Interrupt handler for received data through UART1 |
||
195 | */ |
||
196 | SIGNAL(SIG_UART_RECV) { |
||
197 | unsigned char c = UDR; |
||
198 | switch (c) { |
||
199 | case 'c': |
||
200 | ampere_calibrate(); |
||
201 | break; |
||
202 | case 's': |
||
203 | save_eeprom(); |
||
204 | break; |
||
205 | case '+': |
||
206 | sensor_change(100); |
||
207 | break; |
||
208 | case '-': |
||
209 | sensor_change(50); |
||
210 | break; |
||
211 | case 'e': |
||
212 | if (hwver == 11) r2_change(V_ANIN, anin_r2 + 1); |
||
213 | break; |
||
214 | case 'd': |
||
215 | if (hwver == 11) r2_change(V_ANIN, anin_r2 - 1); |
||
216 | break; |
||
217 | case 'r': |
||
218 | r2_change(V_PRIMARY, prim_r2 + 1); |
||
219 | break; |
||
220 | case 'f': |
||
221 | r2_change(V_PRIMARY, prim_r2 - 1); |
||
222 | break; |
||
223 | case 'T': |
||
224 | CSTROM_CONFIG ^= CSTROM_TWI; |
||
225 | twi_change(); |
||
226 | break; |
||
227 | case 'h': |
||
228 | help(0); |
||
229 | break; |
||
230 | default: |
||
231 | asm("nop"); // :-) |
||
232 | } |
||
233 | } |
||
234 | |||
235 | /** |
||
236 | * Interrupt handler for transmitting data through UART1 |
||
237 | */ |
||
238 | SIGNAL(SIG_UART_TRANS) { |
||
239 | } |
||
240 | |||
241 | /** |
||
242 | * Read out the ADC channel <channel> |
||
243 | */ |
||
244 | uint16_t readADC(uint8_t channel) { |
||
245 | uint8_t i; |
||
246 | uint16_t result = 0; |
||
247 | |||
248 | // enable ADC and set clk div to 64 |
||
249 | ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1); |
||
250 | |||
251 | _delay_us(5); |
||
252 | |||
253 | // set up channel |
||
254 | ADMUX = channel; |
||
255 | // use internal reference |
||
256 | //ADMUX |= (1<<REFS1) | (1<<REFS0); |
||
257 | |||
258 | // init ADC for a dummy readout |
||
259 | ADCSRA |= (1<<ADSC); |
||
260 | // wait for conversion to be complete |
||
261 | while(ADCSRA & (1<<ADSC)); |
||
262 | |||
263 | // read in three times and get the average |
||
264 | for(i=0; i<3; i++) { |
||
265 | // start conversion |
||
266 | ADCSRA |= (1<<ADSC); |
||
267 | |||
268 | // wait for conversion to be complete |
||
269 | while(ADCSRA & (1<<ADSC)); |
||
270 | |||
271 | // add up result |
||
272 | result += ADCW; |
||
273 | } |
||
274 | |||
275 | // disable ADC |
||
276 | ADCSRA &= ~(1<<ADEN); |
||
277 | |||
278 | // get average |
||
279 | result /= 3; |
||
280 | |||
281 | return result; |
||
282 | } |
||
283 | |||
284 | |||
285 | /** |
||
286 | * init SPI slave interrupt conrolled |
||
287 | */ |
||
288 | void Init_Slave_IntContr (void) { |
||
289 | volatile char IOReg; |
||
290 | // Set PB4(MISO) as output |
||
291 | DDRB = (1<<PB4); |
||
292 | // MOSI Pullup |
||
293 | PORTB |= _BV(3); |
||
294 | // Enable SPI Interrupt and SPI in Slave Mode |
||
295 | SPCR = (1<<SPIE)|(1<<SPE); |
||
296 | IOReg = SPSR; // Clear SPIF bit in SPSR |
||
297 | IOReg = SPDR; |
||
298 | SPCR |= _BV(SPIE); // duplicated |
||
299 | } |
||
300 | |||
301 | |||
302 | |||
303 | /** |
||
304 | * SPI interrupt handling |
||
305 | */ |
||
306 | ISR(SPI_STC_vect) { |
||
307 | LED_ON(); |
||
308 | |||
309 | unsigned char foo; |
||
310 | foo = SPDR; |
||
311 | //uart_putc(foo); |
||
312 | switch (foo) { |
||
313 | case 'A': // requested ampere high bits for next transmission |
||
314 | CSTROM_FLAGS |= CSTROM_SPILOCKED; |
||
315 | foo = SPI_buffer.buffer.c[0]; |
||
316 | break; |
||
317 | case 'B': // requested low bits |
||
318 | foo = SPI_buffer.buffer.c[1]; |
||
319 | break; |
||
320 | case 'C': // wasted ampere high bits in next |
||
321 | foo = SPI_buffer.buffer.c[2]; |
||
322 | break; |
||
323 | case 'D': // 2nd highest 8bits |
||
324 | foo = SPI_buffer.buffer.c[3]; |
||
325 | break; |
||
326 | case 'E': // 3rd highest 8bits |
||
327 | foo = SPI_buffer.buffer.c[4]; |
||
328 | break; |
||
329 | case 'F': // lowest 8bits |
||
330 | foo = SPI_buffer.buffer.c[5]; |
||
331 | break; |
||
332 | case 'G': // lowest 8bits |
||
333 | foo = SPI_buffer.buffer.c[6]; |
||
334 | break; |
||
335 | case 'H': // lowest 8bits |
||
336 | foo = SPI_buffer.buffer.c[7]; |
||
337 | break; |
||
338 | case 'I': // challange over |
||
339 | foo = 'd'; // done :) |
||
340 | CSTROM_FLAGS &= ~CSTROM_SPILOCKED; |
||
341 | break; |
||
342 | default: // what else? nothin now |
||
343 | foo = 'X'; |
||
344 | } |
||
345 | // write back foo in next transmission |
||
346 | SPDR = foo; |
||
347 | |||
348 | //uart_putc(foo); |
||
349 | |||
350 | LED_OFF(); |
||
351 | } |
||
352 | |||
353 | /** |
||
354 | * read data saved in eeprom |
||
355 | */ |
||
356 | void get_eeprom() { |
||
357 | if (eeprom_read_byte(&ee_checkbyte1) == CHECKBYTE1 && eeprom_read_byte(&ee_checkbyte2) == CHECKBYTE2) { |
||
358 | uart_puts("\tLoading data from eeprom..."); |
||
359 | sensor = eeprom_read_byte(&ee_sensor); |
||
360 | cal_ampere = eeprom_read_word(&ee_cal_ampere); |
||
361 | anin_r1 = eeprom_read_byte(&ee_anin_r1); |
||
362 | anin_r2 = eeprom_read_byte(&ee_anin_r2); |
||
363 | prim_r1 = eeprom_read_byte(&ee_prim_r1); |
||
364 | prim_r2 = eeprom_read_byte(&ee_prim_r2); |
||
365 | CSTROM_CONFIG = eeprom_read_byte(&ee_config); |
||
366 | uart_puts("done\r\n"); |
||
367 | } else { |
||
368 | uart_puts("\tNo data found in eeprom, using default data...\r\n"); |
||
369 | } |
||
370 | } |
||
371 | |||
372 | /** |
||
373 | * save data to eeprom |
||
374 | */ |
||
375 | void save_eeprom() { |
||
376 | uart_puts("\r\nSaving data to eeprom..."); |
||
377 | eeprom_write_byte(&ee_checkbyte1, CHECKBYTE1); |
||
378 | eeprom_write_byte(&ee_checkbyte2, CHECKBYTE2); |
||
379 | eeprom_write_byte(&ee_sensor, sensor); |
||
380 | eeprom_write_word(&ee_cal_ampere, cal_ampere); |
||
381 | //if (hwver == 11) { |
||
382 | // why not saving when not needed, there is space |
||
383 | eeprom_write_byte(&ee_anin_r1, anin_r1); |
||
384 | eeprom_write_byte(&ee_anin_r2, anin_r2); |
||
385 | //} |
||
386 | eeprom_write_byte(&ee_prim_r1, prim_r1); |
||
387 | eeprom_write_byte(&ee_prim_r2, prim_r2); |
||
388 | eeprom_write_byte(&ee_config, CSTROM_CONFIG); |
||
389 | uart_puts("done\r\n"); |
||
390 | } |
||
391 | |||
392 | /** |
||
393 | * calibrate the current sensor... has to be 0A during this time! |
||
394 | */ |
||
395 | void ampere_calibrate() { |
||
396 | cli(); |
||
397 | uart_puts("\r\nCalibrating..."); |
||
398 | uint16_t temp_cal = 0; |
||
399 | for (uint8_t i = 0; i < 10; i++) { |
||
400 | temp_cal += readADC(0); |
||
401 | uart_puts("#"); |
||
402 | _delay_ms(100); |
||
403 | } |
||
404 | cal_ampere = temp_cal / 10; |
||
405 | uart_puts("done. Offset is now: "); |
||
406 | uart_puts(itoa(cal_ampere, s, 10)); |
||
407 | uart_puts("\r\n"); |
||
408 | sei(); |
||
409 | } |
||
410 | |||
411 | |||
412 | volatile uint16_t timer = 0, cs = 0; |
||
413 | /** |
||
414 | * init timer0 |
||
415 | */ |
||
416 | void init_timer0(void){ |
||
417 | // set up timer |
||
418 | TCCR0 |= (1 << CS00) | (1 << CS01); // timer0 prescaler 64 |
||
419 | TIMSK |= (1 << TOIE0); // enable overflow timer0 |
||
420 | } |
||
421 | |||
422 | /** |
||
423 | * timer overflow handler, should be 1ms |
||
424 | */ |
||
425 | SIGNAL(SIG_OVERFLOW0) { |
||
426 | TCNT0 = 131; // preload |
||
427 | timer++; |
||
428 | // this should be 100ms |
||
429 | if (timer == 100) { |
||
430 | timer = 0; |
||
431 | cs++; |
||
432 | average_ampere += ampere; |
||
433 | CSTROM_FLAGS |= CSTROM_WRITEUART; |
||
434 | } |
||
435 | // this should be 1s |
||
436 | if (cs == 10) { |
||
437 | cs = 0; |
||
438 | mah += average_ampere / 360; |
||
439 | average_ampere = 0; |
||
440 | } |
||
441 | } |
||
442 | |||
443 | /** |
||
444 | * write <len> through uart spaces |
||
445 | */ |
||
446 | void write_space(uint8_t len) { |
||
447 | while (len--) { |
||
448 | uart_putc(' '); |
||
449 | } |
||
450 | } |
||
451 | |||
452 | |||
453 | |||
454 | /** |
||
455 | * check which hardware version we have here |
||
456 | */ |
||
457 | void check_hw() { |
||
458 | // check if pin was output and has pullup |
||
459 | uint8_t old_DDRD7 = DDRD & (1 << PD7); |
||
460 | uint8_t old_PORTD7 = PORTD & (1 << PD7); |
||
461 | |||
462 | // if it was, make it input |
||
463 | if (old_DDRD7) DDRD &= ~(1 << PD7); // PD7 input (LED) |
||
464 | if (!old_PORTD7) PORTD |= (1 << PD7); // PD7 enable pullup (LED) |
||
465 | |||
466 | |||
467 | if (PIND & (1 << PD7)) { |
||
468 | hwver = 11; |
||
469 | LED_ON = PD7_L; |
||
470 | LED_OFF = PD7_H; |
||
471 | } |
||
472 | |||
473 | |||
474 | // output again |
||
475 | if (!old_PORTD7) PORTD &= ~(1 << PD7); // PD7 disable pullup (LED) |
||
476 | if (old_DDRD7) DDRD |= (1 << PD7); // PD7 output (LED) |
||
477 | } |
||
478 | |||
479 | |||
480 | /** |
||
481 | * call for help whenever needed |
||
482 | */ |
||
483 | void help(uint8_t load) { |
||
484 | uart_puts_pgm(PSTR("\r\nC-STROM\r\n\tBUILD: ")); |
||
485 | uart_puts_pgm(PSTR(BUILDDATE)); |
||
486 | uart_puts("\r\n\tHW: "); |
||
487 | uart_puts(itoa_dec(hwver, s)); |
||
488 | |||
489 | uart_puts("\r\n"); |
||
490 | |||
491 | if (load) get_eeprom(); |
||
492 | |||
493 | uart_puts_pgm(PSTR("\tSensor: ")); |
||
494 | uart_puts(itoa(sensor, s, 10)); |
||
495 | uart_puts_pgm(PSTR("A\tCalibration: ")); |
||
496 | uart_puts(itoa(cal_ampere, s, 10)); |
||
497 | |||
498 | uart_puts_pgm(PSTR("\r\n\tTWI is ")); |
||
499 | if (CSTROM_CONFIG & CSTROM_TWI) { |
||
500 | uart_puts_pgm(PSTR("ON, SPI may not work!!!")); |
||
501 | } else { |
||
502 | uart_puts_pgm(PSTR("OFF")); |
||
503 | } |
||
504 | |||
505 | |||
506 | uart_puts_pgm(PSTR("\r\n\tPIMARY R2: ")); |
||
507 | uart_puts(itoa_dec(prim_r2, s)); |
||
508 | if (hwver == 11) { |
||
509 | uart_puts_pgm(PSTR("kOhm")); |
||
510 | uart_puts_pgm(PSTR("\tANIN R2: ")); |
||
511 | uart_puts(itoa_dec(anin_r2, s)); |
||
512 | } |
||
513 | uart_puts_pgm(PSTR("kOhm\r\n")); |
||
514 | |||
515 | uart_puts_pgm(PSTR("\tCommands available:\r\n")); |
||
516 | uart_puts_pgm(PSTR("\t\th : help on commands (this)\r\n")); |
||
517 | uart_puts_pgm(PSTR("\t\tc : calibrate ampere\r\n")); |
||
518 | uart_puts_pgm(PSTR("\t\tT : toggle TWI (may break SPI communication!)\r\n")); |
||
519 | uart_puts_pgm(PSTR("\t\t+/- : to change sensor\r\n")); |
||
520 | uart_puts_pgm(PSTR("\t\tr/f : to change PRIMARY-R2 Value\r\n")); |
||
521 | if (hwver == 11) { |
||
522 | uart_puts_pgm(PSTR("\t\te/d : to change ANIN-R2 Value\r\n")); |
||
523 | } |
||
524 | uart_puts_pgm(PSTR("\t\ts : save values\r\n")); |
||
525 | uart_puts_pgm(PSTR("\tnow enjoy it and have fun...\r\n\r\n")); |
||
526 | } |
||
527 | |||
528 | |||
529 | /** |
||
530 | * Main |
||
531 | */ |
||
532 | int main (void) { |
||
533 | DDRD |= (1 << PD7); // PD7 output (LED) |
||
534 | |||
535 | check_hw(); |
||
536 | uart_init(); |
||
537 | |||
538 | Init_Slave_IntContr(); |
||
539 | init_timer0(); |
||
540 | |||
541 | sei(); // Enable Global Interrupts |
||
542 | |||
543 | uart_puts("\x1B[2J\x1B[H"); // clear serial |
||
544 | |||
545 | help(1); |
||
546 | |||
547 | if (CSTROM_CONFIG & CSTROM_TWI) init_twi_slave(CSTROM_I2C); |
||
548 | |||
549 | int16_t raw_volt = 0, raw_ampere = 0, raw_aninvolt = 0; |
||
550 | char c[10] = " "; |
||
551 | c[9] = 0; |
||
552 | |||
553 | //strom_data = *((SPI_strom_data_t*) &spi_buffer); |
||
554 | //*spi_buffer = *((uint8_t*) (void*) &strom_data); |
||
555 | |||
556 | LED_ON(); |
||
557 | |||
558 | while (1) { // Loop Forever |
||
559 | |||
560 | // we have got a normal voltage measuring circuit that takes the lipo-voltage |
||
561 | raw_volt = readADC(1); |
||
562 | /* according to what i read about voltage divider it is |
||
563 | Uo = Ue * (R1 / (R2 + R1)) |
||
564 | Ue = Uo * (R2 + R1) / R1 |
||
565 | the board has got r1 = 4.7k and r2 = 15k |
||
566 | but since 1step is 0,0048828125V = 4,8828125mV and not 5mV there |
||
567 | is some conversion to do for raw_volt --**-> Uo |
||
568 | this should end up in 10th of volts */ |
||
569 | raw_volt = ((uint32_t)raw_volt * (uint32_t)48828) / (uint32_t)10000; |
||
570 | volt = (int16_t) (((uint32_t)raw_volt * (uint32_t)(prim_r1 + prim_r2)) / (uint32_t)prim_r1) / 100; |
||
571 | if (volt < 0) volt = 0; |
||
572 | |||
573 | // and we have got a seccond voltage measuring circuit for user voltages |
||
574 | raw_aninvolt = readADC(2); |
||
575 | /* some conversion to do for raw_volt --**-> Uo |
||
576 | this should end up in 10th of volts */ |
||
577 | raw_aninvolt = ((uint32_t)raw_aninvolt * (uint32_t)48828) / (uint32_t)10000; |
||
578 | anin_volt = (int16_t) (((uint32_t)raw_aninvolt * (uint32_t)(anin_r1 + anin_r2)) / (uint32_t)anin_r1) / 100; |
||
579 | if (anin_volt < 0) anin_volt = 0; |
||
580 | |||
581 | raw_ampere = readADC(0); |
||
582 | /* according to datasheet sensitivity is nominal 40mV per A for the 50A chip |
||
583 | this would mean 50A ^= 2V since 0A is set to 2.5V output Voltage we get |
||
584 | a range of 0.5V till 4.5V for the full range. |
||
585 | the atmega ADC features 0...5V range divided into 10bit ^= 1024 steps |
||
586 | so 0,0048828125V, or 4,8828125mV, is one step |
||
587 | this leads us to 0,8192 steps per 0,1A and somehow the below formula |
||
588 | and i know that 32bit is evil, but what else does this device has to do? :) |
||
589 | this should end up in 100th of ampere */ |
||
590 | ampere = (int16_t) (((int32_t)(((int16_t)raw_ampere - (int16_t)cal_ampere)) * (int32_t)10000) / (int32_t) 819); |
||
591 | if (sensor == 100) ampere *= 2; |
||
592 | |||
593 | if ((CSTROM_FLAGS & CSTROM_WRITEUART)) { |
||
594 | uart_puts("V: "); |
||
595 | uart_puts(itoa_dec(volt, s)); |
||
596 | write_space(10-strlen(s)); |
||
597 | |||
598 | uart_puts("AN-IN V: "); |
||
599 | uart_puts(itoa_dec(anin_volt, s)); |
||
600 | write_space(10-strlen(s)); |
||
601 | |||
602 | uart_puts("A: "); |
||
603 | uart_puts(itoa(ampere, s, 10)); |
||
604 | write_space(10-strlen(s)); |
||
605 | |||
606 | uart_puts("C: "); |
||
607 | uart_puts(itoa(mah, s, 10)); |
||
608 | write_space(10-strlen(s)); |
||
609 | |||
610 | uart_puts("\r"); |
||
611 | CSTROM_FLAGS &= ~CSTROM_WRITEUART; |
||
612 | } |
||
613 | |||
614 | //spi_buff |
||
615 | if (!(CSTROM_FLAGS & CSTROM_SPILOCKED)) { |
||
616 | // TESTTING |
||
617 | if (!(CSTROM_CONFIG & CSTROM_TWI)) CSTROM_FLAGS |= CSTROM_SPILOCKED; |
||
618 | SPI_buffer.data.ampere = ampere; |
||
619 | SPI_buffer.data.mah = mah; |
||
620 | if (hwver == 11) { |
||
621 | SPI_buffer.data.volt = anin_volt; |
||
622 | } else { |
||
623 | SPI_buffer.data.volt = volt; |
||
624 | } |
||
625 | } |
||
626 | } |
||
627 | return 0; |
||
628 | } |