
 

 

 

M I K R O K O P T E R  S E R I A L  C O N T R O L  
T U T O R I A L  

 

CR EA TED BY  

JOH N C .  MA CDO NALD  

 

 

Ira A. Fulton College of Engineering and Technology 

Department of Electrical and Computer Engineering 

 

 

 

 

 

 

 

 

 

 

 

The accompanying files for this tutorial can be found at http://hdl.lib.byu.edu/1877/2748.  

http://hdl.lib.byu.edu/1877/2748


How to Control the MK HexaKopter with the Serial Interface 

 

 This tutorial is intended to introduce someone very new to the MK HexaKopter (MK or Hexa, for short) to the 

important aspects of controlling the MK with the serial interface to the FlightControl (FC) board.  This tutorial was 

developed using the following hardware/software: 

 FlightControl ME V2.0 

 MKUSB 

 FC firmware V0.80g 

 HexacopterController.sln (A MS Visual Studio project written in C# that should be found somewhere near this 

document...) 

 

To become familiar with how to control the Hexa via serial, do the following: 

1. Take a look at the webpage http://www.mikrokopter.de/ucwiki/en/SerialProtocol.  You’ll find there some very 

useful tables explaining various serial commands understood by the MK.  We’re particularly interested in the 

ExternControl command used to pass the ExternControl Struct.  For example implementations, see 

http://svn.mikrokopter.de/filedetails.php?repname=Projects&path=%2FMoteCtrl%2FSources%2Fwiimote.h 

(source code for the MoteCtrl project) and http://github.com/ligi/Riddim/blob/master/fc.h (source code for the 

Riddim project).  This struct has the following members, 11 bytes in all: 

a. Struct members: 

i. unsigned char Digital[2]            //2 bytes for something... don’t know what so just set to zero 

ii. unsigned char RemoteTasten  //Another mystery byte... set to zero 

iii. signed char Nick                         //Nick = Pitch 

iv. signed char Roll                          //Roll = Roll  :-) 

v. signed char Gier                         //German for yaw... 

vi. unsigned char Gas                     //i.e. Throttle 

vii. signed char Higt                         //Apparently resets the baro sensor... for indoor flight set to 0 

viii. unsigned char Free                   //mystery byte... set to zero 

ix. unsigned char Frame      //We’re not using this; sent from FC to basestation to confirm reception 

x. unsigned char Config                //Needs to be set to 1 before sending to FC 

b. In the HexacopterControl project associated with this tutorial, ExternControl is implemented as a class in 

ExternControl.cs. 

2. In order to send serial commands to the flight controller, a parameter in the FC software must be set to a value 

greater than 128.The MikroKopter-Tool software allows you to tie this parameter to a switch on you RC 

transmitter.  To set this up: 

a. Connect your MK to the Tool software using the MKUSB (converts USB to serial). 

b. Open the “Settings…” menu as highlighted in Figure 1 below: 

http://www.mikrokopter.de/ucwiki/en/SerialProtocol
http://svn.mikrokopter.de/filedetails.php?repname=Projects&path=%2FMoteCtrl%2FSources%2Fwiimote.h
http://github.com/ligi/Riddim/blob/master/fc.h


 

Figure 1: The “Settings…” Menu 
 

c. Select the “Channels” tab.  This should be a familiar menu already if you’ve configured your RC 

transmitter.  Identify a channel you’d like to use for the parameter that needs to be set high.  

Specifically, the parameter needs to be set to be greater than 128.  One of the two-position switches on 

the RC Tx should work fine for this.  In Figure 2 below we have the two position switch associated with 

channel 5 of our Tx set to high.  Notice (as highlighted in Figure 2 below) that the software associates 

“Poti1” with this channel. 

d. Now select the “Stick” tab.  In the drop down menu next to “External Control:” select the “Poti” 

associated with the channel you identified in the previous step.  Finally, don’t forget to click “Write” to 

save this setting to your MK (see Figure 3 below). 

3. With your RC Tx configured, you’re ready to try sending serial commands to the Hexa.  For our first tests we put 

a metal bar through the landing gear of the MK with something heavy on the ends of the bar (undergrad, intern, 

etc...) to hold the MK in place.  To send your first commands via serial, do the following: 

a. Power up the MK and the RC Tx.  (Calibrate the gyros, etc. as you would do before any flight) 

b. Establish a serial connection between your computer and the MK.  (In our experiments = Plug the USB 

cable into your computer that is connected to the MKUSB which is plugged into the 10-pin serial 

connection on the FC.) 

c. Open up the Windows “Device Manager” or something like that to identify which COM Port your 

computer has assigned to the MK connection. 

d. Open and run the HexacopterControl project.  (Some comments on the project contents will follow, but 

I figured you’d like to see something interesting happen first...) 

i. In the GUI that pops up (See Figure 4 below) you will see several fields in the lower left 

containing COM Port configuration info.  These should be the settings expected by the MK.  The 

only one to change should be the COM Port Name your computer assigned to the MKUSB link. 



 

Figure 2: “Channels” tab with desired channel for ExternControl parameter set high 
 

 

 

Figure 3: “Stick” tab with highlighted areas as discussed above 



 

Figure 4: The HexacopterControl Project GUI 
 

ii. Above those COM Port properties are buttons for opening and closing communication with the 

COM Port.  Go ahead and click “Open.” 

iii. In the center of the GUI you should start to see the data that the MK is apparently streaming out 

of the serial port.  Judging by the tables on that serial protocol webpage, this seems to be some 

data intended for the MK3MAG board (which we don’t have...).  Just ignore this stuff for now. 

iv. Start your motors spinning from the RC Tx.  Flip the switch you configured to enable 

ExternControl commands.  Leave the throttle at its minimum on the RC Tx. 

v. On the right side of the GUI there are some fields where you can enter commands for yaw, 

pitch, roll, and throttle.  For starters, enter “127” in the “pitch” field and click the “Send 

Command” button (DON’T FORGET TO HAVE SOMETHING HOLDING THE MK IN PLACE). 

vi. You should see and hear the front three motors of the Hexa slow down and the back three 

speed up.  Assuming you do nothing else, the MK should remain in this state for about 5 seconds 

and then it will return to all motors equal and minimum throttle.  This is because the FC 

firmware is set up to execute the serial commands for roll/pitch/yaw/throttle for 5 seconds 

unless it receives new serial commands.  After those 5 seconds the MK reverts to control from 

the RC Tx. 

vii. Enter the same pitch command again, but this time shortly after clicking the button to send the 

command over serial, also pull all the way back on the pitch stick on the RC Tx.  You will hear the 

motor speeds change as before, but when you pull back on the stick you will hear the motors go 

back to all equal.  This is because the FC firmware is set up to add roll/pitch/yaw commands sent 

over serial to whatever it receives over RC.  In other words, the RC Tx is always in the loop 

(though the best you can do is fight the serial commands, unless...) 

viii. Enter the same pitch command again, but this time shortly after clicking the button to send the 

command over serial, deactivate the switch on the RC that enables ExternControl commands.  

You should hear the motor speeds change to implement the pitch command until you flip the 

switch, at which point you will hear the motors return to all equal at min throttle.  If you flip the 

ExternControl switch on the RC Tx back on before the 5 seconds are up, you’ll also hear the 

motors pitching again.  This demonstrates the effect of that switch. 

ix. You can keep experimenting if you want, but this demonstrates the basic ideas.  ONE NOTABLE 

EXCEPTION: The FC treats the thrust commands from serial differently than serial commands for 

roll/pitch/yaw.  Instead of adding the serial and RC throttle commands it takes the minimum of 

the two.  This lets you use the RC throttle stick to set a maximum throttle allowed for serial 

control.  However, if you’re not careful it creates a potential hazard.  If you have the RC throttle 



nice and high and are sending serial commands and those serial commands are interrupted or 

the 5 seconds otherwise expire, your MK might suddenly try to shoot through the roof 

(assuming you’re indoors). 

4. Now, to get down to the nuts and bolts we should discuss some of the source code used in the 

HexacopterControl project... 

a. ExternControl.cs.   

i. Nothing too exciting here – just some constructors and some getters and setters.  Just important 

to understand that this is the 11 byte chunk of data the MK expects from you if you want to 

control it via serial. 

ii. Note that in order for an extern control command to be accepted by the FC, the “Config” byte 

must be set to a non-zero value.  

b. FlightControllerMessage.cs.  A few important things to note here: 

i. First look at the CreateMessage function on line 16.  Compare lines 21-24 with the tables back 

on http://www.mikrokopter.de/ucwiki/en/SerialProtocol.  We’re formatting the first part of the 

serial command here.  Then we’re tacking on the data in line 27 followed by the two checksum 

bytes and a carriage return (lines 30-31).  The data needs to be encoded before sending and 

there’s also a little black magic to create the checksum bytes... 

ii. To encode the data, see the Encode64 function at line 54.  This is a magical black box described 

in the serial protocol wiki-page. 

iii. The checksum bytes are calculated with the getCRCBytes function that begins at line 110.  This 

function is also described on the serial protocol wiki-page.  One important thing to note is back 

on line 30; all the preceding bytes in the serial command (header material + data) are sent as 

input to this function. 

iv. For completeness, the corresponding functions for receiving (line 36) and decoding (line 78) 

messages sent over serial are included in this file. 

c. Other files (ConsoleWriter.cs, Program.cs, etc...) just contain stuff that is specific to this little test 

program.  The important parts are in the preceding two files. 

 

 

 

http://www.mikrokopter.de/ucwiki/en/SerialProtocol



