Subversion Repositories Projects

Rev

Blame | Last modification | View Log | RSS feed

#include "SPI.h"
#include "LPD8806_kopterlight.h"

// Arduino library to control LPD8806-based RGB LED Strips
// (c) Adafruit industries
// MIT license

/*****************************************************************************/
// This library has been modified to fix the red and green issue with the stripes
// used by "MikroKopter-Forum" Users, because the design of these stripes is
// different and red and green are inverted !!
// Additionally this library has been modified and extended to provide light
// sequence requirements on multikopter.
//                          Magomora
/*****************************************************************************/

// Constructor for use with hardware SPI (specific clock/data pins):
LPD8806::LPD8806(uint16_t n, uint8_t rig) {
  pixels = NULL;
  begun  = false;
  updateLength(n);
  updatePins();
  rigger = rig;
}

// Constructor for use with arbitrary clock/data pins:
LPD8806::LPD8806(uint16_t n, uint8_t dpin, uint8_t cpin, uint8_t rig) {
  pixels = NULL;
  begun  = false;
  updateLength(n);
  updatePins(dpin, cpin);
  rigger = rig;
}

// via Michael Vogt/neophob: empty constructor is used when strip length
// isn't known at compile-time; situations where program config might be
// read from internal flash memory or an SD card, or arrive via serial
// command.  If using this constructor, MUST follow up with updateLength()
// and updatePins() to establish the strip length and output pins!
LPD8806::LPD8806(void) {
  numLEDs = 0;
  pixels  = NULL;
  begun   = false;
  updatePins(); // Must assume hardware SPI until pins are set
}

// Activate hard/soft SPI as appropriate:
void LPD8806::begin(void) {
  if(hardwareSPI == true) startSPI();
  else                    startBitbang();
  begun = true;
}

// Change pin assignments post-constructor, switching to hardware SPI:
void LPD8806::updatePins(void) {
  hardwareSPI = true;
  datapin     = clkpin = 0;
  // If begin() was previously invoked, init the SPI hardware now:
  if(begun == true) startSPI();
  // Otherwise, SPI is NOT initted until begin() is explicitly called.

  // Note: any prior clock/data pin directions are left as-is and are
  // NOT restored as inputs!
}

// Change pin assignments post-constructor, using arbitrary pins:
void LPD8806::updatePins(uint8_t dpin, uint8_t cpin) {

  datapin     = dpin;
  clkpin      = cpin;
  clkport     = portOutputRegister(digitalPinToPort(cpin));
  clkpinmask  = digitalPinToBitMask(cpin);
  dataport    = portOutputRegister(digitalPinToPort(dpin));
  datapinmask = digitalPinToBitMask(dpin);

  if(begun == true) { // If begin() was previously invoked...
    // If previously using hardware SPI, turn that off:
    if(hardwareSPI == true) SPI.end();
    startBitbang(); // Regardless, now enable 'soft' SPI outputs
  } // Otherwise, pins are not set to outputs until begin() is called.

  // Note: any prior clock/data pin directions are left as-is and are
  // NOT restored as inputs!

  hardwareSPI = false;
}

// Enable SPI hardware and set up protocol details:
void LPD8806::startSPI(void) {
  SPI.begin();
  SPI.setBitOrder(MSBFIRST);
  SPI.setDataMode(SPI_MODE0);
//  SPI.setClockDivider(SPI_CLOCK_DIV8);  // 2 MHz
  SPI.setClockDivider(SPI_CLOCK_DIV2);  // 8 MHz
  // SPI bus is run at 2MHz.  Although the LPD8806 should, in theory,
  // work up to 20MHz, the unshielded wiring from the Arduino is more
  // susceptible to interference.  Experiment and see what you get.

  SPDR = 0; // 'Prime' the SPI bus with initial latch (no wait)
}

// Enable software SPI pins and issue initial latch:
void LPD8806::startBitbang() {
  pinMode(datapin, OUTPUT);
  pinMode(clkpin , OUTPUT);
  *dataport &= ~datapinmask; // Data is held low throughout (latch = 0)
  for(uint8_t i = 8; i>0; i--) {
    *clkport |=  clkpinmask;
    *clkport &= ~clkpinmask;
  }
}

// Change strip length (see notes with empty constructor, above):
void LPD8806::updateLength(uint16_t n) {
  if(pixels != NULL) free(pixels); // Free existing data (if any)
  numLEDs = n;
  n      *= 3; // 3 bytes per pixel
  if(NULL != (pixels = (uint8_t *)malloc(n + 1))) { // Alloc new data
    memset(pixels, 0x80, n); // Init to RGB 'off' state
    pixels[n]    = 0;        // Last byte is always zero for latch
  } else numLEDs = 0;        // else malloc failed
  // 'begun' state does not change -- pins retain prior modes
}

uint16_t LPD8806::numPixels(void) {
  return numLEDs;
}

// This is how data is pushed to the strip.  Unfortunately, the company
// that makes the chip didnt release the protocol document or you need
// to sign an NDA or something stupid like that, but we reverse engineered
// this from a strip controller and it seems to work very nicely!
void LPD8806::show(void) {
  uint16_t i, n3 = numLEDs * 3 + 1; // 3 bytes per LED + 2 for latch
 
  // write 24 bits per pixel
  if (hardwareSPI) {
    for (i=0; i<n3; i++ ) {
      while(!(SPSR & (1<<SPIF))); // Wait for prior byte out
      SPDR = pixels[i];           // Issue new byte
    }
      while(!(SPSR & (1<<SPIF))); // Wait for prior byte out
      SPDR = 0;           // Issue new byte
  } else {
    for (i=0; i<n3; i++ ) {
      for (uint8_t bit=0x80; bit; bit >>= 1) {
        if(pixels[i] & bit) *dataport |=  datapinmask;
        else                *dataport &= ~datapinmask;
        *clkport |=  clkpinmask;
        *clkport &= ~clkpinmask;
      }
    }
      for (uint8_t bit=0x80; bit; bit >>= 1) {
        if(pixels[i] & bit) *dataport |=  datapinmask;
        else                *dataport &= ~datapinmask;
        *clkport |=  clkpinmask;
        *clkport &= ~clkpinmask;
      }
   
  }
}

// Convert separate R,G,B into combined 32-bit GRB color:
uint32_t LPD8806::Color(byte g, byte r, byte b) {
  return 0x808080 | ((uint32_t)g << 16) | ((uint32_t)r << 8) | (uint32_t)b;
}

// Set pixel color from separate 7-bit R, G, B components:
// All rigger in parallel
void LPD8806::setPixelColor(uint16_t n, uint8_t g, uint8_t r, uint8_t b) {
  uint8_t i;
  for (i=1; i<rigger; i++){
   if(n < numLEDs) { // Arrays are 0-indexed, thus NOT '<='
     uint8_t *p = &pixels[n * 3];
     *p++ = g | 0x80; // LPD8806 color order is GRB,
     *p++ = r | 0x80; // not the more common RGB,
     *p++ = b | 0x80; // so the order here is intentional; don't "fix"
   }
  n = n+(numLEDs/rigger);
  }
}

// Set pixel color from separate 7-bit R, G, B components:
// Only on selected rigger
void LPD8806::setPixelColor(uint16_t n, uint8_t g, uint8_t r, uint8_t b, uint8_t r1, uint8_t r2, uint8_t r3, uint8_t r4, uint8_t r5, uint8_t r6, uint8_t r7, uint8_t r8) {
  int i;
  int pix;
  uint16_t z;

// Select rigger to set LEDs
  for (i=1; i<=rigger; i++){
  if (i == 1 && r1 == 1){
      z = ((numLEDs/rigger)*1)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 2 && r2 == 1){
      z = ((numLEDs/rigger)*2)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 3 && r3 == 1){
      z = ((numLEDs/rigger)*3)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 4 && r4 == 1){
      z = ((numLEDs/rigger)*4)+(n-(numLEDs/rigger));
      pix = 1;
     }    
  if (i == 5 && r5 == 1){
      z = ((numLEDs/rigger)*5)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 6 && r6 == 1){
      z = ((numLEDs/rigger)*6)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 7 && r7 == 1){
      z = ((numLEDs/rigger)*7)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 8 && r8 == 1){
      z = ((numLEDs/rigger)*8)+n-(numLEDs/rigger);
      pix = 1;
     }    
   if((pix == 1) && (z < numLEDs)) { // Arrays are 0-indexed, thus NOT '<='
     uint8_t *p = &pixels[z * 3];
     *p++ = g | 0x80; // LPD8806 color order is GRB,
     *p++ = r | 0x80; // not the more common RGB,
     *p++ = b | 0x80; // so the order here is intentional; don't "fix"
   }
      pix = 0;
  }
}

// Set pixel color from 'packed' 32-bit RGB value:
// All rigger in parallel
void LPD8806::setPixelColor(uint16_t n, uint32_t c) {
  uint8_t i;
  for (i=0; i<rigger; i++){
  if(n < numLEDs) { // Arrays are 0-indexed, thus NOT '<='
    uint8_t *p = &pixels[n * 3];
    *p++ = (c >> 16) | 0x80;
    *p++ = (c >>  8) | 0x80;
    *p++ =  c        | 0x80;
  }
  n = n+(numLEDs/rigger);
}
}

// Set pixel color from 'packed' 32-bit RGB value:
// Only on selected rigger's
void LPD8806::setPixelColor(uint16_t n, uint32_t c, uint8_t r1, uint8_t r2, uint8_t r3, uint8_t r4, uint8_t r5, uint8_t r6, uint8_t r7, uint8_t r8) {
  int i;
  int pix;
  uint16_t z;

// Select rigger to set LEDs
  for (i=1; i<=rigger; i++){
  if (i == 1 && r1 == 1){
      z = ((numLEDs/rigger)*1)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 2 && r2 == 1){
      z = ((numLEDs/rigger)*2)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 3 && r3 == 1){
      z = ((numLEDs/rigger)*3)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 4 && r4 == 1){
      z = ((numLEDs/rigger)*4)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 5 && r5 == 1){
      z = ((numLEDs/rigger)*5)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 6 && r6 == 1){
      z = ((numLEDs/rigger)*6)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 7 && r7 == 1){
      z = ((numLEDs/rigger)*7)+n-(numLEDs/rigger);
      pix = 1;
     }    
  if (i == 8 && r8 == 1){
      z = ((numLEDs/rigger)*8)+n-(numLEDs/rigger);
      pix = 1;
     }    
   if((pix == 1) && (z < numLEDs)) { // Arrays are 0-indexed, thus NOT '<='
    uint8_t *p = &pixels[z * 3];
    *p++ = (c >> 16) | 0x80;
    *p++ = (c >>  8) | 0x80;
    *p++ =  c        | 0x80;
   }
      pix = 0;
  }

}

// Query color from previously-set pixel (returns packed 32-bit GRB value)
uint32_t LPD8806::getPixelColor(uint16_t n) {
  if(n < numLEDs) {
    uint16_t ofs = n * 3;
    return ((uint32_t)((uint32_t)pixels[ofs    ] << 16) |
            (uint32_t)((uint32_t)pixels[ofs + 1] <<  8) |
             (uint32_t)pixels[ofs + 2]) & 0x7f7f7f;
  }

  return 0; // Pixel # is out of bounds
}