Subversion Repositories FlightCtrl

Rev

Rev 936 | Blame | Compare with Previous | Last modification | View Log | RSS feed

/*

Copyright 2008, by Killagreg

This program (files mm3.c and mm3.h) is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Please note: The original implementation was done by Niklas Nold.
All the other files for the project "Mikrokopter" by H. Buss are under the license (license_buss.txt) published by www.mikrokopter.de
*/

#include <stdlib.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <inttypes.h>

#include "mm3.h"
#include "main.h"
#include "mymath.h"
#include "fc.h"
#include "timer0.h"
#include "rc.h"
#include "eeprom.h"
#include "printf_P.h"

#define MAX_AXIS_VALUE          500


typedef struct
{
        uint8_t STATE;
        uint16_t DRDY;
        uint8_t AXIS;
        int16_t x_axis;
        int16_t y_axis;
        int16_t z_axis;
} MM3_working_t;


// MM3 State Machine
#define MM3_STATE_RESET                         0
#define MM3_STATE_START_TRANSFER        1
#define MM3_STATE_WAIT_DRDY                     2
#define MM3_STATE_DRDY                          3
#define MM3_STATE_BYTE2                         4

#define MM3_X_AXIS              0x01
#define MM3_Y_AXIS              0x02
#define MM3_Z_AXIS              0x03


#define MM3_PERIOD_32   0x00
#define MM3_PERIOD_64   0x10
#define MM3_PERIOD_128  0x20
#define MM3_PERIOD_256  0x30
#define MM3_PERIOD_512  0x40
#define MM3_PERIOD_1024 0x50
#define MM3_PERIOD_2048 0x60
#define MM3_PERIOD_4096 0x70

MM3_calib_t MM3_calib;
volatile MM3_working_t MM3;
volatile uint8_t MM3_Timeout = 0;



/*********************************************/
/*  Initialize Interface to MM3 Compass      */
/*********************************************/
void MM3_Init(void)
{
        uint8_t sreg = SREG;

        cli();

        // Configure Pins for SPI
        // set SCK (PB7), MOSI (PB5) as output
        DDRB |= (1<<DDB7)|(1<<DDB5);
        // set MISO (PB6) as input
        DDRB &= ~(1<<DDB6);

#ifdef USE_WALTER_EXT // walthers board
        // Output Pins (J9)PC6->MM3_SS ,(J8)PB2->MM3_RESET
        DDRB |= (1<<DDB2);
        DDRC |= (1<<DDC6);
        // set pins permanent to low
        PORTB &= ~((1<<PORTB2));
        PORTC &= ~((1<<PORTC6));
#else // killagregs board
        // Output Pins PC4->MM3_SS ,PC5->MM3_RESET
        DDRC |= (1<<DDC4)|(1<<DDC5);
        // set pins permanent to low
        PORTC &= ~((1<<PORTC4)|(1<<PORTC5));
#endif

        // Initialize SPI-Interface
        // Enable interrupt (SPIE=1)
        // Enable SPI bus (SPE=1)
        // MSB transmitted first (DORD = 0)
        // Master SPI Mode (MSTR=1)
        // Clock polarity low when idle (CPOL=0)
        // Clock phase sample at leading edge (CPHA=0)
        // Clock rate = SYSCLK/128 (SPI2X=0, SPR1=1, SPR0=1) 20MHz/128 = 156.25kHz
        SPCR = (1<<SPIE)|(1<<SPE)|(0<<DORD)|(1<<MSTR)|(0<<CPOL)|(0<<CPHA)|(1<<SPR1)|(1<<SPR0);
        SPSR &= ~(1<<SPI2X);

    // Init Statemachine
        MM3.AXIS = MM3_X_AXIS;
        MM3.STATE = MM3_STATE_RESET;

        // Read calibration from EEprom
        MM3_calib.X_off = (int8_t)GetParamByte(PID_MM3_X_OFF);
        MM3_calib.Y_off = (int8_t)GetParamByte(PID_MM3_Y_OFF);
        MM3_calib.Z_off = (int8_t)GetParamByte(PID_MM3_Z_OFF);
        MM3_calib.X_range = (int16_t)GetParamWord(PID_MM3_X_RANGE);
        MM3_calib.Y_range = (int16_t)GetParamWord(PID_MM3_Y_RANGE);
        MM3_calib.Z_range = (int16_t)GetParamWord(PID_MM3_Z_RANGE);

        MM3_Timeout = 0;

        SREG = sreg;
}


/*********************************************/
/*  Get Data from MM3                        */
/*********************************************/
void MM3_Update(void) // called every 102.4 µs by timer 0 ISR
{
        switch (MM3.STATE)
        {
        case MM3_STATE_RESET:
                #ifdef USE_WALTER_EXT // walthers board
                PORTC &= ~(1<<PORTC6);  // select slave
                PORTB |= (1<<PORTB2);   // PB2 to High, MM3 Reset
                #else
                PORTC &= ~(1<<PORTC4);  // select slave
                PORTC |= (1<<PORTC5);   // PC5 to High, MM3 Reset
                #endif
                MM3.STATE = MM3_STATE_START_TRANSFER;
                return;

        case MM3_STATE_START_TRANSFER:
                #ifdef USE_WALTER_EXT // walthers board
                PORTB &= ~(1<<PORTB2);  // PB2 auf Low (was 102.4 µs at high level)
                #else
                PORTC &= ~(1<<PORTC5);  // PC4 auf Low (was 102.4 µs at high level)
                #endif
                // write to SPDR triggers automatically the transfer MOSI MISO
                // MM3 Period, + AXIS code
                switch(MM3.AXIS)
                {
                case MM3_X_AXIS:
                        SPDR = MM3_PERIOD_256 + MM3_X_AXIS;
                        break;
                case MM3_Y_AXIS:
                        SPDR = MM3_PERIOD_256 + MM3_Y_AXIS;
                        break;
                case MM3_Z_AXIS:
                        SPDR = MM3_PERIOD_256 + MM3_Z_AXIS;
                        break;
                default:
                        MM3.AXIS = MM3_X_AXIS;
                        MM3.STATE = MM3_STATE_RESET;
                        return;
                }

                // DRDY line is not connected, therefore
                // wait before reading data back
                MM3.DRDY = SetDelay(8); // wait 8ms for data ready
                MM3.STATE = MM3_STATE_WAIT_DRDY;
                return;

        case MM3_STATE_WAIT_DRDY:
                if (CheckDelay(MM3.DRDY))
                {
                        // write something into SPDR to trigger data reading
                        SPDR = 0x00;
                        MM3.STATE = MM3_STATE_DRDY;
                }
                return;
        }
}


/*********************************************/
/*  Interrupt SPI transfer complete          */
/*********************************************/
ISR(SPI_STC_vect)
{
        static int8_t tmp;
        int16_t value;

        switch (MM3.STATE)
        {
        // 1st byte received
        case MM3_STATE_DRDY:
                tmp = SPDR;     // store 1st byte
                SPDR = 0x00;    // trigger transfer of 2nd byte
                MM3.STATE = MM3_STATE_BYTE2;
                return;

        case MM3_STATE_BYTE2:           // 2nd byte received
                value = (int16_t)tmp;   // combine the 1st and 2nd byte to a word
                value <<= 8;            // shift 1st byte to MSB-Position
                value |= (int16_t)SPDR; // add 2nd byte

                if(abs(value) < MAX_AXIS_VALUE)         // ignore spikes
                {
                        switch (MM3.AXIS)
                        {
                        case MM3_X_AXIS:
                                MM3.x_axis = value;
                                MM3.AXIS = MM3_Y_AXIS;
                                break;
                        case MM3_Y_AXIS:
                                MM3.y_axis = value;
                                MM3.AXIS = MM3_Z_AXIS;
                                break;
                        case MM3_Z_AXIS:
                                MM3.z_axis = value;
                                MM3.AXIS = MM3_X_AXIS;
                                break;
                        default:
                                MM3.AXIS = MM3_X_AXIS;
                                break;
                        }
                }
                #ifdef USE_WALTER_EXT // walthers board
                PORTC |= (1<<PORTC6); // deselect slave
                #else
                PORTC |= (1<<PORTC4); // deselect slave
                #endif
                MM3.STATE = MM3_STATE_RESET;
                // Update timeout is called every 102.4 µs.
                // It takes 2 cycles to write a measurement data request for one axis and
                // at at least 8 ms / 102.4 µs = 79 cycles to read the requested data back.
                // I.e. 81 cycles * 102.4 µs = 8.3ms per axis.
                // The two function accessing the MM3 Data - MM3_Calibrate() and MM3_Heading() -
                // decremtent the MM3_Timeout every 100 ms.
                // incrementing the counter by 1 every 8.3 ms is sufficient to avoid a timeout.
                if ((MM3.x_axis != MM3.y_axis) || (MM3.x_axis != MM3.z_axis) || (MM3.y_axis != MM3.z_axis))
                {       // if all axis measurements give diffrent readings the data should be valid
                        if(MM3_Timeout < 20) MM3_Timeout++;
                }
                else // something is very strange here
                {
                        if(MM3_Timeout ) MM3_Timeout--;
                }
                return;

        default:
                return;
        }
}


/*********************************************/
/*  Calibrate Compass                        */
/*********************************************/
void MM3_Calibrate(void)
{
        static int16_t x_min, x_max, y_min, y_max, z_min, z_max;

        switch(CompassCalState)
        {
                case 1: // change to x-y axis
                        x_min =  10000;
                        x_max = -10000;
                        y_min =  10000;
                        y_max = -10000;
                        z_min =  10000;
                        z_max = -10000;
                        break;
                case 2:
                        // find Min and Max of the X- and Y-Axis
                        if(MM3.x_axis < x_min) x_min = MM3.x_axis;
                        if(MM3.x_axis > x_max) x_max = MM3.x_axis;
                        if(MM3.y_axis < y_min) y_min = MM3.y_axis;
                        if(MM3.y_axis > y_max) y_max = MM3.y_axis;
                        break;
                case 3:
                        // change to z-Axis
                break;
                case 4:
                        RED_ON;  // find Min and Max of the Z-axis
                        if(MM3.z_axis < z_min) z_min = MM3.z_axis;
                        if(MM3.z_axis > z_max) z_max = MM3.z_axis;
                break;
                case 5:
                        // calc range of all axis
                        MM3_calib.X_range = (x_max - x_min);
                        MM3_calib.Y_range = (y_max - y_min);
                        MM3_calib.Z_range = (z_max - z_min);

                        // calc offset of all axis
                        MM3_calib.X_off = (x_max + x_min) / 2;
                        MM3_calib.Y_off = (y_max + y_min) / 2;
                        MM3_calib.Z_off = (z_max + z_min) / 2;

                        // save to EEProm
                        SetParamByte(PID_MM3_X_OFF,   (uint8_t)MM3_calib.X_off);
                        SetParamByte(PID_MM3_Y_OFF,   (uint8_t)MM3_calib.Y_off);
                        SetParamByte(PID_MM3_Z_OFF,   (uint8_t)MM3_calib.Z_off);
                        SetParamWord(PID_MM3_X_RANGE, (uint16_t)MM3_calib.X_range);
                        SetParamWord(PID_MM3_Y_RANGE, (uint16_t)MM3_calib.Y_range);
                        SetParamWord(PID_MM3_Z_RANGE, (uint16_t)MM3_calib.Z_range);

                        CompassCalState = 0;
                        break;
                default:
                        CompassCalState = 0;
                        break;
        }
}


/*
void MM3_Calibrate(void)
{
        static uint8_t debugcounter = 0;
        int16_t x_min = 0, x_max = 0, y_min = 0, y_max = 0, z_min = 0, z_max = 0;
        uint8_t measurement = 50, beeper = 0;
        uint16_t timer;

        GRN_ON;
        RED_OFF;

        // get maximum and minimum reading of all axis
        while (measurement)
        {
                // reset range markers if yawstick ist leftmost
                if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 100)
                {
                        x_min = 0;
                        x_max = 0;
                        y_min = 0;
                        y_max = 0;
                        z_min = 0;
                        z_max = 0;
                }

                if (MM3.x_axis > x_max) x_max = MM3.x_axis;
                else if (MM3.x_axis < x_min) x_min = MM3.x_axis;

                if (MM3.y_axis > y_max) y_max = MM3.y_axis;
                else if (MM3.y_axis < y_min) y_min = MM3.y_axis;

                if (MM3.z_axis > z_max) z_max = MM3.z_axis;
                else if (MM3.z_axis < z_min) z_min = MM3.z_axis;

                if (!beeper)
                {
                        RED_FLASH;
                        GRN_FLASH;
                        BeepTime = 50;
                        beeper = 50;
                }
                beeper--;
                // loop with period of 10 ms / 100 Hz
                timer = SetDelay(10);
                while(!CheckDelay(timer));

                if(debugcounter++ > 30)
                {
                        printf("\n\rXMin:%4d, XMax:%4d, YMin:%4d, YMax:%4d, ZMin:%4d, ZMax:%4d",x_min,x_max,y_min,y_max,z_min,z_max);
                        debugcounter = 0;
                }

                // If gas is less than 100, stop calibration with a delay of 0.5 seconds
                if (PPM_in[ParamSet.ChannelAssignment[CH_GAS]] < 100) measurement--;
        }
        // Rage of all axis
        MM3_calib.X_range = (x_max - x_min);
        MM3_calib.Y_range = (y_max - y_min);
        MM3_calib.Z_range = (z_max - z_min);

        // Offset of all axis
        MM3_calib.X_off = (x_max + x_min) / 2;
        MM3_calib.Y_off = (y_max + y_min) / 2;
        MM3_calib.Z_off = (z_max + z_min) / 2;

        // save to EEProm
        SetParamByte(PID_MM3_X_OFF,   (uint8_t)MM3_calib.X_off);
        SetParamByte(PID_MM3_Y_OFF,   (uint8_t)MM3_calib.Y_off);
        SetParamByte(PID_MM3_Z_OFF,   (uint8_t)MM3_calib.Z_off);
        SetParamWord(PID_MM3_X_RANGE, (uint16_t)MM3_calib.X_range);
        SetParamWord(PID_MM3_Y_RANGE, (uint16_t)MM3_calib.Y_range);
        SetParamWord(PID_MM3_Z_RANGE, (uint16_t)MM3_calib.Z_range);

}
*/


/*********************************************/
/*  Calculate north direction (heading)      */
/*********************************************/
void MM3_Heading(void)
{
        int32_t sin_nick, cos_nick, sin_roll, cos_roll, sin_yaw, cos_yaw;
        int32_t  Hx, Hy, Hz, Hx_corr, Hy_corr;
        int16_t angle;
        uint16_t div_factor;
        int16_t heading;

        if (MM3_Timeout)
        {
                // Offset correction and normalization (values of H are +/- 512)
                Hx = (((int32_t)(MM3.x_axis - MM3_calib.X_off)) * 1024) / (int32_t)MM3_calib.X_range;
                Hy = (((int32_t)(MM3.y_axis - MM3_calib.Y_off)) * 1024) / (int32_t)MM3_calib.Y_range;
                Hz = (((int32_t)(MM3.z_axis - MM3_calib.Z_off)) * 1024) / (int32_t)MM3_calib.Z_range;

                // Compensate the angle of the MM3-arrow to the head of the MK by a yaw rotation transformation
                // assuming the MM3 board is mounted parallel to the frame.
                // User Param 4 is used to define the positive angle from the MM3-arrow to the MK heading
                // in a top view counter clockwise direction.
                // North is in opposite direction of the small arrow on the MM3 board.
                // Therefore 180 deg must be added to that angle.
                angle = ((int16_t)ParamSet.UserParam4 + 180);
                // wrap angle to interval of 0°- 359°
                angle += 360;
                angle %= 360;
                sin_yaw = (int32_t)(c_sin_8192(angle));
                cos_yaw = (int32_t)(c_cos_8192(angle));

                Hx_corr = Hx;
                Hy_corr = Hy;

                // rotate
                Hx = (Hx_corr * cos_yaw - Hy_corr  * sin_yaw) / 8192;
                Hy = (Hx_corr * sin_yaw + Hy_corr  * cos_yaw) / 8192;


                // tilt compensation

                // calibration factor for transforming Gyro Integrals to angular degrees
                div_factor = (uint16_t)ParamSet.UserParam3 * 8;

                // calculate sinus cosinus of nick and tilt angle
                angle = (IntegralNick/div_factor);
                sin_nick = (int32_t)(c_sin_8192(angle));
                cos_nick = (int32_t)(c_cos_8192(angle));

                angle = (IntegralRoll/div_factor);
                sin_roll = (int32_t)(c_sin_8192(angle));
                cos_roll = (int32_t)(c_cos_8192(angle));

                Hx_corr = Hx * cos_nick;
                Hx_corr -= Hz * sin_nick;
                Hx_corr /= 8192;

                Hy_corr = Hy * cos_roll;
                Hy_corr += Hz * sin_roll;
                Hy_corr /= 8192;

                // calculate Heading
                heading = c_atan2(Hy_corr, Hx_corr);

                // atan returns angular range from -180 deg to 180 deg in counter clockwise notation
                // but the compass course is defined in a range from 0 deg to 360 deg clockwise notation.
                if (heading < 0) heading = -heading;
                else heading = 360 - heading;
        }
        else // MM3_Timeout = 0 i.e now new data from external board
        {
                if(!BeepTime) BeepTime = 100; // make noise to signal the compass problem
                heading = -1;
        }
        // update compass values in fc variables
        CompassHeading = heading;
        if (CompassHeading < 0) CompassOffCourse = 0;
        else CompassOffCourse = ((540 + CompassHeading - CompassCourse) % 360) - 180;
}