Subversion Repositories FlightCtrl

Rev

Rev 838 | Blame | Compare with Previous | Last modification | View Log | RSS feed

/*

Copyright 2008, by Killagreg

This program (files mm3.c and mm3.h) is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Please note: The original implementation was done by Niklas Nold.
All the other files for the project "Mikrokopter" by H. Buss are under the license (license_buss.txt) published by www.mikrokopter.de
*/

#include <stdlib.h>
#include <avr/io.h>
#include <avr/interrupt.h>

#include "mm3.h"
#include "main.h"
#include "mymath.h"
#include "fc.h"
#include "timer0.h"
#include "rc.h"
//#include "eeprom.h"
#include "printf_P.h"
#include "kafi.h"


#define MAX_AXIS_VALUE          500

#ifdef USE_Extended_MM3_Measurement_Model
f32_t MM3_Hx, MM3_Hy, MM3_Hz;
#endif

extern int Theta45;
extern int Phi45;

typedef struct
{
  uint8_t STATE;
  uint16_t DRDY;
  uint8_t AXIS;
  int16_t x_axis;
  int16_t y_axis;
  int16_t z_axis;
} MM3_working_t;


// MM3 State Machine
#define MM3_STATE_RESET           0
#define MM3_STATE_START_TRANSFER  1
#define MM3_STATE_WAIT_DRDY       2
#define MM3_STATE_DRDY            3
#define MM3_STATE_BYTE2           4

#define MM3_X_AXIS  0x01
#define MM3_Y_AXIS  0x02
#define MM3_Z_AXIS  0x03


#define MM3_PERIOD_32   0x00
#define MM3_PERIOD_64   0x10
#define MM3_PERIOD_128  0x20
#define MM3_PERIOD_256  0x30
#define MM3_PERIOD_512  0x40
#define MM3_PERIOD_1024 0x50
#define MM3_PERIOD_2048 0x60
#define MM3_PERIOD_4096 0x70

MM3_calib_t MM3_calib;
volatile MM3_working_t MM3;
volatile uint8_t MM3_Timeout = 0;

/***************************************************/
/*       Read Parameter from EEPROM as byte        */
/***************************************************/
uint8_t GetParamByte(uint8_t param_id)
{
  return eeprom_read_byte(&EEPromArray[EEPROM_ADR_PARAM_BEGIN + param_id]);
}

/***************************************************/
/*       Write Parameter to EEPROM as byte         */
/***************************************************/
void SetParamByte(uint8_t param_id, uint8_t value)
{
  eeprom_write_byte(&EEPromArray[EEPROM_ADR_PARAM_BEGIN + param_id], value);
}

/***************************************************/
/*       Read Parameter from EEPROM as word        */
/***************************************************/
uint16_t GetParamWord(uint8_t param_id)
{
  return eeprom_read_word((uint16_t *) &EEPromArray[EEPROM_ADR_PARAM_BEGIN + param_id]);
}

/***************************************************/
/*       Write Parameter to EEPROM as word         */
/***************************************************/
void SetParamWord(uint8_t param_id, uint16_t value)
{
  eeprom_write_word((uint16_t *) &EEPromArray[EEPROM_ADR_PARAM_BEGIN + param_id], value);
}

/*********************************************/
/*  Initialize Interface to MM3 Compass      */
/*********************************************/
void MM3_Init(void)
{
  uint8_t sreg = SREG;
 
  cli();
 
  // Configure Pins for SPI
  // set SCK (PB7), MOSI (PB5) as output
  DDRB |= (1<<DDB7)|(1<<DDB5);
  // set MISO (PB6) as input
  DDRB &= ~(1<<DDB6);
 
  // Output Pins PC4->MM3_SS ,PC5->MM3_RESET
  DDRC |= (1<<DDC4)|(1<<DDC5);
  // set pins permanent to low
  PORTC &= ~((1<<PORTC4)|(1<<PORTC5));
 
  // Initialize SPI-Interface
  // Enable interrupt (SPIE=1)
  // Enable SPI bus (SPE=1)
  // MSB transmitted first (DORD = 0)
  // Master SPI Mode (MSTR=1)
  // Clock polarity low when idle (CPOL=0)
  // Clock phase sample at leading edge (CPHA=0)
  // Clock rate = SYSCLK/128 (SPI2X=0, SPR1=1, SPR0=1) 20MHz/128 = 156.25kHz
  SPCR = (1<<SPIE)|(1<<SPE)|(0<<DORD)|(1<<MSTR)|(0<<CPOL)|(0<<CPHA)|(1<<SPR1)|(1<<SPR0);
  SPSR &= ~(1<<SPI2X);
 
  // Init Statemachine
  MM3.AXIS = MM3_X_AXIS;
  MM3.STATE = MM3_STATE_RESET;
 
  // Read calibration from EEprom
  MM3_calib.X_off = (int16_t)GetParamWord(PID_MM3_X_OFF);
  MM3_calib.Y_off = (int16_t)GetParamWord(PID_MM3_Y_OFF);
  MM3_calib.Z_off = (int16_t)GetParamWord(PID_MM3_Z_OFF);
  MM3_calib.X_range = (int16_t)GetParamWord(PID_MM3_X_RANGE);
  MM3_calib.Y_range = (int16_t)GetParamWord(PID_MM3_Y_RANGE);
  MM3_calib.Z_range = (int16_t)GetParamWord(PID_MM3_Z_RANGE);
 
  MM3_Timeout = 0;
 
  SREG = sreg;
}

/*********************************************/
/*  Get Data from MM3                        */
/*********************************************/
void MM3_Update(void) // called every 102.4 µs by timer 0 ISR
{
  switch (MM3.STATE)
  {
  case MM3_STATE_RESET:
    PORTC &= ~(1<<PORTC4); // select slave
    PORTC |= (1<<PORTC5);       // PC5 to High, MM3 Reset
    MM3.STATE = MM3_STATE_START_TRANSFER;
    return;
   
  case MM3_STATE_START_TRANSFER:
    PORTC &= ~(1<<PORTC5);      // PC4 auf Low (was 102.4 µs at high level)
    // write to SPDR triggers automatically the transfer MOSI MISO
    // MM3 Period, + AXIS code
    switch(MM3.AXIS)
    {
    case MM3_X_AXIS:
      SPDR = MM3_PERIOD_256 + MM3_X_AXIS;
      break;
    case MM3_Y_AXIS:
      SPDR = MM3_PERIOD_256 + MM3_Y_AXIS;
      break;
    case MM3_Z_AXIS:
      SPDR = MM3_PERIOD_256 + MM3_Z_AXIS;
      break;
    default:
      MM3.AXIS = MM3_X_AXIS;
      MM3.STATE = MM3_STATE_RESET;
      return;
    }
   
    // DRDY line is not connected, therefore
    // wait before reading data back
    MM3.DRDY = SetDelay(8); // wait 8ms for data ready
    MM3.STATE = MM3_STATE_WAIT_DRDY;
    return;
   
    case MM3_STATE_WAIT_DRDY:
      if (CheckDelay(MM3.DRDY))
      {
        // write something into SPDR to trigger data reading
        SPDR = 0x00;
        MM3.STATE = MM3_STATE_DRDY;
      }
      return;
  }
}

/*********************************************/
/*  Interrupt SPI transfer complete          */
/*********************************************/
ISR(SPI_STC_vect)
{
  static int8_t tmp;
  int16_t value;
 
  switch (MM3.STATE)
  {
    // 1st byte received
  case MM3_STATE_DRDY:
    tmp = SPDR;     // store 1st byte
    SPDR = 0x00;        // trigger transfer of 2nd byte
    MM3.STATE = MM3_STATE_BYTE2;
    return;
   
  case MM3_STATE_BYTE2:         // 2nd byte received
    value = (int16_t)tmp;       // combine the 1st and 2nd byte to a word
    value <<= 8;                // shift 1st byte to MSB-Position
    value |= (int16_t)SPDR;     // add 2nd byte
   
    if(abs(value) < MAX_AXIS_VALUE)             // ignore spikes
    {
      switch (MM3.AXIS)
      {
      case MM3_X_AXIS:
        MM3.x_axis = value;
        MM3.AXIS = MM3_Y_AXIS;
        break;
      case MM3_Y_AXIS:
        MM3.y_axis = value;
        MM3.AXIS = MM3_Z_AXIS;
        break;
      case MM3_Z_AXIS:
        MM3.z_axis = value;
        MM3.AXIS = MM3_X_AXIS;
        break;
      default:
        MM3.AXIS = MM3_X_AXIS;
        break;
      }
    }
   
    PORTC |= (1<<PORTC4); // deselect slave
    MM3.STATE = MM3_STATE_RESET;
    // Update timeout is called every 102.4 µs.
    // It takes 2 cycles to write a measurement data request for one axis and
    // at at least 8 ms / 102.4 µs = 79 cycles to read the requested data back.
    // I.e. 81 cycles * 102.4 µs = 8.3ms per axis.
    // The two function accessing the MM3 Data - MM3_Calibrate() and MM3_Heading() -
    // decremtent the MM3_Timeout every 100 ms.
    // incrementing the counter by 1 every 8.3 ms is sufficient to avoid a timeout.
    if ((MM3.x_axis != MM3.y_axis) || (MM3.x_axis != MM3.z_axis) || (MM3.y_axis != MM3.z_axis))
    {   // if all axis measurements give diffrent readings the data should be valid
      if(MM3_Timeout < 20) MM3_Timeout++;
    }
    else // something is very strange here
    {
      if(MM3_Timeout ) MM3_Timeout--;
    }
    return;
   
  default:
    return;
  }
}



/*********************************************/
/*  Calibrate Compass                        */
/*********************************************/
void MM3_Calibrate(void)
{
  static uint8_t debugcounter = 0;
  int16_t x_min = 0, x_max = 0, y_min = 0, y_max = 0, z_min = 0, z_max = 0;
  uint8_t measurement = 50, beeper = 0;
  uint16_t timer;
 
  GRN_ON;
  ROT_OFF;
 
  x_max = -16000;
  x_min =  16000;
  y_max = -16000;
  y_min =  16000;
  z_max = -16000;
  z_min =  16000;
 
  // get maximum and minimum reading of all axis
  while (measurement)
  {
    if (MM3.x_axis > x_max) x_max = MM3.x_axis;
    else if (MM3.x_axis < x_min) x_min = MM3.x_axis;
   
    if (MM3.y_axis > y_max) y_max = MM3.y_axis;
    else if (MM3.y_axis < y_min) y_min = MM3.y_axis;
   
    if (MM3.z_axis > z_max) z_max = MM3.z_axis;
    else if (MM3.z_axis < z_min) z_min = MM3.z_axis;
   
    if (!beeper)
    {
      ROT_FLASH;
      GRN_FLASH;
      beeper = 50;
    }
    beeper--;
   
    // loop with period of 10 ms / 100 Hz
    timer = SetDelay(10);
    while(!CheckDelay(timer));
   
    if(debugcounter++ > 30)
    {
      printf("\n\rXMin:%4d, XMax:%4d, YMin:%4d, YMax:%4d, ZMin:%4d, ZMax:%4d",x_min,x_max,y_min,y_max,z_min,z_max);
      debugcounter = 0;
    }
   
    // If thrust is less than 100, stop calibration with a delay of 0.5 seconds
    if (PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] < 100) measurement--;
  }
 
  // Rage of all axis
  MM3_calib.X_range = (x_max - x_min);
  MM3_calib.Y_range = (y_max - y_min);
  MM3_calib.Z_range = (z_max - z_min);
 
  // Offset of all axis
  MM3_calib.X_off = (x_max + x_min) / 2;
  MM3_calib.Y_off = (y_max + y_min) / 2;
  MM3_calib.Z_off = (z_max + z_min) / 2;
 
  // save to EEProm
  SetParamWord(PID_MM3_X_OFF,   (uint16_t)MM3_calib.X_off);
  SetParamWord(PID_MM3_Y_OFF,   (uint16_t)MM3_calib.Y_off);
  SetParamWord(PID_MM3_Z_OFF,   (uint16_t)MM3_calib.Z_off);
  SetParamWord(PID_MM3_X_RANGE, (uint16_t)MM3_calib.X_range);
  SetParamWord(PID_MM3_Y_RANGE, (uint16_t)MM3_calib.Y_range);
  SetParamWord(PID_MM3_Z_RANGE, (uint16_t)MM3_calib.Z_range);
}


/*********************************************/
/*  Calculate north direction (heading)      */
/*********************************************/
int16_t MM3_Heading(void)
{
  int32_t sin_pitch, cos_pitch, sin_roll, cos_roll, sin_yaw, cos_yaw;
  int32_t  Hx, Hy, Hz, Hx_corr, Hy_corr;
  int16_t angle;
  int16_t heading;
 
  if (MM3_Timeout)
  {
    // Offset correction and normalization (values of H are +/- 512)
    Hx = (((int32_t)(MM3.x_axis - MM3_calib.X_off)) * 1024) / (int32_t)MM3_calib.X_range;
    Hy = (((int32_t)(MM3.y_axis - MM3_calib.Y_off)) * 1024) / (int32_t)MM3_calib.Y_range;
    Hz = (((int32_t)(MM3.z_axis - MM3_calib.Z_off)) * 1024) / (int32_t)MM3_calib.Z_range;
   
   
    // Compensate the angle of the MM3-arrow to the head of the MK by a yaw rotation transformation
    // assuming the MM3 board is mounted parallel to the frame.
    // User Param 4 is used to define the positive angle from the MM3-arrow to the MK heading
    // in a top view counter clockwise direction.
    // North is in opposite direction of the small arrow on the MM3 board.
    // Therefore 180 deg must be added to that angle.
    angle = ((int16_t)180);
    // wrap angle to interval of 0°- 359°
    angle += 360;
    angle %= 360;
    sin_yaw = (int32_t)(c_sin_8192(angle));
    cos_yaw = (int32_t)(c_cos_8192(angle));
   
    Hx_corr = Hx;
    Hy_corr = Hy;
   
    // rotate
    Hx = (Hx_corr * cos_yaw - Hy_corr  * sin_yaw) / 8192;
    Hy = (Hx_corr * sin_yaw + Hy_corr  * cos_yaw) / 8192;
   
#ifdef USE_Extended_MM3_Measurement_Model
    /* Normalize the values to be in the same range as the accelerations  */
    MM3_Hx = Hx / 51.2F;
    MM3_Hy = Hy / 51.2F;
    MM3_Hz = Hz / 51.2F;
#endif
   
    // tilt compensation
   
    // calibration factor for transforming Gyro Integrals to angular degrees
   
    // calculate sinus cosinus of pitch and tilt angle
    //angle = (status. IntegralPitch/div_factor);
    angle = (status.iTheta10 / 10);
    angle = 0;
    sin_pitch = (int32_t)(c_sin_8192(angle));
    cos_pitch = (int32_t)(c_cos_8192(angle));
   
    //angle = (IntegralRoll/div_factor);
    angle = (status.iPhi10/10);
    angle = 0;
    sin_roll = (int32_t)(c_sin_8192(angle));
    cos_roll = (int32_t)(c_cos_8192(angle));
   
    Hx_corr = (Hx * cos_pitch -  Hz * sin_pitch) / 8192;
    Hy_corr = (Hy * cos_roll +  Hz * sin_roll) / 8192;
   
    // calculate Heading
    heading = c_atan2(Hy_corr, Hx_corr);
   
#if 0
    DebugOut.Analog[3] =  Hx;
    DebugOut.Analog[4]  = Hy;
    DebugOut.Analog[5]  = Hz;
#endif
   
    // atan returns angular range from -180 deg to 180 deg in counter clockwise notation
    // but the compass course is defined in a range from 0 deg to 360 deg clockwise notation.
    if (heading < 0) heading = -heading;
    else heading = 360 - heading;
  }
  else // MM3_Timeout = 0 i.e now new data from external board
  {
    //          if(!BeepTime) BeepTime = 100; // make noise to signal the compass problem
    heading = -1;
  }
  return heading;
}