Subversion Repositories FlightCtrl

Rev

Rev 2102 | Rev 2104 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2102 Rev 2103
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
3
#include "eeprom.h"
4
#include "output.h"
4
#include "output.h"
5
#include "flight.h"
5
#include "flight.h"
6
#include "attitude.h"
6
#include "attitude.h"
7
 
7
 
8
// #define COARSERESOLUTION 1
8
// #define COARSERESOLUTION 1
9
 
9
 
10
#ifdef COARSERESOLUTION
10
#ifdef COARSERESOLUTION
11
#define NEUTRAL_PULSELENGTH 938
11
#define NEUTRAL_PULSELENGTH 938
12
#define STABILIZATION_LOG_DIVIDER 6
12
#define STABILIZATION_LOG_DIVIDER 6
13
#define SERVOLIMIT 500
13
#define SERVOLIMIT 500
14
#define SCALE_FACTOR 4
14
#define SCALE_FACTOR 4
15
#define CS2 ((1<<CS21)|(1<<CS20))
15
#define CS2 ((1<<CS21)|(1<<CS20))
16
 
16
 
17
#else
17
#else
18
#define NEUTRAL_PULSELENGTH 3750
18
#define NEUTRAL_PULSELENGTH 3750
19
#define STABILIZATION_LOG_DIVIDER 4
19
#define STABILIZATION_LOG_DIVIDER 4
20
#define SERVOLIMIT 2000
20
#define SERVOLIMIT 2000
21
#define SCALE_FACTOR 16
21
#define SCALE_FACTOR 16
22
#define CS2 (1<<CS21)
22
#define CS2 (1<<CS21)
23
#endif
23
#endif
24
 
24
 
25
#define MAX_SERVOS 8
25
#define MAX_SERVOS 8
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
29
 
29
 
30
volatile uint8_t recalculateServoTimes = 0;
30
volatile uint8_t recalculateServoTimes = 0;
31
volatile uint16_t servoValues[MAX_SERVOS];
31
volatile uint16_t servoValues[MAX_SERVOS];
32
volatile uint16_t previousManualValues[2];
32
volatile uint16_t previousManualValues[2];
33
 
33
 
34
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
34
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
35
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
35
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
36
 
36
 
37
/*****************************************************
37
/*****************************************************
38
 *              Initialize Timer 2
38
 *              Initialize Timer 2
39
 *****************************************************/
39
 *****************************************************/
40
void timer2_init(void) {
40
void timer2_init(void) {
41
    uint8_t sreg = SREG;
41
    uint8_t sreg = SREG;
42
 
42
 
43
    // disable all interrupts before reconfiguration
43
    // disable all interrupts before reconfiguration
44
    cli();
44
    cli();
45
 
45
 
46
    // set PD7 as output of the PWM for pitch servo
46
    // set PD7 as output of the PWM for pitch servo
47
    DDRD |= (1 << DDD7);
47
    DDRD |= (1 << DDD7);
48
    PORTD &= ~(1 << PORTD7); // set PD7 to low
48
    PORTD &= ~(1 << PORTD7); // set PD7 to low
49
 
49
 
50
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
50
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
51
    HEF4017R_ON; // enable reset
51
    HEF4017R_ON; // enable reset
52
 
52
 
53
    // Timer/Counter 2 Control Register A
53
    // Timer/Counter 2 Control Register A
54
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
54
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
55
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
55
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
56
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
56
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
57
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
57
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
58
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
58
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
59
 
59
 
60
    // Timer/Counter 2 Control Register B
60
    // Timer/Counter 2 Control Register B
61
 
61
 
62
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
62
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
63
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
63
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
64
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
64
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
65
 
65
 
66
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
66
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
67
    TCCR2B |= CS2;
67
    TCCR2B |= CS2;
68
 
68
 
69
    // Initialize the Timer/Counter 2 Register
69
    // Initialize the Timer/Counter 2 Register
70
    TCNT2 = 0;
70
    TCNT2 = 0;
71
 
71
 
72
    // Initialize the Output Compare Register A used for signal generation on port PD7.
72
    // Initialize the Output Compare Register A used for signal generation on port PD7.
73
    OCR2A = 255;
73
    OCR2A = 255;
74
 
74
 
75
    // Timer/Counter 2 Interrupt Mask Register
75
    // Timer/Counter 2 Interrupt Mask Register
76
    // Enable timer output compare match A Interrupt only
76
    // Enable timer output compare match A Interrupt only
77
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
77
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
78
    TIMSK2 |= (1 << OCIE2A);
78
    TIMSK2 |= (1 << OCIE2A);
79
 
79
 
80
    for (uint8_t axis=0; axis<2; axis++)
80
    for (uint8_t axis=0; axis<2; axis++)
81
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
81
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
82
 
82
 
83
    SREG = sreg;
83
    SREG = sreg;
84
}
84
}
85
 
85
 
86
/*****************************************************
86
/*****************************************************
87
 * Control (camera gimbal etc.) servos
87
 * Control (camera gimbal etc.) servos
88
 *****************************************************/
88
 *****************************************************/
89
int16_t calculateStabilizedServoAxis(uint8_t axis) {
89
int16_t calculateStabilizedServoAxis(uint8_t axis) {
90
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
90
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
91
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
91
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
92
  // That is a divisor of about 1<<14. Same conclusion as H&I.
92
  // That is a divisor of about 1<<14. Same conclusion as H&I.
93
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
93
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
94
  value = value >> 8;
94
  value = value >> 8;
95
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
95
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
96
    return -value;
96
    return -value;
97
  return value;
97
  return value;
98
}
98
}
99
 
99
 
100
// With constant-speed limitation.
100
// With constant-speed limitation.
101
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
101
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
102
  int16_t diff = manualValue - previousManualValues[axis];
102
  int16_t diff = manualValue - previousManualValues[axis];
103
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
103
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
104
  if (diff > maxSpeed) diff = maxSpeed;
104
  if (diff > maxSpeed) diff = maxSpeed;
105
  else if (diff < -maxSpeed) diff = -maxSpeed;
105
  else if (diff < -maxSpeed) diff = -maxSpeed;
106
  manualValue = previousManualValues[axis] + diff;
106
  manualValue = previousManualValues[axis] + diff;
107
  previousManualValues[axis] = manualValue;
107
  previousManualValues[axis] = manualValue;
108
  return manualValue;
108
  return manualValue;
109
}
109
}
110
 
110
 
111
// add stabilization and manual, apply soft position limits.
111
// add stabilization and manual, apply soft position limits.
112
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
112
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
113
int16_t featuredServoValue(uint8_t axis) {
113
int16_t featuredServoValue(uint8_t axis) {
114
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
114
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
115
  value += calculateStabilizedServoAxis(axis);
115
  value += calculateStabilizedServoAxis(axis);
116
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
116
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
117
  if (value < limit) value = limit;
117
  if (value < limit) value = limit;
118
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
118
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
119
  if (value > limit) value = limit;
119
  if (value > limit) value = limit;
120
  value -= (128 * SCALE_FACTOR);
120
  value -= (128 * SCALE_FACTOR);
121
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
121
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
122
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
122
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
123
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
123
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
124
  return value + NEUTRAL_PULSELENGTH;
124
  return value + NEUTRAL_PULSELENGTH;
125
}
125
}
126
 
126
 
127
void calculateControlServoValues(void) {
127
void calculateControlServoValues(void) {
128
  int16_t value;
128
  int16_t value;
129
  for (uint8_t axis=0; axis<3; axis++) {
129
  for (uint8_t axis=0; axis<4; axis++) {
130
        value = controlServos[axis];
130
        value = controlServos[axis];
131
        value /= 2;
131
        value *= 2;
132
        servoValues[axis] = value + NEUTRAL_PULSELENGTH;
132
        servoValues[axis] = value + NEUTRAL_PULSELENGTH;
133
  }
133
  }
134
  debugOut.analog[18] = servoValues[0];
134
  debugOut.analog[24] = servoValues[0];
-
 
135
  debugOut.analog[25] = servoValues[1];
135
  debugOut.analog[19] = servoValues[2];
136
  debugOut.analog[26] = servoValues[2];
-
 
137
  debugOut.analog[27] = servoValues[3];
136
}
138
}
137
 
139
 
138
void calculateFeaturedServoValues(void) {
140
void calculateFeaturedServoValues(void) {
139
  int16_t value;
141
  int16_t value;
140
  uint8_t axis;
142
  uint8_t axis;
141
 
143
 
142
  // Save the computation cost of computing a new value before the old one is used.
144
  // Save the computation cost of computing a new value before the old one is used.
143
  if (!recalculateServoTimes) return;
145
  if (!recalculateServoTimes) return;
144
 
146
 
145
  for (axis=0; axis<2; axis++) {
147
  for (axis=0; axis<2; axis++) {
146
        value = featuredServoValue(axis);
148
        value = featuredServoValue(axis);
147
        servoValues[axis + 3] = value;
149
        servoValues[axis + 4] = value;
148
  }
150
  }
149
  for (axis=2; axis<MAX_SERVOS; axis++) {
151
  for (axis=2; axis<MAX_SERVOS; axis++) {
150
        value = 128 * SCALE_FACTOR;
152
        value = 128 * SCALE_FACTOR;
151
        servoValues[axis + 3] = value;
153
        servoValues[axis + 4] = value;
152
  }
154
  }
153
 
155
 
154
  recalculateServoTimes = 0;
156
  recalculateServoTimes = 0;
155
}
157
}
156
 
158
 
157
ISR(TIMER2_COMPA_vect) {
159
ISR(TIMER2_COMPA_vect) {
158
  static uint16_t remainingPulseTime;
160
  static uint16_t remainingPulseTime;
159
  static uint8_t servoIndex = 0;
161
  static uint8_t servoIndex = 0;
160
  static uint16_t sumOfPulseTimes = 0;
162
  static uint16_t sumOfPulseTimes = 0;
161
 
163
 
162
  if (!remainingPulseTime) {
164
  if (!remainingPulseTime) {
163
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
165
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
164
    if (servoIndex < staticParams.servoCount) {
166
    if (servoIndex < staticParams.servoCount) {
165
      // There are more signals to output.
167
      // There are more signals to output.
166
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
168
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
167
      servoIndex++;
169
      servoIndex++;
168
    } else {
170
    } else {
169
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
171
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
170
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
172
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
171
      sumOfPulseTimes = servoIndex = 0;
173
      sumOfPulseTimes = servoIndex = 0;
172
      recalculateServoTimes = 1;
174
      recalculateServoTimes = 1;
173
      HEF4017R_ON;
175
      HEF4017R_ON;
174
    }
176
    }
175
  }
177
  }
176
 
178
 
177
  // Schedule the next OCR2A event. The counter is already reset at this time.
179
  // Schedule the next OCR2A event. The counter is already reset at this time.
178
  if (remainingPulseTime > 256+128) {
180
  if (remainingPulseTime > 256+128) {
179
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
181
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
180
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
182
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
181
    OCR2A = 255;
183
    OCR2A = 255;
182
    TCCR2A &= ~(1<<COM2A0);
184
    TCCR2A &= ~(1<<COM2A0);
183
    remainingPulseTime-=256;
185
    remainingPulseTime-=256;
184
  } else if (remainingPulseTime > 256) {
186
  } else if (remainingPulseTime > 256) {
185
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
187
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
186
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
188
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
187
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
189
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
188
    remainingPulseTime-=128;
190
    remainingPulseTime-=128;
189
    OCR2A=127;
191
    OCR2A=127;
190
  } else {
192
  } else {
191
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
193
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
192
    TCCR2A |= (1<<COM2A0);
194
    TCCR2A |= (1<<COM2A0);
193
    OCR2A = remainingPulseTime-1;
195
    OCR2A = remainingPulseTime-1;
194
    remainingPulseTime=0;
196
    remainingPulseTime=0;
195
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
197
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
196
  }
198
  }
197
}
199
}
198
 
200