Subversion Repositories FlightCtrl

Rev

Rev 2102 | Rev 2104 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2102 Rev 2103
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
#include <avr/interrupt.h>
3
#include <avr/interrupt.h>
4
 
4
 
5
#include "rc.h"
5
#include "rc.h"
6
#include "controlMixer.h"
6
#include "controlMixer.h"
7
#include "configuration.h"
7
#include "configuration.h"
8
#include "commands.h"
8
#include "commands.h"
9
#include "output.h"
9
#include "output.h"
10
 
10
 
11
// The channel array is 0-based!
11
// The channel array is 0-based!
12
volatile int16_t PPM_in[MAX_CHANNELS];
12
volatile int16_t PPM_in[MAX_CHANNELS];
13
volatile uint8_t RCQuality;
13
volatile uint8_t RCQuality;
14
 
14
 
15
uint8_t lastRCCommand = COMMAND_NONE;
15
uint8_t lastRCCommand = COMMAND_NONE;
16
uint8_t commandTimer = 0;
16
uint8_t commandTimer = 0;
17
 
17
 
18
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
18
uint8_t lastFlightMode = FLIGHT_MODE_NONE;
19
 
19
 
20
/***************************************************************
20
/***************************************************************
21
 *  16bit timer 1 is used to decode the PPM-Signal            
21
 *  16bit timer 1 is used to decode the PPM-Signal            
22
 ***************************************************************/
22
 ***************************************************************/
23
void RC_Init(void) {
23
void RC_Init(void) {
24
  uint8_t sreg = SREG;
24
  uint8_t sreg = SREG;
25
 
25
 
26
  // disable all interrupts before reconfiguration
26
  // disable all interrupts before reconfiguration
27
  cli();
27
  cli();
28
 
28
 
29
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
29
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
30
  DDRD &= ~(1<<6);
30
  DDRD &= ~(1<<6);
31
  PORTD |= (1<<PORTD6);
31
  PORTD |= (1<<PORTD6);
32
 
32
 
33
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
33
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
34
  // set as output
34
  // set as output
35
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
35
  DDRD |= (1<<DDD5) | (1<<DDD4) | (1<<DDD3);
36
  // low level
36
  // low level
37
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
37
  PORTD &= ~((1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3));
38
 
38
 
39
  // PD3 can't be used if 2nd UART is activated
39
  // PD3 can't be used if 2nd UART is activated
40
  // because TXD1 is at that port
40
  // because TXD1 is at that port
41
  if (CPUType != ATMEGA644P) {
41
  if (CPUType != ATMEGA644P) {
42
    DDRD |= (1<<PORTD3);
42
    DDRD |= (1<<PORTD3);
43
    PORTD &= ~(1<<PORTD3);
43
    PORTD &= ~(1<<PORTD3);
44
  }
44
  }
45
 
45
 
46
  // Timer/Counter1 Control Register A, B, C
46
  // Timer/Counter1 Control Register A, B, C
47
 
47
 
48
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
48
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
49
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
49
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
50
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
50
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
51
  // Enable input capture noise cancler (bit: ICNC1=1)
51
  // Enable input capture noise cancler (bit: ICNC1=1)
52
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
52
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
53
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
53
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2�s
54
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
54
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
55
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
55
  TCCR1A &= ~((1 << COM1A1) | (1 << COM1A0) | (1 << COM1B1) | (1 << COM1B0) | (1 << WGM11) | (1 << WGM10));
56
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
56
  TCCR1B &= ~((1 << WGM13) | (1 << WGM12) | (1 << CS12));
57
  TCCR1B |= (1 << CS11) | (1 << CS10) | (1 << ICES1) | (1 << ICNC1);
57
  TCCR1B |= (1 << CS11) | (1 << CS10) | (1 << ICES1) | (1 << ICNC1);
58
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
58
  TCCR1C &= ~((1 << FOC1A) | (1 << FOC1B));
59
 
59
 
60
  // Timer/Counter1 Interrupt Mask Register
60
  // Timer/Counter1 Interrupt Mask Register
61
  // Enable Input Capture Interrupt (bit: ICIE1=1)
61
  // Enable Input Capture Interrupt (bit: ICIE1=1)
62
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
62
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
63
  // Enable Overflow Interrupt (bit: TOIE1=0)
63
  // Enable Overflow Interrupt (bit: TOIE1=0)
64
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
64
  TIMSK1 &= ~((1<<OCIE1B) | (1<<OCIE1A) | (1<<TOIE1));
65
  TIMSK1 |= (1<<ICIE1);
65
  TIMSK1 |= (1<<ICIE1);
66
 
66
 
67
  RCQuality = 0;
67
  RCQuality = 0;
68
 
68
 
69
  SREG = sreg;
69
  SREG = sreg;
70
}
70
}
71
 
71
 
72
/********************************************************************/
72
/********************************************************************/
73
/*         Every time a positive edge is detected at PD6            */
73
/*         Every time a positive edge is detected at PD6            */
74
/********************************************************************/
74
/********************************************************************/
75
/*                               t-Frame
75
/*                               t-Frame
76
    <----------------------------------------------------------------------->
76
    <----------------------------------------------------------------------->
77
     ____   ______   _____   ________                ______    sync gap      ____
77
     ____   ______   _____   ________                ______    sync gap      ____
78
    |    | |      | |     | |        |              |      |                |
78
    |    | |      | |     | |        |              |      |                |
79
    |    | |      | |     | |        |              |      |                |
79
    |    | |      | |     | |        |              |      |                |
80
 ___|    |_|      |_|     |_|        |_.............|      |________________|
80
 ___|    |_|      |_|     |_|        |_.............|      |________________|
81
    <-----><-------><------><-----------            <------>                <---
81
    <-----><-------><------><-----------            <------>                <---
82
 t0       t1      t2       t4                     tn                     t0
82
 t0       t1      t2       t4                     tn                     t0
83
 
83
 
84
 The PPM-Frame length is 22.5 ms.
84
 The PPM-Frame length is 22.5 ms.
85
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
85
 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
86
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
86
 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
87
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
87
 The maximum time delay of two events coding a channel is ( 1.7 + 0.3) ms = 2 ms.
88
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
88
 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
89
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
89
 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
90
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
90
 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
91
 the syncronization gap.
91
 the syncronization gap.
92
 */
92
 */
93
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
93
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
94
  int16_t signal = 0, tmp;
94
  int16_t signal = 0, tmp;
95
  static int16_t index;
95
  static int16_t index;
96
  static uint16_t oldICR1 = 0;
96
  static uint16_t oldICR1 = 0;
97
 
97
 
98
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
98
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
99
  // at the time the edge was detected
99
  // at the time the edge was detected
100
 
100
 
101
  // calculate the time delay to the previous event time which is stored in oldICR1
101
  // calculate the time delay to the previous event time which is stored in oldICR1
102
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
102
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
103
  // implicit handles a timer overflow 65535 -> 0 the right way.
103
  // implicit handles a timer overflow 65535 -> 0 the right way.
104
  signal = (uint16_t) ICR1 - oldICR1;
104
  signal = (uint16_t) ICR1 - oldICR1;
105
  oldICR1 = ICR1;
105
  oldICR1 = ICR1;
106
 
106
 
107
  //sync gap? (3.52 ms < signal < 25.6 ms)
107
  //sync gap? (3.52 ms < signal < 25.6 ms)
108
  if ((signal > 1100) && (signal < 8000)) {
108
  if ((signal > 1100) && (signal < 8000)) {
109
    index = 0;
109
    index = 0;
110
  } else { // within the PPM frame
110
  } else { // within the PPM frame
111
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
111
    if (index < MAX_CHANNELS) { // PPM24 supports 12 channels
112
      // check for valid signal length (0.8 ms < signal < 2.1984 ms)
112
      // check for valid signal length (0.8 ms < signal < 2.1984 ms)
113
      // signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
113
      // signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
114
      if ((signal > 250) && (signal < 687)) {
114
      if ((signal > 250) && (signal < 687)) {
115
        // shift signal to zero symmetric range  -154 to 159
115
        // shift signal to zero symmetric range  -154 to 159
116
        signal -= 475; // offset of 1.4912 ms ??? (469 * 3.2us = 1.5008 ms)
116
        signal -= 475; // offset of 1.4912 ms ??? (469 * 3.2us = 1.5008 ms)
117
        // check for stable signal
117
        // check for stable signal
118
        if (abs(signal - PPM_in[index]) < 6) {
118
        if (abs(signal - PPM_in[index]) < 6) {
119
          if (RCQuality < 200)
119
          if (RCQuality < 200)
120
            RCQuality += 10;
120
            RCQuality += 10;
121
          else
121
          else
122
            RCQuality = 200;
122
            RCQuality = 200;
123
        }
123
        }
124
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
124
        // If signal is the same as before +/- 1, just keep it there. Naah lets get rid of this slimy sticy stuff.
125
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
125
        // if (signal >= PPM_in[index] - 1 && signal <= PPM_in[index] + 1) {
126
          // In addition, if the signal is very close to 0, just set it to 0.
126
          // In addition, if the signal is very close to 0, just set it to 0.
127
        if (signal >= -1 && signal <= 1) {
127
        if (signal >= -1 && signal <= 1) {
128
          tmp = 0;
128
          tmp = 0;
129
        //} else {
129
        //} else {
130
        //  tmp = PPM_in[index];
130
        //  tmp = PPM_in[index];
131
        //  }
131
        //  }
132
        } else
132
        } else
133
          tmp = signal;
133
          tmp = signal;
134
        PPM_in[index] = tmp; // update channel value
134
        PPM_in[index] = tmp; // update channel value
135
      }
135
      }
136
      index++; // next channel
136
      index++; // next channel
137
      // demux sum signal for channels 5 to 7 to J3, J4, J5
137
      // demux sum signal for channels 5 to 7 to J3, J4, J5
138
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
138
      // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
139
      // channels are usually available at the receiver anyway.
139
      // channels are usually available at the receiver anyway.
140
      // if(index == 5) J3HIGH; else J3LOW;
140
      // if(index == 5) J3HIGH; else J3LOW;
141
      // if(index == 6) J4HIGH; else J4LOW;
141
      // if(index == 6) J4HIGH; else J4LOW;
142
      // if(CPUType != ATMEGA644P) // not used as TXD1
142
      // if(CPUType != ATMEGA644P) // not used as TXD1
143
      //  {
143
      //  {
144
      //    if(index == 7) J5HIGH; else J5LOW;
144
      //    if(index == 7) J5HIGH; else J5LOW;
145
      //  }
145
      //  }
146
    }
146
    }
147
  }
147
  }
148
}
148
}
149
 
149
 
150
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
150
#define RCChannel(dimension) PPM_in[channelMap.channels[dimension]]
151
#define COMMAND_THRESHOLD 85
151
#define COMMAND_THRESHOLD 85
152
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
152
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
153
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
153
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
154
 
154
 
155
#define RC_SCALING 4
155
#define RC_SCALING 4
156
 
156
 
157
uint8_t getControlModeSwitch() {
157
uint8_t getControlModeSwitch(void) {
158
        int16_t channel = RCChannel(CH_MODESWITCH) + POT_OFFSET;
158
        int16_t channel = RCChannel(CH_MODESWITCH) + POT_OFFSET;
159
        uint8_t flightMode = channel < 256/3 ? FLIGHT_MODE_MANUAL :
159
        uint8_t flightMode = channel < 256/3 ? FLIGHT_MODE_MANUAL :
160
                (channel > 256*2/3 ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
160
                (channel > 256*2/3 ? FLIGHT_MODE_ANGLES : FLIGHT_MODE_RATE);
161
        return flightMode;
161
        return flightMode;
162
}
162
}
163
 
163
 
164
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
164
// Gyro calibration is performed as.... well mode switch with no throttle and no airspeed would be nice.
165
// Maybe simply: Very very low throttle.
165
// Maybe simply: Very very low throttle.
166
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
166
// Throttle xlow for COMMAND_TIMER: GYROCAL (once).
167
// mode switched: CHMOD
167
// mode switched: CHMOD
168
 
168
 
169
uint8_t RC_getCommand(void) {
169
uint8_t RC_getCommand(void) {
170
        uint8_t flightMode = getControlModeSwitch();
170
        uint8_t flightMode = getControlModeSwitch();
171
 
171
 
172
        if (lastFlightMode != flightMode) {
172
        if (lastFlightMode != flightMode) {
173
                lastFlightMode = flightMode;
173
                lastFlightMode = flightMode;
174
                lastRCCommand = COMMAND_CHMOD;
174
                lastRCCommand = COMMAND_CHMOD;
175
                return lastRCCommand;
175
                return lastRCCommand;
176
        }
176
        }
177
 
177
 
178
        int16_t channel = RCChannel(CH_MODESWITCH) + POT_OFFSET;
178
        int16_t channel = RCChannel(CH_THROTTLE);
179
        if (channel <= -32) { // <= 900 us
179
        if (channel <= -140) { // <= 900 us
180
                if (commandTimer == COMMAND_TIMER) {
180
                if (commandTimer == COMMAND_TIMER) {
181
                        lastRCCommand = COMMAND_GYROCAL;
181
                        lastRCCommand = COMMAND_GYROCAL;
182
                }
182
                }
183
                if (commandTimer <= COMMAND_TIMER) {
183
                if (commandTimer <= COMMAND_TIMER) {
184
                        commandTimer++;
184
                        commandTimer++;
185
                }
185
                }
-
 
186
        } else {
186
        } else commandTimer = 0;
187
          commandTimer = 0;
-
 
188
          lastRCCommand = COMMAND_NONE;
-
 
189
        }
187
        return lastRCCommand;
190
        return lastRCCommand;
188
}
191
}
189
 
192
 
190
uint8_t RC_getArgument(void) {
193
uint8_t RC_getArgument(void) {
191
        return lastFlightMode;
194
        return lastFlightMode;
192
}
195
}
193
 
196
 
194
/*
197
/*
195
 * Get Pitch, Roll, Throttle, Yaw values
198
 * Get Pitch, Roll, Throttle, Yaw values
196
 */
199
 */
197
void RC_periodicTaskAndPRTY(int16_t* PRTY) {
200
void RC_periodicTaskAndPRYT(int16_t* PRYT) {
198
  if (RCQuality) {
201
  if (RCQuality) {
199
    RCQuality--;
202
    RCQuality--;
200
    PRTY[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) * RC_SCALING;
-
 
201
    PRTY[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) * RC_SCALING;
-
 
202
    PRTY[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) * RC_SCALING;
-
 
203
    PRTY[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   * RC_SCALING;
-
 
204
 
203
 
-
 
204
    debugOut.analog[20] = RCChannel(CH_ELEVATOR);
-
 
205
    debugOut.analog[21] = RCChannel(CH_AILERONS);
205
    debugOut.analog[16] = PRTY[CONTROL_ELEVATOR];
206
    debugOut.analog[22] = RCChannel(CH_RUDDER);
-
 
207
    debugOut.analog[23] = RCChannel(CH_THROTTLE);
-
 
208
 
-
 
209
    PRYT[CONTROL_ELEVATOR]   = RCChannel(CH_ELEVATOR) * RC_SCALING;
-
 
210
    PRYT[CONTROL_AILERONS]   = RCChannel(CH_AILERONS) * RC_SCALING;
-
 
211
    PRYT[CONTROL_RUDDER]     = RCChannel(CH_RUDDER)   * RC_SCALING;
206
    debugOut.analog[17] = PRTY[CONTROL_THROTTLE];
212
    PRYT[CONTROL_THROTTLE]   = RCChannel(CH_THROTTLE) * RC_SCALING;
207
 
213
 
208
    uint8_t command = COMMAND_NONE; //RC_getStickCommand();
214
    uint8_t command = COMMAND_NONE; //RC_getStickCommand();
209
    if (lastRCCommand == command) {
215
    if (lastRCCommand == command) {
210
      // Keep timer from overrunning.
216
      // Keep timer from overrunning.
211
      if (commandTimer < COMMAND_TIMER)
217
      if (commandTimer < COMMAND_TIMER)
212
        commandTimer++;
218
        commandTimer++;
213
    } else {
219
    } else {
214
      // There was a change.
220
      // There was a change.
215
      lastRCCommand = command;
221
      lastRCCommand = command;
216
      commandTimer = 0;
222
      commandTimer = 0;
217
    }
223
    }
218
  } // if RCQuality is no good, we just do nothing.
224
  } // if RCQuality is no good, we just do nothing.
219
}
225
}
220
 
226
 
221
/*
227
/*
222
 * Get other channel value
228
 * Get other channel value
223
 */
229
 */
224
int16_t RC_getVariable(uint8_t varNum) {
230
int16_t RC_getVariable(uint8_t varNum) {
225
  if (varNum < 4)
231
  if (varNum < 4)
226
    // 0th variable is 5th channel (1-based) etc.
232
    // 0th variable is 5th channel (1-based) etc.
227
    return RCChannel(varNum + CH_POTS) + POT_OFFSET;
233
    return RCChannel(varNum + CH_POTS) + POT_OFFSET;
228
  /*
234
  /*
229
   * Let's just say:
235
   * Let's just say:
230
   * The RC variable i is hardwired to channel i, i>=4
236
   * The RC variable i is hardwired to channel i, i>=4
231
   */
237
   */
232
  return PPM_in[varNum] + POT_OFFSET;
238
  return PPM_in[varNum] + POT_OFFSET;
233
}
239
}
234
 
240
 
235
uint8_t RC_getSignalQuality(void) {
241
uint8_t RC_getSignalQuality(void) {
236
  if (RCQuality >= 160)
242
  if (RCQuality >= 160)
237
    return SIGNAL_GOOD;
243
    return SIGNAL_GOOD;
238
  if (RCQuality >= 140)
244
  if (RCQuality >= 140)
239
    return SIGNAL_OK;
245
    return SIGNAL_OK;
240
  if (RCQuality >= 120)
246
  if (RCQuality >= 120)
241
    return SIGNAL_BAD;
247
    return SIGNAL_BAD;
242
  return SIGNAL_LOST;
248
  return SIGNAL_LOST;
243
}
249
}
244
 
250
 
245
/*
251
/*
246
 * To should fired only when the right stick is in the center position.
252
 * To should fired only when the right stick is in the center position.
247
 * This will cause the value of pitch and roll stick to be adjusted
253
 * This will cause the value of pitch and roll stick to be adjusted
248
 * to zero (not just to near zero, as per the assumption in rc.c
254
 * to zero (not just to near zero, as per the assumption in rc.c
249
 * about the rc signal. I had values about 50..70 with a Futaba
255
 * about the rc signal. I had values about 50..70 with a Futaba
250
 * R617 receiver.) This calibration is not strictly necessary, but
256
 * R617 receiver.) This calibration is not strictly necessary, but
251
 * for control logic that depends on the exact (non)center position
257
 * for control logic that depends on the exact (non)center position
252
 * of a stick, it may be useful.
258
 * of a stick, it may be useful.
253
 */
259
 */
254
void RC_calibrate(void) {
260
void RC_calibrate(void) {
255
  // Do nothing.
261
  // Do nothing.
256
}
262
}
257
 
263