Subversion Repositories FlightCtrl

Rev

Rev 2024 | Rev 2103 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2024 Rev 2099
Line 1... Line -...
1
/************************************************************************/
-
 
2
/* Flight Attitude                                                      */
-
 
3
/************************************************************************/
-
 
4
 
-
 
5
#include <stdlib.h>
1
#include <stdlib.h>
6
#include <avr/io.h>
2
#include <avr/io.h>
-
 
3
#include <stdlib.h>
Line 7... Line 4...
7
 
4
 
8
#include "attitude.h"
5
#include "attitude.h"
-
 
6
#include "dongfangMath.h"
Line 9... Line 7...
9
#include "dongfangMath.h"
7
#include "commands.h"
10
 
8
 
Line 11... Line 9...
11
// For scope debugging only!
9
// For scope debugging only!
Line 18... Line 16...
18
#include "output.h"
16
#include "output.h"
Line 19... Line 17...
19
 
17
 
20
// Some calculations are performed depending on some stick related things.
18
// Some calculations are performed depending on some stick related things.
Line 21... Line -...
21
#include "controlMixer.h"
-
 
22
 
-
 
23
// For Servo_On / Off
-
 
24
// #include "timer2.h"
19
#include "controlMixer.h"
Line 25... Line 20...
25
 
20
 
26
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
21
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
27
 
22
 
28
/*
23
/*
29
 * Gyro readings, as read from the analog module. It would have been nice to flow
24
 * Gyro readings, as read from the analog module. It would have been nice to flow
30
 * them around between the different calculations as a struct or array (doing
25
 * them around between the different calculations as a struct or array (doing
31
 * things functionally without side effects) but this is shorter and probably
26
 * things functionally without side effects) but this is shorter and probably
32
 * faster too.
27
 * faster too.
33
 * The variables are overwritten at each attitude calculation invocation - the values
28
 * The variables are overwritten at each attitude calculation invocation - the values
Line 34... Line 29...
34
 * are not preserved or reused.
29
 * are not preserved or reused.
35
 */
30
 */
36
int16_t rate_ATT[2], yawRate;
31
int16_t rate_ATT[3];
Line 37... Line 32...
37
 
32
 
38
// With different (less) filtering
33
// With different (less) filtering
39
int16_t rate_PID[2];
34
int16_t rate_PID[3];
40
int16_t differential[3];
-
 
41
 
-
 
42
/*
-
 
43
 * Gyro integrals. These are the rotation angles of the airframe compared to the
-
 
44
 * horizontal plane, yaw relative to yaw at start. Not really used for anything else
-
 
45
 * than diagnostics.
-
 
46
 */
-
 
47
int32_t angle[3];
35
int16_t differential[3];
48
 
36
 
49
/*
-
 
50
 * Error integrals. Stick is always positive. Gyro is configurable positive or negative.
-
 
51
 * These represent the deviation of the attitude angle from the desired on each axis.
-
 
52
 */
-
 
53
int32_t error[3];
-
 
54
 
-
 
55
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
-
 
Line 56... Line 37...
56
 
37
/*
57
int16_t correctionSum[2] = { 0, 0 };
38
 * Gyro integrals. These are the rotation angles of the airframe compared to the
58
 
39
 * horizontal plane, yaw relative to yaw at start.
59
// For NaviCTRL use.
40
 */
60
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
41
int32_t attitude[3];
61
 
42
 
62
/*
43
/*
Line 63... Line 44...
63
 * Experiment: Compensating for dynamic-induced gyro biasing.
44
 * Experiment: Compensating for dynamic-induced gyro biasing.
Line 74... Line 55...
74
 * accurately, but since: 1) the angles are rather small at times when
55
 * accurately, but since: 1) the angles are rather small at times when
75
 * it makes sense to set the integrals (standing on ground, or flying at  
56
 * it makes sense to set the integrals (standing on ground, or flying at  
76
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
57
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
77
 * it is hardly worth the trouble.                                      
58
 * it is hardly worth the trouble.                                      
78
 ************************************************************************/
59
 ************************************************************************/
79
 
60
/*
80
int32_t getAngleEstimateFromAcc(uint8_t axis) {
61
int32_t getAngleEstimateFromAcc(uint8_t axis) {
81
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
62
  return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
82
}
63
}
-
 
64
*/
Line 83... Line 65...
83
 
65
 
84
void setStaticAttitudeAngles(void) {
-
 
85
#ifdef ATTITUDE_USE_ACC_SENSORS
-
 
86
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
-
 
87
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
-
 
88
#else
66
void setStaticAttitudeAngles(void) {
89
  angle[PITCH] = angle[ROLL] = 0;
-
 
90
#endif
67
  attitude[PITCH] = attitude[ROLL] = 0;
Line 91... Line 68...
91
}
68
}
92
 
69
 
93
/************************************************************************
70
/************************************************************************
94
 * Neutral Readings                                                    
71
 * Neutral Readings                                                    
95
 ************************************************************************/
-
 
96
void attitude_setNeutral(void) {
-
 
97
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
-
 
98
  driftComp[PITCH] = driftComp[ROLL];
-
 
99
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
72
 ************************************************************************/
100
 
73
void attitude_setNeutral(void) {
Line 101... Line 74...
101
  // Calibrate hardware.
74
    // Calibrate hardware.
102
  analog_calibrate();
75
  analog_setNeutral();
103
 
-
 
104
  // reset gyro integrals to acc guessing
-
 
105
  setStaticAttitudeAngles();
-
 
106
 
-
 
107
  // Inititialize YawGyroIntegral value with current compass heading
-
 
108
  angle[YAW] = 0;
76
 
Line 109... Line 77...
109
 
77
  // reset gyro integrals to acc guessing
110
  // Servo_On(); //enable servo output
78
  setStaticAttitudeAngles();
111
}
79
}
Line 117... Line 85...
117
 * The rate variable end up in a range of about [-1024, 1023].
85
 * The rate variable end up in a range of about [-1024, 1023].
118
 *************************************************************************/
86
 *************************************************************************/
119
void getAnalogData(void) {
87
void getAnalogData(void) {
120
  uint8_t axis;
88
  uint8_t axis;
Line -... Line 89...
-
 
89
 
-
 
90
  analog_update();
121
 
91
 
122
  for (axis = PITCH; axis <= ROLL; axis++) {
92
  for (axis = PITCH; axis <= YAW; axis++) {
123
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
93
    rate_PID[axis] = gyro_PID[axis];
124
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
94
    rate_ATT[axis] = gyro_ATT[axis];
125
    differential[axis] = gyroD[axis];
-
 
126
    averageAcc[axis] += acc[axis];
95
    differential[axis] = gyroD[axis];
127
  }
-
 
128
 
-
 
129
  differential[YAW] = gyroD[YAW];
-
 
130
 
-
 
131
  averageAccCount++;
-
 
132
  yawRate = yawGyro + driftCompYaw;
-
 
133
 
-
 
134
  // We are done reading variables from the analog module.
-
 
135
  // Interrupt-driven sensor reading may restart.
-
 
136
  analogDataReady = 0;
-
 
137
  analog_start();
96
  }
Line 138... Line 97...
138
}
97
}
139
 
98
 
140
void integrate(void) {
99
void integrate(void) {
Line 141... Line -...
141
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
-
 
142
  uint8_t axis;
-
 
143
 
-
 
144
    // TODO: Multiply on a factor on control. Wont work without...
-
 
145
  if (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE) {
-
 
146
    error[PITCH] += control[CONTROL_ELEVATOR] + (staticParams.servoDirections & 1 ? rate_ATT[PITCH] : -rate_ATT[PITCH]);
-
 
147
    error[ROLL]  += control[CONTROL_AILERONS] + (staticParams.servoDirections & 2 ? rate_ATT[ROLL]  : -rate_ATT[ROLL]);
-
 
148
    error[YAW]   += control[CONTROL_RUDDER]   + (staticParams.servoDirections & 4 ? yawRate : -yawRate);
-
 
149
 
-
 
150
    angle[PITCH] += rate_ATT[PITCH];
-
 
151
    angle[ROLL]  += rate_ATT[ROLL];
-
 
152
    angle[YAW] += yawRate;
-
 
153
} else {
-
 
154
    error[PITCH] += control[CONTROL_ELEVATOR] + (staticParams.servoDirections & SERVO_DIRECTION_ELEVATOR ? rate_ATT[PITCH] : -rate_ATT[PITCH]);
-
 
155
    error[ROLL]  += control[CONTROL_AILERONS] + (staticParams.servoDirections & SERVO_DIRECTION_AILERONS ? rate_ATT[ROLL]  : -rate_ATT[ROLL]);
-
 
156
    error[YAW]   += control[CONTROL_RUDDER]   + (staticParams.servoDirections & SERVO_DIRECTION_RUDDER ? yawRate : -yawRate);
-
 
157
    angle[PITCH] += rate_ATT[PITCH];
100
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
158
    angle[ROLL]  += rate_ATT[ROLL];
-
 
159
    angle[YAW] += yawRate;
101
  uint8_t axis;
160
  }
-
 
161
 
-
 
162
// TODO: Configurable.
-
 
163
#define ERRORLIMIT 1000
-
 
164
for (axis=PITCH; axis<=YAW; axis++) {
102
 
165
  if (error[axis] > ERRORLIMIT) {
103
  /*
166
        error[axis] = ERRORLIMIT;
104
   * Yaw
167
    } else if (angle[axis] <= -ERRORLIMIT) {
-
 
168
        angle[axis] = -ERRORLIMIT;
-
 
169
    }
105
   * Calculate yaw gyro integral (~ to rotation angle)
170
}
106
   * Limit heading proportional to 0 deg to 360 deg
171
   
107
   */
172
  /*
-
 
173
   * Pitch axis integration and range boundary wrap.
-
 
174
   */
-
 
175
  for (axis = PITCH; axis <= ROLL; axis++) {
-
 
176
    angle[axis] += rate_ATT[axis];
-
 
177
    if (angle[axis] > PITCHROLLOVER180) {
-
 
178
      angle[axis] -= PITCHROLLOVER360;
-
 
179
    } else if (angle[axis] <= -PITCHROLLOVER180) {
-
 
180
      angle[axis] += PITCHROLLOVER360;
-
 
181
    }
-
 
182
  }
-
 
183
 
-
 
184
    /*
-
 
185
     * Yaw
-
 
186
     * Calculate yaw gyro integral (~ to rotation angle)
-
 
187
     * Limit yawGyroHeading proportional to 0 deg to 360 deg
-
 
188
     */
-
 
189
    if (angle[YAW] >= YAWOVER360) {
-
 
190
        angle[YAW] -= YAWOVER360; // 360 deg. wrap
-
 
191
    } else if (angle[YAW] < 0) {
-
 
192
        angle[YAW] += YAWOVER360;
-
 
193
    }
-
 
194
   
-
 
195
}
-
 
196
 
-
 
197
/************************************************************************
-
 
198
 * A kind of 0'th order integral correction, that corrects the integrals
-
 
199
 * directly. This is the "gyroAccFactor" stuff in the original code.
-
 
200
 * There is (there) also a drift compensation
-
 
201
 * - it corrects the differential of the integral = the gyro offsets.
-
 
202
 * That should only be necessary with drifty gyros like ENC-03.
-
 
203
 ************************************************************************/
-
 
204
void correctIntegralsByAcc0thOrder(void) {
-
 
205
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
-
 
206
  // are less than ....., or reintroduce Kalman.
-
 
207
  // Well actually the Z axis acc. check is not so silly.
-
 
208
  uint8_t axis;
-
 
209
  int32_t temp;
-
 
210
  if (acc[Z] >= -staticParams.zerothOrderGyroCorrectionZAccLimit && acc[Z]
-
 
211
      <= dynamicParams.UserParams[7]) {
-
 
212
    DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
-
 
213
 
-
 
214
    uint8_t permilleAcc = staticParams.zerothOrderGyroCorrectionFactorx1000;
-
 
215
    uint8_t debugFullWeight = 1;
-
 
216
    int32_t accDerived;
-
 
217
 
-
 
218
    if ((control[YAW] < -64) || (control[YAW] > 64)) { // reduce further if yaw stick is active
-
 
Line 219... Line -...
219
      permilleAcc /= 2;
-
 
220
      debugFullWeight = 0;
-
 
221
    }
-
 
222
 
-
 
223
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
-
 
224
      permilleAcc /= 2;
-
 
225
      debugFullWeight = 0;
-
 
226
    }
-
 
227
 
-
 
228
    if (debugFullWeight)
-
 
229
      DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
-
 
230
    else
-
 
231
      DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
-
 
232
 
108
  /*
233
    /*
-
 
234
     * Add to each sum: The amount by which the angle is changed just below.
-
 
235
     */
-
 
236
    for (axis = PITCH; axis <= ROLL; axis++) {
-
 
237
      accDerived = getAngleEstimateFromAcc(axis);
-
 
238
      // DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
-
 
239
 
-
 
240
      // 1000 * the correction amount that will be added to the gyro angle in next line.
109
   * Pitch axis integration and range boundary wrap.
241
      temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
-
 
242
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
-
 
243
          + (int32_t) permilleAcc * accDerived) / 1000L;
-
 
244
      correctionSum[axis] += angle[axis] - temp;
-
 
245
    }
-
 
246
  } else {
-
 
247
    DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
-
 
248
    DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
-
 
249
    // DebugOut.Analog[9] = 0;
-
 
250
    // DebugOut.Analog[10] = 0;
-
 
251
 
-
 
252
    DebugOut.Analog[16] = 0;
-
 
253
    DebugOut.Analog[17] = 0;
-
 
254
    // experiment: Kill drift compensation updates when not flying smooth.
-
 
255
    correctionSum[PITCH] = correctionSum[ROLL] = 0;
-
 
256
  }
-
 
257
}
-
 
258
 
-
 
259
/************************************************************************
-
 
260
 * This is an attempt to correct not the error in the angle integrals
-
 
261
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
-
 
262
 * cause of it: Gyro drift, vibration and rounding errors.
-
 
263
 * All the corrections made in correctIntegralsByAcc0thOrder over
-
 
264
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
-
 
265
 * then divided by DRIFTCORRECTION_TIME to get the approx.
-
 
266
 * correction that should have been applied to each iteration to fix
-
 
267
 * the error. This is then added to the dynamic offsets.
-
 
268
 ************************************************************************/
-
 
269
// 2 times / sec. = 488/2
-
 
270
#define DRIFTCORRECTION_TIME 256L
-
 
271
void driftCorrection(void) {
-
 
272
  static int16_t timer = DRIFTCORRECTION_TIME;
-
 
273
  int16_t deltaCorrection;
-
 
274
  int16_t round;
-
 
275
  uint8_t axis;
110
   */
276
 
-
 
277
  if (!--timer) {
111
 
278
    timer = DRIFTCORRECTION_TIME;
-
 
279
    for (axis = PITCH; axis <= ROLL; axis++) {
-
 
280
      // Take the sum of corrections applied, add it to delta
-
 
281
      if (correctionSum[axis] >=0)
-
 
282
        round = DRIFTCORRECTION_TIME / 2;
-
 
283
      else
-
 
284
        round = -DRIFTCORRECTION_TIME / 2;
-
 
285
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
-
 
286
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
-
 
287
      driftComp[axis] += deltaCorrection / staticParams.secondOrderGyroCorrectionDivisor;
112
  for (axis = PITCH; axis <= YAW; axis++) {
288
      CHECK_MIN_MAX(driftComp[axis], -staticParams.secondOrderGyroCorrectionLimit, staticParams.secondOrderGyroCorrectionLimit);
-
 
289
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
113
    attitude[axis] += rate_ATT[axis];
290
      DebugOut.Analog[16 + axis] = correctionSum[axis];
114
    if (attitude[axis] > OVER180) {
291
      DebugOut.Analog[28 + axis] = driftComp[axis];
115
      attitude[axis] -= OVER360;
292
 
116
    } else if (attitude[axis] <= -OVER180) {
Line 293... Line 117...
293
      correctionSum[axis] = 0;
117
      attitude[axis] += OVER360;
Line 300... Line 124...
300
 ************************************************************************/
124
 ************************************************************************/
301
void calculateFlightAttitude(void) {
125
void calculateFlightAttitude(void) {
302
  getAnalogData();
126
  getAnalogData();
303
  integrate();
127
  integrate();
Line 304... Line 128...
304
 
128
 
305
  DebugOut.Analog[3] = rate_PID[PITCH];
-
 
306
  DebugOut.Analog[4] = rate_PID[ROLL];
-
 
307
  DebugOut.Analog[5] = yawRate;
-
 
308
 
-
 
309
#ifdef ATTITUDE_USE_ACC_SENSORS
129
  // We are done reading variables from the analog module.
310
  correctIntegralsByAcc0thOrder();
130
  // Interrupt-driven sensor reading may restart.
311
  driftCorrection();
-
 
312
#endif
131
  startAnalogConversionCycle();