Subversion Repositories FlightCtrl

Rev

Rev 898 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 898 Rev 2147
1
/*#######################################################################################
1
/*#######################################################################################
2
Flight Control
2
Flight Control
3
#######################################################################################*/
3
#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + Copyright (c) 04.2007 Holger Buss
5
// + Copyright (c) 04.2007 Holger Buss
6
// + Nur für den privaten Gebrauch
6
// + Nur für den privaten Gebrauch
7
// + www.MikroKopter.com
7
// + www.MikroKopter.com
-
 
8
//ʲôÒÀÏ¡
8
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
9
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
9
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
10
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
10
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
11
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
11
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
12
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
12
// + bzgl. der Nutzungsbedingungen aufzunehmen.
13
// + bzgl. der Nutzungsbedingungen aufzunehmen.
13
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
14
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
14
// + Verkauf von Luftbildaufnahmen, usw.
15
// + Verkauf von Luftbildaufnahmen, usw.
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
17
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
17
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
18
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
18
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
20
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
20
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
21
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
21
// + eindeutig als Ursprung verlinkt werden
22
// + eindeutig als Ursprung verlinkt werden
22
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
24
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
24
// + Benutzung auf eigene Gefahr
25
// + Benutzung auf eigene Gefahr
25
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
26
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
28
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
28
// + mit unserer Zustimmung zulässig
29
// + mit unserer Zustimmung zulässig
29
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
30
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
30
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
31
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
31
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
32
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
32
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
33
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
33
// + this list of conditions and the following disclaimer.
34
// + this list of conditions and the following disclaimer.
34
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
35
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
35
// +     from this software without specific prior written permission.
36
// +     from this software without specific prior written permission.
36
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
37
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
37
// +     for non-commercial use (directly or indirectly)
38
// +     for non-commercial use (directly or indirectly)
38
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
39
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
39
// +     with our written permission
40
// +     with our written permission
40
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
41
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
41
// +     clearly linked as origin
42
// +     clearly linked as origin
42
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
43
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
43
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
44
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
44
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
47
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
47
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
48
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
48
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
49
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
49
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
50
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
50
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
52
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
52
// +  POSSIBILITY OF SUCH DAMAGE.
53
// +  POSSIBILITY OF SUCH DAMAGE.
53
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
54
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
54
#include <stdlib.h>
55
#include <stdlib.h>
55
#include <avr/io.h>
56
#include <avr/io.h>
56
 
57
 
57
#include "main.h"
58
#include "main.h"
58
#include "eeprom.h"
59
#include "eeprom.h"
59
#include "timer0.h"
60
#include "timer0.h"
60
#include "_Settings.h"
61
#include "_Settings.h"
61
#include "analog.h"
62
#include "analog.h"
62
#include "fc.h"
63
#include "fc.h"
63
#include "gps.h"
64
#include "gps.h"
64
#include "uart.h"
65
#include "uart.h"
65
#include "rc.h"
66
#include "rc.h"
66
#include "twimaster.h"
67
#include "twimaster.h"
67
#ifdef USE_MM3
68
#ifdef USE_MM3
68
#include "mm3.h"
69
#include "mm3.h"
69
#endif
70
#endif
70
#ifdef USE_CMPS03
71
#ifdef USE_CMPS03
71
#include "cmps03.h"
72
#include "cmps03.h"
72
#endif
73
#endif
73
#include "led.h"
74
#include "led.h"
74
 
75
 
75
volatile uint16_t I2CTimeout = 100;
76
volatile uint16_t I2CTimeout = 100;
76
// gyro readings
77
// gyro readings
77
volatile int16_t Reading_GyroPitch, Reading_GyroRoll, Reading_GyroYaw;
78
volatile int16_t Reading_GyroPitch, Reading_GyroRoll, Reading_GyroYaw;
78
// gyro neutral readings
79
// gyro neutral readings
79
volatile int16_t AdNeutralPitch = 0, AdNeutralRoll = 0, AdNeutralYaw = 0;
80
volatile int16_t AdNeutralPitch = 0, AdNeutralRoll = 0, AdNeutralYaw = 0;
80
volatile int16_t StartNeutralRoll = 0, StartNeutralPitch = 0;
81
volatile int16_t StartNeutralRoll = 0, StartNeutralPitch = 0;
81
// mean accelerations
82
// mean accelerations
82
volatile int16_t Mean_AccPitch, Mean_AccRoll, Mean_AccTop;
83
volatile int16_t Mean_AccPitch, Mean_AccRoll, Mean_AccTop;
83
 
84
 
84
// neutral acceleration readings
85
// neutral acceleration readings
85
volatile int16_t NeutralAccX=0, NeutralAccY=0;
86
volatile int16_t NeutralAccX=0, NeutralAccY=0;
86
volatile float NeutralAccZ = 0;
87
volatile float NeutralAccZ = 0;
87
 
88
 
88
// attitude gyro integrals
89
// attitude gyro integrals
89
volatile int32_t IntegralPitch = 0,IntegralPitch2 = 0;
90
volatile int32_t IntegralPitch = 0,IntegralPitch2 = 0;
90
volatile int32_t IntegralRoll = 0,IntegralRoll2 = 0;
91
volatile int32_t IntegralRoll = 0,IntegralRoll2 = 0;
91
volatile int32_t IntegralYaw = 0;
92
volatile int32_t IntegralYaw = 0;
92
volatile int32_t Reading_IntegralGyroPitch = 0, Reading_IntegralGyroPitch2 = 0;
93
volatile int32_t Reading_IntegralGyroPitch = 0, Reading_IntegralGyroPitch2 = 0;
93
volatile int32_t Reading_IntegralGyroRoll = 0,  Reading_IntegralGyroRoll2 = 0;
94
volatile int32_t Reading_IntegralGyroRoll = 0,  Reading_IntegralGyroRoll2 = 0;
94
volatile int32_t Reading_IntegralGyroYaw = 0;
95
volatile int32_t Reading_IntegralGyroYaw = 0;
95
volatile int32_t MeanIntegralPitch;
96
volatile int32_t MeanIntegralPitch;
96
volatile int32_t MeanIntegralRoll;
97
volatile int32_t MeanIntegralRoll;
97
 
98
 
98
// attitude acceleration integrals
99
// attitude acceleration integrals
99
volatile int32_t IntegralAccPitch = 0, IntegralAccRoll = 0;
100
volatile int32_t IntegralAccPitch = 0, IntegralAccRoll = 0;
100
volatile int32_t Reading_Integral_Top = 0;
101
volatile int32_t Reading_Integral_Top = 0;
101
 
102
 
102
// compass course
103
// compass course
103
volatile int16_t CompassHeading = -1; // negative angle indicates invalid data.
104
volatile int16_t CompassHeading = -1; // negative angle indicates invalid data.
104
volatile int16_t CompassCourse = -1;
105
volatile int16_t CompassCourse = -1;
105
volatile int16_t CompassOffCourse = 0;
106
volatile int16_t CompassOffCourse = 0;
106
 
107
 
107
// flags
108
// flags
108
uint8_t MotorsOn = 0;
109
uint8_t MotorsOn = 0;
109
uint8_t EmergencyLanding = 0;
110
uint8_t EmergencyLanding = 0;
110
 
111
 
111
int32_t TurnOver180Pitch = 250000L, TurnOver180Roll = 250000L;
112
int32_t TurnOver180Pitch = 250000L, TurnOver180Roll = 250000L;
112
 
113
 
113
float Gyro_P_Factor;
114
float Gyro_P_Factor;
114
float Gyro_I_Factor;
115
float Gyro_I_Factor;
115
 
116
 
116
volatile int16_t  DiffPitch, DiffRoll;
117
volatile int16_t  DiffPitch, DiffRoll;
117
 
118
 
118
int16_t  Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0, Poti5 = 0, Poti6 = 0, Poti7 = 0, Poti8 = 0;
119
int16_t  Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0, Poti5 = 0, Poti6 = 0, Poti7 = 0, Poti8 = 0;
119
 
120
 
120
// setpoints for motors
121
// setpoints for motors
121
volatile uint8_t Motor_FrontLeft, Motor_FrontRight, Motor_RearLeft, Motor_RearRight, Motor_Right, Motor_Left;
122
volatile uint8_t Motor_FrontLeft, Motor_FrontRight, Motor_RearLeft, Motor_RearRight, Motor_Right, Motor_Left;
122
 
123
 
123
// stick values derived by rc channels readings
124
// stick values derived by rc channels readings
124
int16_t StickPitch = 0, StickRoll = 0, StickYaw = 0, StickThrust = 0;
125
int16_t StickPitch = 0, StickRoll = 0, StickYaw = 0, StickThrust = 0;
125
int16_t MaxStickPitch = 0, MaxStickRoll = 0;
126
int16_t MaxStickPitch = 0, MaxStickRoll = 0;
126
// stick values derived by uart inputs
127
// stick values derived by uart inputs
127
int16_t ExternStickPitch = 0, ExternStickRoll = 0, ExternStickYaw = 0, ExternHeightValue = -20;
128
int16_t ExternStickPitch = 0, ExternStickRoll = 0, ExternStickYaw = 0, ExternHeightValue = -20;
128
 
129
 
129
 
130
 
130
 
131
 
131
 
132
 
132
int16_t ReadingHeight = 0;
133
int16_t ReadingHeight = 0;
133
int16_t SetPointHeight = 0;
134
int16_t SetPointHeight = 0;
134
 
135
 
135
int16_t AttitudeCorrectionRoll = 0, AttitudeCorrectionPitch = 0;
136
int16_t AttitudeCorrectionRoll = 0, AttitudeCorrectionPitch = 0;
136
 
137
 
137
float Ki =  FACTOR_I;
138
float Ki =  FACTOR_I;
138
 
139
 
139
uint8_t Looping_Pitch = 0, Looping_Roll = 0;
140
uint8_t Looping_Pitch = 0, Looping_Roll = 0;
140
uint8_t Looping_Left = 0, Looping_Right = 0, Looping_Down = 0, Looping_Top = 0;
141
uint8_t Looping_Left = 0, Looping_Right = 0, Looping_Down = 0, Looping_Top = 0;
141
 
142
 
142
 
143
 
143
fc_param_t FCParam = {48,251,16,58,64,150,150,2,10,0,0,0,0,0,0,0,0,100,70,0,0,100};
144
fc_param_t FCParam = {48,251,16,58,64,150,150,2,10,0,0,0,0,0,0,0,0,100,70,0,0,100};
144
 
145
 
145
 
146
 
146
/************************************************************************/
147
/************************************************************************/
147
/*  Creates numbeeps beeps at the speaker                               */
148
/*  Creates numbeeps beeps at the speaker                               */
148
/************************************************************************/
149
/************************************************************************/
149
void Beep(uint8_t numbeeps)
150
void Beep(uint8_t numbeeps)
150
{
151
{
151
        while(numbeeps--)
152
        while(numbeeps--)
152
        {
153
        {
153
                if(MotorsOn) return; //auf keinen Fall im Flug!
154
                if(MotorsOn) return; //auf keinen Fall im Flug!
154
                BeepTime = 100; // 0.1 second
155
                BeepTime = 100; // 0.1 second
155
                Delay_ms(250); // blocks 250 ms as pause to next beep,
156
                Delay_ms(250); // blocks 250 ms as pause to next beep,
156
                // this will block the flight control loop,
157
                // this will block the flight control loop,
157
                // therefore do not use this funktion if motors are running
158
                // therefore do not use this funktion if motors are running
158
        }
159
        }
159
}
160
}
160
 
161
 
161
/************************************************************************/
162
/************************************************************************/
162
/*  Neutral Readings                                                    */
163
/*  Neutral Readings                                                    */
163
/************************************************************************/
164
/************************************************************************/
164
void SetNeutral(void)
165
void SetNeutral(void)
165
{
166
{
166
        NeutralAccX = 0;
167
        NeutralAccX = 0;
167
        NeutralAccY = 0;
168
        NeutralAccY = 0;
168
        NeutralAccZ = 0;
169
        NeutralAccZ = 0;
169
    AdNeutralPitch = 0;
170
    AdNeutralPitch = 0;
170
        AdNeutralRoll = 0;
171
        AdNeutralRoll = 0;
171
        AdNeutralYaw = 0;
172
        AdNeutralYaw = 0;
172
    FCParam.Yaw_PosFeedback = 0;
173
    FCParam.Yaw_PosFeedback = 0;
173
    FCParam.Yaw_NegFeedback = 0;
174
    FCParam.Yaw_NegFeedback = 0;
174
    CalibMean();
175
    CalibMean();
175
    Delay_ms_Mess(100);
176
    Delay_ms_Mess(100);
176
        CalibMean();
177
        CalibMean();
177
    if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL))  // Height Control activated?
178
    if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL))  // Height Control activated?
178
    {
179
    {
179
                if((ReadingAirPressure > 950) || (ReadingAirPressure < 750)) SearchAirPressureOffset();
180
                if((ReadingAirPressure > 950) || (ReadingAirPressure < 750)) SearchAirPressureOffset();
180
    }
181
    }
181
        AdNeutralPitch = AdValueGyrPitch;
182
        AdNeutralPitch = AdValueGyrPitch;
182
        AdNeutralRoll  = AdValueGyrRoll;
183
        AdNeutralRoll  = AdValueGyrRoll;
183
        AdNeutralYaw   = AdValueGyrYaw;
184
        AdNeutralYaw   = AdValueGyrYaw;
184
        StartNeutralRoll  = AdNeutralRoll;
185
        StartNeutralRoll  = AdNeutralRoll;
185
        StartNeutralPitch = AdNeutralPitch;
186
        StartNeutralPitch = AdNeutralPitch;
186
    if(GetParamWord(PID_ACC_PITCH) > 1023)
187
    if(GetParamWord(PID_ACC_PITCH) > 1023)
187
    {
188
    {
188
                NeutralAccY = abs(Mean_AccRoll) / ACC_AMPLIFY;
189
                NeutralAccY = abs(Mean_AccRoll) / ACC_AMPLIFY;
189
                NeutralAccX = abs(Mean_AccPitch) / ACC_AMPLIFY;
190
                NeutralAccX = abs(Mean_AccPitch) / ACC_AMPLIFY;
190
                NeutralAccZ = Current_AccZ;
191
                NeutralAccZ = Current_AccZ;
191
    }
192
    }
192
    else
193
    else
193
    {
194
    {
194
                NeutralAccX = (int16_t)GetParamWord(PID_ACC_PITCH);
195
                NeutralAccX = (int16_t)GetParamWord(PID_ACC_PITCH);
195
            NeutralAccY = (int16_t)GetParamWord(PID_ACC_ROLL);
196
            NeutralAccY = (int16_t)GetParamWord(PID_ACC_ROLL);
196
            NeutralAccZ = (int16_t)GetParamWord(PID_ACC_Z);
197
            NeutralAccZ = (int16_t)GetParamWord(PID_ACC_Z);
197
    }
198
    }
198
        Reading_IntegralGyroPitch = 0;
199
        Reading_IntegralGyroPitch = 0;
199
    Reading_IntegralGyroPitch2 = 0;
200
    Reading_IntegralGyroPitch2 = 0;
200
    Reading_IntegralGyroRoll = 0;
201
    Reading_IntegralGyroRoll = 0;
201
    Reading_IntegralGyroRoll2 = 0;
202
    Reading_IntegralGyroRoll2 = 0;
202
    Reading_IntegralGyroYaw = 0;
203
    Reading_IntegralGyroYaw = 0;
203
    Reading_GyroPitch = 0;
204
    Reading_GyroPitch = 0;
204
    Reading_GyroRoll = 0;
205
    Reading_GyroRoll = 0;
205
    Reading_GyroYaw = 0;
206
    Reading_GyroYaw = 0;
206
    StartAirPressure = AirPressure;
207
    StartAirPressure = AirPressure;
207
    HeightD = 0;
208
    HeightD = 0;
208
    Reading_Integral_Top = 0;
209
    Reading_Integral_Top = 0;
209
    CompassCourse = CompassHeading;
210
    CompassCourse = CompassHeading;
210
    BeepTime = 50;
211
    BeepTime = 50;
211
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
212
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
212
        TurnOver180Roll = (int32_t) ParamSet.AngleTurnOverRoll * 2500L;
213
        TurnOver180Roll = (int32_t) ParamSet.AngleTurnOverRoll * 2500L;
213
    ExternHeightValue = 0;
214
    ExternHeightValue = 0;
214
    GPS_Neutral();
215
    GPS_Neutral();
215
}
216
}
216
 
217
 
217
/************************************************************************/
218
/************************************************************************/
218
/*  Averaging Measurement Readings                                      */
219
/*  Averaging Measurement Readings                                      */
219
/************************************************************************/
220
/************************************************************************/
220
void Mean(void)
221
void Mean(void)
221
{
222
{
222
    static int32_t tmpl,tmpl2;
223
    static int32_t tmpl,tmpl2;
223
 
224
 
224
 // Get offset corrected gyro readings (~ to angular velocity)
225
 // Get offset corrected gyro readings (~ to angular velocity)
225
    Reading_GyroYaw   = AdNeutralYaw    - AdValueGyrYaw;
226
    Reading_GyroYaw   = AdNeutralYaw    - AdValueGyrYaw;
226
    Reading_GyroRoll  = AdValueGyrRoll  - AdNeutralRoll;
227
    Reading_GyroRoll  = AdValueGyrRoll  - AdNeutralRoll;
227
    Reading_GyroPitch = AdValueGyrPitch - AdNeutralPitch;
228
    Reading_GyroPitch = AdValueGyrPitch - AdNeutralPitch;
228
 
229
 
229
        DebugOut.Analog[26] = Reading_GyroPitch;
230
        DebugOut.Analog[26] = Reading_GyroPitch;
230
        DebugOut.Analog[28] = Reading_GyroRoll;
231
        DebugOut.Analog[28] = Reading_GyroRoll;
231
 
232
 
232
// Acceleration Sensor
233
// Acceleration Sensor
233
        // sliding average sensor readings
234
        // sliding average sensor readings
234
        Mean_AccPitch = ((int32_t)Mean_AccPitch * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccPitch))) / 2L;
235
        Mean_AccPitch = ((int32_t)Mean_AccPitch * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccPitch))) / 2L;
235
        Mean_AccRoll  = ((int32_t)Mean_AccRoll * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccRoll))) / 2L;
236
        Mean_AccRoll  = ((int32_t)Mean_AccRoll * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccRoll))) / 2L;
236
        Mean_AccTop   = ((int32_t)Mean_AccTop * 1 + ((int32_t)AdValueAccTop)) / 2L;
237
        Mean_AccTop   = ((int32_t)Mean_AccTop * 1 + ((int32_t)AdValueAccTop)) / 2L;
237
 
238
 
238
        // sum sensor readings for later averaging
239
        // sum sensor readings for later averaging
239
    IntegralAccPitch += ACC_AMPLIFY * AdValueAccPitch;
240
    IntegralAccPitch += ACC_AMPLIFY * AdValueAccPitch;
240
    IntegralAccRoll  += ACC_AMPLIFY * AdValueAccRoll;
241
    IntegralAccRoll  += ACC_AMPLIFY * AdValueAccRoll;
241
 
242
 
242
// Yaw
243
// Yaw
243
        // calculate yaw gyro intergral (~ to rotation angle)
244
        // calculate yaw gyro intergral (~ to rotation angle)
244
    Reading_IntegralGyroYaw  += Reading_GyroYaw;
245
    Reading_IntegralGyroYaw  += Reading_GyroYaw;
245
        // Coupling fraction
246
        // Coupling fraction
246
        if(!Looping_Pitch && !Looping_Roll && (ParamSet.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE))
247
        if(!Looping_Pitch && !Looping_Roll && (ParamSet.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE))
247
        {
248
        {
248
                tmpl = Reading_IntegralGyroPitch / 4096L;
249
                tmpl = Reading_IntegralGyroPitch / 4096L;
249
                tmpl *= Reading_GyroYaw;
250
                tmpl *= Reading_GyroYaw;
250
                tmpl *= FCParam.Yaw_PosFeedback;  //125
251
                tmpl *= FCParam.Yaw_PosFeedback;  //125
251
                tmpl /= 2048L;
252
                tmpl /= 2048L;
252
                tmpl2 = Reading_IntegralGyroRoll / 4096L;
253
                tmpl2 = Reading_IntegralGyroRoll / 4096L;
253
                tmpl2 *= Reading_GyroYaw;
254
                tmpl2 *= Reading_GyroYaw;
254
                tmpl2 *= FCParam.Yaw_PosFeedback;
255
                tmpl2 *= FCParam.Yaw_PosFeedback;
255
                tmpl2 /= 2048L;
256
                tmpl2 /= 2048L;
256
        }
257
        }
257
        else  tmpl = tmpl2 = 0;
258
        else  tmpl = tmpl2 = 0;
258
 
259
 
259
// Roll
260
// Roll
260
        Reading_GyroRoll += tmpl;
261
        Reading_GyroRoll += tmpl;
261
        Reading_GyroRoll += (tmpl2 * FCParam.Yaw_NegFeedback) / 512L;
262
        Reading_GyroRoll += (tmpl2 * FCParam.Yaw_NegFeedback) / 512L;
262
        Reading_IntegralGyroRoll2 += Reading_GyroRoll;
263
        Reading_IntegralGyroRoll2 += Reading_GyroRoll;
263
        Reading_IntegralGyroRoll +=  Reading_GyroRoll - AttitudeCorrectionRoll;
264
        Reading_IntegralGyroRoll +=  Reading_GyroRoll - AttitudeCorrectionRoll;
264
        if(Reading_IntegralGyroRoll > TurnOver180Roll)
265
        if(Reading_IntegralGyroRoll > TurnOver180Roll)
265
        {
266
        {
266
                Reading_IntegralGyroRoll  = -(TurnOver180Roll - 10000L);
267
                Reading_IntegralGyroRoll  = -(TurnOver180Roll - 10000L);
267
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
268
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
268
        }
269
        }
269
        if(Reading_IntegralGyroRoll < -TurnOver180Roll)
270
        if(Reading_IntegralGyroRoll < -TurnOver180Roll)
270
        {
271
        {
271
                Reading_IntegralGyroRoll =  (TurnOver180Roll - 10000L);
272
                Reading_IntegralGyroRoll =  (TurnOver180Roll - 10000L);
272
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
273
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
273
        }
274
        }
274
        if(AdValueGyrRoll < 15)   Reading_GyroRoll = -1000;
275
        if(AdValueGyrRoll < 15)   Reading_GyroRoll = -1000;
275
        if(AdValueGyrRoll <  7)   Reading_GyroRoll = -2000;
276
        if(AdValueGyrRoll <  7)   Reading_GyroRoll = -2000;
276
        if(BoardRelease == 10)
277
        if(BoardRelease == 10)
277
        {
278
        {
278
                if(AdValueGyrRoll > 1010) Reading_GyroRoll = +1000;
279
                if(AdValueGyrRoll > 1010) Reading_GyroRoll = +1000;
279
                if(AdValueGyrRoll > 1017) Reading_GyroRoll = +2000;
280
                if(AdValueGyrRoll > 1017) Reading_GyroRoll = +2000;
280
        }
281
        }
281
        else
282
        else
282
        {
283
        {
283
                if(AdValueGyrRoll > 2020) Reading_GyroRoll = +1000;
284
                if(AdValueGyrRoll > 2020) Reading_GyroRoll = +1000;
284
                if(AdValueGyrRoll > 2034) Reading_GyroRoll = +2000;
285
                if(AdValueGyrRoll > 2034) Reading_GyroRoll = +2000;
285
        }
286
        }
286
// Pitch
287
// Pitch
287
        Reading_GyroPitch -= tmpl2;
288
        Reading_GyroPitch -= tmpl2;
288
        Reading_GyroPitch -= (tmpl*FCParam.Yaw_NegFeedback) / 512L;
289
        Reading_GyroPitch -= (tmpl*FCParam.Yaw_NegFeedback) / 512L;
289
        Reading_IntegralGyroPitch2 += Reading_GyroPitch;
290
        Reading_IntegralGyroPitch2 += Reading_GyroPitch;
290
        Reading_IntegralGyroPitch  += Reading_GyroPitch - AttitudeCorrectionPitch;
291
        Reading_IntegralGyroPitch  += Reading_GyroPitch - AttitudeCorrectionPitch;
291
        if(Reading_IntegralGyroPitch > TurnOver180Pitch)
292
        if(Reading_IntegralGyroPitch > TurnOver180Pitch)
292
        {
293
        {
293
         Reading_IntegralGyroPitch = -(TurnOver180Pitch - 10000L);
294
         Reading_IntegralGyroPitch = -(TurnOver180Pitch - 10000L);
294
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
295
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
295
        }
296
        }
296
        if(Reading_IntegralGyroPitch < -TurnOver180Pitch)
297
        if(Reading_IntegralGyroPitch < -TurnOver180Pitch)
297
        {
298
        {
298
         Reading_IntegralGyroPitch =  (TurnOver180Pitch - 10000L);
299
         Reading_IntegralGyroPitch =  (TurnOver180Pitch - 10000L);
299
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
300
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
300
        }
301
        }
301
        if(AdValueGyrPitch < 15)   Reading_GyroPitch = -1000;
302
        if(AdValueGyrPitch < 15)   Reading_GyroPitch = -1000;
302
        if(AdValueGyrPitch <  7)   Reading_GyroPitch = -2000;
303
        if(AdValueGyrPitch <  7)   Reading_GyroPitch = -2000;
303
        if(BoardRelease == 10)
304
        if(BoardRelease == 10)
304
        {
305
        {
305
                if(AdValueGyrPitch > 1010) Reading_GyroPitch = +1000;
306
                if(AdValueGyrPitch > 1010) Reading_GyroPitch = +1000;
306
                if(AdValueGyrPitch > 1017) Reading_GyroPitch = +2000;
307
                if(AdValueGyrPitch > 1017) Reading_GyroPitch = +2000;
307
        }
308
        }
308
        else
309
        else
309
        {
310
        {
310
                if(AdValueGyrPitch > 2020) Reading_GyroPitch = +1000;
311
                if(AdValueGyrPitch > 2020) Reading_GyroPitch = +1000;
311
                if(AdValueGyrPitch > 2034) Reading_GyroPitch = +2000;
312
                if(AdValueGyrPitch > 2034) Reading_GyroPitch = +2000;
312
        }
313
        }
313
 
314
 
314
// start ADC again to capture measurement values for the next loop
315
// start ADC again to capture measurement values for the next loop
315
    ADC_Enable();
316
    ADC_Enable();
316
 
317
 
317
    IntegralYaw    = Reading_IntegralGyroYaw;
318
    IntegralYaw    = Reading_IntegralGyroYaw;
318
    IntegralPitch  = Reading_IntegralGyroPitch;
319
    IntegralPitch  = Reading_IntegralGyroPitch;
319
    IntegralRoll   = Reading_IntegralGyroRoll;
320
    IntegralRoll   = Reading_IntegralGyroRoll;
320
    IntegralPitch2 = Reading_IntegralGyroPitch2;
321
    IntegralPitch2 = Reading_IntegralGyroPitch2;
321
    IntegralRoll2  = Reading_IntegralGyroRoll2;
322
    IntegralRoll2  = Reading_IntegralGyroRoll2;
322
 
323
 
323
        if((ParamSet.GlobalConfig & CFG_ROTARY_RATE_LIMITER) && !Looping_Pitch && !Looping_Roll)
324
        if((ParamSet.GlobalConfig & CFG_ROTARY_RATE_LIMITER) && !Looping_Pitch && !Looping_Roll)
324
        {
325
        {
325
                if(Reading_GyroPitch > 200)       Reading_GyroPitch += 4 * (Reading_GyroPitch - 200);
326
                if(Reading_GyroPitch > 200)       Reading_GyroPitch += 4 * (Reading_GyroPitch - 200);
326
                else if(Reading_GyroPitch < -200) Reading_GyroPitch += 4 * (Reading_GyroPitch + 200);
327
                else if(Reading_GyroPitch < -200) Reading_GyroPitch += 4 * (Reading_GyroPitch + 200);
327
                if(Reading_GyroRoll > 200)        Reading_GyroRoll  += 4 * (Reading_GyroRoll - 200);
328
                if(Reading_GyroRoll > 200)        Reading_GyroRoll  += 4 * (Reading_GyroRoll - 200);
328
                else if(Reading_GyroRoll < -200)  Reading_GyroRoll  += 4 * (Reading_GyroRoll + 200);
329
                else if(Reading_GyroRoll < -200)  Reading_GyroRoll  += 4 * (Reading_GyroRoll + 200);
329
        }
330
        }
330
}
331
}
331
 
332
 
332
/************************************************************************/
333
/************************************************************************/
333
/*  Averaging Measurement Readings  for Calibration                     */
334
/*  Averaging Measurement Readings  for Calibration                     */
334
/************************************************************************/
335
/************************************************************************/
335
void CalibMean(void)
336
void CalibMean(void)
336
{
337
{
337
    // stop ADC to avoid changing values during calculation
338
    // stop ADC to avoid changing values during calculation
338
        ADC_Disable();
339
        ADC_Disable();
339
 
340
 
340
        Reading_GyroPitch = AdValueGyrPitch;
341
        Reading_GyroPitch = AdValueGyrPitch;
341
        Reading_GyroRoll  = AdValueGyrRoll;
342
        Reading_GyroRoll  = AdValueGyrRoll;
342
        Reading_GyroYaw   = AdValueGyrYaw;
343
        Reading_GyroYaw   = AdValueGyrYaw;
343
 
344
 
344
        Mean_AccPitch = ACC_AMPLIFY * (int32_t)AdValueAccPitch;
345
        Mean_AccPitch = ACC_AMPLIFY * (int32_t)AdValueAccPitch;
345
        Mean_AccRoll  = ACC_AMPLIFY * (int32_t)AdValueAccRoll;
346
        Mean_AccRoll  = ACC_AMPLIFY * (int32_t)AdValueAccRoll;
346
        Mean_AccTop   = (int32_t)AdValueAccTop;
347
        Mean_AccTop   = (int32_t)AdValueAccTop;
347
    // start ADC (enables internal trigger so that the ISR in analog.c
348
    // start ADC (enables internal trigger so that the ISR in analog.c
348
    // updates the readings once)
349
    // updates the readings once)
349
    ADC_Enable();
350
    ADC_Enable();
350
 
351
 
351
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
352
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
352
        TurnOver180Roll =  (int32_t) ParamSet.AngleTurnOverRoll  * 2500L;
353
        TurnOver180Roll =  (int32_t) ParamSet.AngleTurnOverRoll  * 2500L;
353
}
354
}
354
 
355
 
355
/************************************************************************/
356
/************************************************************************/
356
/*  Transmit Motor Data via I2C                                         */
357
/*  Transmit Motor Data via I2C                                         */
357
/************************************************************************/
358
/************************************************************************/
358
void SendMotorData(void)
359
void SendMotorData(void)
359
{
360
{
360
    if(MOTOR_OFF || !MotorsOn)
361
    if(MOTOR_OFF || !MotorsOn)
361
    {
362
    {
362
        Motor_RearLeft = 0;
363
        Motor_RearLeft = 0;
363
                Motor_RearRight = 0;
364
                Motor_RearRight = 0;
364
        Motor_FrontLeft = 0;
365
        Motor_FrontLeft = 0;
365
                Motor_FrontRight = 0;
366
                Motor_FrontRight = 0;
366
        Motor_Right = 0;
367
        Motor_Right = 0;
367
        Motor_Left = 0;
368
        Motor_Left = 0;
368
        if(MotorTest[0]) Motor_FrontLeft = Motor_FrontRight = MotorTest[0];
369
        if(MotorTest[0]) Motor_FrontLeft = Motor_FrontRight = MotorTest[0];
369
        if(MotorTest[1]) Motor_RearLeft  = Motor_RearRight  = MotorTest[1];
370
        if(MotorTest[1]) Motor_RearLeft  = Motor_RearRight  = MotorTest[1];
370
        if(MotorTest[2]) Motor_Left  = MotorTest[2];
371
        if(MotorTest[2]) Motor_Left  = MotorTest[2];
371
        if(MotorTest[3]) Motor_Right = MotorTest[3];
372
        if(MotorTest[3]) Motor_Right = MotorTest[3];
372
     }
373
     }
373
 
374
 
374
    DebugOut.Analog[12] = Motor_FrontLeft;
375
    DebugOut.Analog[12] = Motor_FrontLeft;
375
    DebugOut.Analog[13] = Motor_RearRight;
376
    DebugOut.Analog[13] = Motor_RearRight;
376
    DebugOut.Analog[14] = Motor_FrontRight;
377
    DebugOut.Analog[14] = Motor_FrontRight;
377
    DebugOut.Analog[15] = Motor_RearLeft;
378
    DebugOut.Analog[15] = Motor_RearLeft;
378
    DebugOut.Analog[16] = Motor_Left;
379
    DebugOut.Analog[16] = Motor_Left;
379
    DebugOut.Analog[17] = Motor_Right;
380
    DebugOut.Analog[17] = Motor_Right;
380
       
381
       
381
    //Start I2C Interrupt Mode
382
    //Start I2C Interrupt Mode
382
    twi_state = 0;
383
    twi_state = 0;
383
    motor = 0;
384
    motor = 0;
384
    I2C_Start();
385
    I2C_Start();
385
}
386
}
386
 
387
 
387
 
388
 
388
 
389
 
389
/************************************************************************/
390
/************************************************************************/
390
/*  Maps the parameter to poti values                                   */
391
/*  Maps the parameter to poti values                                   */
391
/************************************************************************/
392
/************************************************************************/
392
void ParameterMapping(void)
393
void ParameterMapping(void)
393
{
394
{
394
        if(RC_Quality > 160) // do the mapping of RC-Potis only if the rc-signal is ok
395
        if(RC_Quality > 160) // do the mapping of RC-Potis only if the rc-signal is ok
395
        // else the last updated values are used
396
        // else the last updated values are used
396
        {
397
        {
397
                 //update poti values by rc-signals
398
                 //update poti values by rc-signals
398
                #define CHK_POTI(b,a,min,max) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a; if(b <= min) b = min; else if(b >= max) b = max;}
399
                #define CHK_POTI(b,a,min,max) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a; if(b <= min) b = min; else if(b >= max) b = max;}
399
                CHK_POTI(FCParam.MaxHeight,ParamSet.MaxHeight,0,255);
400
                CHK_POTI(FCParam.MaxHeight,ParamSet.MaxHeight,0,255);
400
                CHK_POTI(FCParam.Height_D,ParamSet.Height_D,0,100);
401
                CHK_POTI(FCParam.Height_D,ParamSet.Height_D,0,100);
401
                CHK_POTI(FCParam.Height_P,ParamSet.Height_P,0,100);
402
                CHK_POTI(FCParam.Height_P,ParamSet.Height_P,0,100);
402
                CHK_POTI(FCParam.Height_ACC_Effect,ParamSet.Height_ACC_Effect,0,255);
403
                CHK_POTI(FCParam.Height_ACC_Effect,ParamSet.Height_ACC_Effect,0,255);
403
                CHK_POTI(FCParam.CompassYawEffect,ParamSet.CompassYawEffect,0,255);
404
                CHK_POTI(FCParam.CompassYawEffect,ParamSet.CompassYawEffect,0,255);
404
                CHK_POTI(FCParam.Gyro_P,ParamSet.Gyro_P,10,255);
405
                CHK_POTI(FCParam.Gyro_P,ParamSet.Gyro_P,10,255);
405
                CHK_POTI(FCParam.Gyro_I,ParamSet.Gyro_I,0,255);
406
                CHK_POTI(FCParam.Gyro_I,ParamSet.Gyro_I,0,255);
406
                CHK_POTI(FCParam.I_Factor,ParamSet.I_Factor,0,255);
407
                CHK_POTI(FCParam.I_Factor,ParamSet.I_Factor,0,255);
407
                CHK_POTI(FCParam.UserParam1,ParamSet.UserParam1,0,255);
408
                CHK_POTI(FCParam.UserParam1,ParamSet.UserParam1,0,255);
408
                CHK_POTI(FCParam.UserParam2,ParamSet.UserParam2,0,255);
409
                CHK_POTI(FCParam.UserParam2,ParamSet.UserParam2,0,255);
409
                CHK_POTI(FCParam.UserParam3,ParamSet.UserParam3,0,255);
410
                CHK_POTI(FCParam.UserParam3,ParamSet.UserParam3,0,255);
410
                CHK_POTI(FCParam.UserParam4,ParamSet.UserParam4,0,255);
411
                CHK_POTI(FCParam.UserParam4,ParamSet.UserParam4,0,255);
411
                CHK_POTI(FCParam.UserParam5,ParamSet.UserParam5,0,255);
412
                CHK_POTI(FCParam.UserParam5,ParamSet.UserParam5,0,255);
412
                CHK_POTI(FCParam.UserParam6,ParamSet.UserParam6,0,255);
413
                CHK_POTI(FCParam.UserParam6,ParamSet.UserParam6,0,255);
413
                CHK_POTI(FCParam.UserParam7,ParamSet.UserParam7,0,255);
414
                CHK_POTI(FCParam.UserParam7,ParamSet.UserParam7,0,255);
414
                CHK_POTI(FCParam.UserParam8,ParamSet.UserParam8,0,255);
415
                CHK_POTI(FCParam.UserParam8,ParamSet.UserParam8,0,255);
415
                CHK_POTI(FCParam.ServoPitchControl,ParamSet.ServoPitchControl,0,255);
416
                CHK_POTI(FCParam.ServoPitchControl,ParamSet.ServoPitchControl,0,255);
416
                CHK_POTI(FCParam.LoopThrustLimit,ParamSet.LoopThrustLimit,0,255);
417
                CHK_POTI(FCParam.LoopThrustLimit,ParamSet.LoopThrustLimit,0,255);
417
                CHK_POTI(FCParam.Yaw_PosFeedback,ParamSet.Yaw_PosFeedback,0,255);
418
                CHK_POTI(FCParam.Yaw_PosFeedback,ParamSet.Yaw_PosFeedback,0,255);
418
                CHK_POTI(FCParam.Yaw_NegFeedback,ParamSet.Yaw_NegFeedback,0,255);
419
                CHK_POTI(FCParam.Yaw_NegFeedback,ParamSet.Yaw_NegFeedback,0,255);
419
                CHK_POTI(FCParam.DynamicStability,ParamSet.DynamicStability,0,255);
420
                CHK_POTI(FCParam.DynamicStability,ParamSet.DynamicStability,0,255);
420
                Ki = (float) FCParam.I_Factor * FACTOR_I;
421
                Ki = (float) FCParam.I_Factor * FACTOR_I;
421
        }
422
        }
422
}
423
}
423
 
424
 
424
 
425
 
425
/************************************************************************/
426
/************************************************************************/
426
/*  MotorControl                                                        */
427
/*  MotorControl                                                        */
427
/************************************************************************/
428
/************************************************************************/
428
void MotorControl(void)
429
void MotorControl(void)
429
{
430
{
430
        int16_t MotorValue, pd_result, h, tmp_int;
431
        int16_t MotorValue, pd_result, h, tmp_int;
431
        int16_t YawMixFraction, ThrustMixFraction, PitchMixFraction, RollMixFraction;
432
        int16_t YawMixFraction, ThrustMixFraction, PitchMixFraction, RollMixFraction;
432
        static int32_t SumPitch = 0, SumRoll = 0;
433
        static int32_t SumPitch = 0, SumRoll = 0;
433
        static int32_t SetPointYaw = 0;
434
        static int32_t SetPointYaw = 0;
434
        static int32_t IntegralErrorPitch = 0;
435
        static int32_t IntegralErrorPitch = 0;
435
        static int32_t IntegralErrorRoll = 0;
436
        static int32_t IntegralErrorRoll = 0;
436
        static uint16_t RcLostTimer;
437
        static uint16_t RcLostTimer;
437
        static uint8_t delay_neutral = 0, delay_startmotors = 0, delay_stopmotors = 0;
438
        static uint8_t delay_neutral = 0, delay_startmotors = 0, delay_stopmotors = 0;
438
        static uint16_t Model_Is_Flying = 0;
439
        static uint16_t Model_Is_Flying = 0;
439
        static uint8_t HeightControlActive = 0;
440
        static uint8_t HeightControlActive = 0;
440
        static int16_t HeightControlThrust = 0;
441
        static int16_t HeightControlThrust = 0;
441
        static int8_t TimerDebugOut = 0;
442
        static int8_t TimerDebugOut = 0;
442
        static uint16_t UpdateCompassCourse = 0;
443
        static uint16_t UpdateCompassCourse = 0;
443
        static int32_t CorrectionPitch, CorrectionRoll;
444
        static int32_t CorrectionPitch, CorrectionRoll;
444
 
445
 
445
        Mean();
446
        Mean();
446
        GRN_ON;
447
        GRN_ON;
447
 
448
 
448
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
449
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
449
// determine thrust value
450
// determine thrust value
450
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
451
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
451
        ThrustMixFraction = StickThrust;
452
        ThrustMixFraction = StickThrust;
452
    if(ThrustMixFraction < 0) ThrustMixFraction = 0;
453
    if(ThrustMixFraction < 0) ThrustMixFraction = 0;
453
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
454
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
454
// RC-signal is bad
455
// RC-signal is bad
455
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
456
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
456
        if(RC_Quality < 120)  // the rc-frame signal is not reveived or noisy
457
        if(RC_Quality < 120)  // the rc-frame signal is not reveived or noisy
457
        {
458
        {
458
                if(!PcAccess) // if also no PC-Access via UART
459
                if(!PcAccess) // if also no PC-Access via UART
459
                {
460
                {
460
                        if(BeepModulation == 0xFFFF)
461
                        if(BeepModulation == 0xFFFF)
461
                        {
462
                        {
462
                         BeepTime = 15000; // 1.5 seconds
463
                         BeepTime = 15000; // 1.5 seconds
463
                         BeepModulation = 0x0C00;
464
                         BeepModulation = 0x0C00;
464
                        }
465
                        }
465
                }
466
                }
466
                if(RcLostTimer) RcLostTimer--; // decremtent timer after rc sigal lost
467
                if(RcLostTimer) RcLostTimer--; // decremtent timer after rc sigal lost
467
                else // rc lost countdown finished
468
                else // rc lost countdown finished
468
                {
469
                {
469
                  MotorsOn = 0; // stop all motors
470
                  MotorsOn = 0; // stop all motors
470
                  EmergencyLanding = 0; // emergency landing is over
471
                  EmergencyLanding = 0; // emergency landing is over
471
                }
472
                }
472
                ROT_ON; // set red led
473
                ROT_ON; // set red led
473
                if(Model_Is_Flying > 2000)  // wahrscheinlich in der Luft --> langsam absenken
474
                if(Model_Is_Flying > 2000)  // wahrscheinlich in der Luft --> langsam absenken
474
                {
475
                {
475
                        ThrustMixFraction = ParamSet.EmergencyThrust; // set emergency thrust
476
                        ThrustMixFraction = ParamSet.EmergencyThrust; // set emergency thrust
476
                        EmergencyLanding = 1; // enable emergency landing
477
                        EmergencyLanding = 1; // enable emergency landing
477
                        // set neutral rc inputs
478
                        // set neutral rc inputs
478
                        PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
479
                        PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
479
                        PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
480
                        PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
480
                        PPM_diff[ParamSet.ChannelAssignment[CH_YAW]] = 0;
481
                        PPM_diff[ParamSet.ChannelAssignment[CH_YAW]] = 0;
481
                        PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
482
                        PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
482
                        PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
483
                        PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
483
                        PPM_in[ParamSet.ChannelAssignment[CH_YAW]] = 0;
484
                        PPM_in[ParamSet.ChannelAssignment[CH_YAW]] = 0;
484
                }
485
                }
485
                else MotorsOn = 0; // switch of all motors
486
                else MotorsOn = 0; // switch of all motors
486
        } // eof RC_Quality < 120
487
        } // eof RC_Quality < 120
487
        else
488
        else
488
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
489
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
489
// RC-signal is good
490
// RC-signal is good
490
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
491
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
491
        if(RC_Quality > 150)
492
        if(RC_Quality > 150)
492
        {
493
        {
493
                EmergencyLanding = 0; // switch off emergency landing if RC-signal is okay
494
                EmergencyLanding = 0; // switch off emergency landing if RC-signal is okay
494
                // reset emergency timer
495
                // reset emergency timer
495
                RcLostTimer = ParamSet.EmergencyThrustDuration * 50;
496
                RcLostTimer = ParamSet.EmergencyThrustDuration * 50;
496
                if(ThrustMixFraction > 40)
497
                if(ThrustMixFraction > 40)
497
                {
498
                {
498
                        if(Model_Is_Flying < 0xFFFF) Model_Is_Flying++;
499
                        if(Model_Is_Flying < 0xFFFF) Model_Is_Flying++;
499
                }
500
                }
500
                if((Model_Is_Flying < 200) || (ThrustMixFraction < 40))
501
                if((Model_Is_Flying < 200) || (ThrustMixFraction < 40))
501
                {
502
                {
502
                        SumPitch = 0;
503
                        SumPitch = 0;
503
                        SumRoll = 0;
504
                        SumRoll = 0;
504
                        Reading_IntegralGyroYaw = 0;
505
                        Reading_IntegralGyroYaw = 0;
505
                }
506
                }
506
 
507
 
507
                if(Poti1 < PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110 && Poti1) Poti1--;
508
                if(Poti1 < PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110 && Poti1) Poti1--;
508
                if(Poti2 < PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110 && Poti2) Poti2--;
509
                if(Poti2 < PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110 && Poti2) Poti2--;
509
                if(Poti3 < PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110 && Poti3) Poti3--;
510
                if(Poti3 < PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110 && Poti3) Poti3--;
510
                if(Poti4 < PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110) Poti4++; else if(Poti4 > PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110 && Poti4) Poti4--;
511
                if(Poti4 < PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110) Poti4++; else if(Poti4 > PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110 && Poti4) Poti4--;
511
                //PPM24-Extension
512
                //PPM24-Extension
512
                if(Poti5 < PPM_in[9] + 110)  Poti5++; else if(Poti5 >  PPM_in[9] + 110 && Poti5) Poti5--;
513
                if(Poti5 < PPM_in[9] + 110)  Poti5++; else if(Poti5 >  PPM_in[9] + 110 && Poti5) Poti5--;
513
                if(Poti6 < PPM_in[10] + 110) Poti6++; else if(Poti6 > PPM_in[10] + 110 && Poti6) Poti6--;
514
                if(Poti6 < PPM_in[10] + 110) Poti6++; else if(Poti6 > PPM_in[10] + 110 && Poti6) Poti6--;
514
                if(Poti7 < PPM_in[11] + 110) Poti7++; else if(Poti7 > PPM_in[11] + 110 && Poti7) Poti7--;
515
                if(Poti7 < PPM_in[11] + 110) Poti7++; else if(Poti7 > PPM_in[11] + 110 && Poti7) Poti7--;
515
                if(Poti8 < PPM_in[12] + 110) Poti8++; else if(Poti8 > PPM_in[12] + 110 && Poti8) Poti8--;
516
                if(Poti8 < PPM_in[12] + 110) Poti8++; else if(Poti8 > PPM_in[12] + 110 && Poti8) Poti8--;
516
                //limit poti values
517
                //limit poti values
517
                if(Poti1 < 0) Poti1 = 0; else if(Poti1 > 255) Poti1 = 255;
518
                if(Poti1 < 0) Poti1 = 0; else if(Poti1 > 255) Poti1 = 255;
518
                if(Poti2 < 0) Poti2 = 0; else if(Poti2 > 255) Poti2 = 255;
519
                if(Poti2 < 0) Poti2 = 0; else if(Poti2 > 255) Poti2 = 255;
519
                if(Poti3 < 0) Poti3 = 0; else if(Poti3 > 255) Poti3 = 255;
520
                if(Poti3 < 0) Poti3 = 0; else if(Poti3 > 255) Poti3 = 255;
520
                if(Poti4 < 0) Poti4 = 0; else if(Poti4 > 255) Poti4 = 255;
521
                if(Poti4 < 0) Poti4 = 0; else if(Poti4 > 255) Poti4 = 255;
521
                //PPM24-Extension
522
                //PPM24-Extension
522
                if(Poti5 < 0) Poti5 = 0; else if(Poti5 > 255) Poti5 = 255;
523
                if(Poti5 < 0) Poti5 = 0; else if(Poti5 > 255) Poti5 = 255;
523
                if(Poti6 < 0) Poti6 = 0; else if(Poti6 > 255) Poti6 = 255;
524
                if(Poti6 < 0) Poti6 = 0; else if(Poti6 > 255) Poti6 = 255;
524
                if(Poti7 < 0) Poti7 = 0; else if(Poti7 > 255) Poti7 = 255;
525
                if(Poti7 < 0) Poti7 = 0; else if(Poti7 > 255) Poti7 = 255;
525
                if(Poti8 < 0) Poti8 = 0; else if(Poti8 > 255) Poti8 = 255;
526
                if(Poti8 < 0) Poti8 = 0; else if(Poti8 > 255) Poti8 = 255;
526
 
527
 
527
                // if motors are off and the thrust stick is in the upper position
528
                // if motors are off and the thrust stick is in the upper position
528
                if((PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] > 80) && MotorsOn == 0)
529
                if((PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] > 80) && MotorsOn == 0)
529
                {
530
                {
530
                        // and if the yaw stick is in the leftmost position
531
                        // and if the yaw stick is in the leftmost position
531
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
532
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
532
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
533
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
533
// calibrate the neutral readings of all attitude sensors
534
// calibrate the neutral readings of all attitude sensors
534
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
535
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
535
                        {
536
                        {
536
                                if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
537
                                if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
537
                                {
538
                                {
538
                                        delay_neutral = 0;
539
                                        delay_neutral = 0;
539
                                        GRN_OFF;
540
                                        GRN_OFF;
540
                                        Model_Is_Flying = 0;
541
                                        Model_Is_Flying = 0;
541
                                        // check roll/pitch stick position
542
                                        // check roll/pitch stick position
542
                                        // if pitch stick is topmost or roll stick is leftmost --> change parameter setting
543
                                        // if pitch stick is topmost or roll stick is leftmost --> change parameter setting
543
                                        // according to roll/pitch stick position
544
                                        // according to roll/pitch stick position
544
                                        if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70 || abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > 70)
545
                                        if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70 || abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > 70)
545
                                        {
546
                                        {
546
                                                 uint8_t setting = 1; // default
547
                                                 uint8_t setting = 1; // default
547
                                                 //  _________
548
                                                 //  _________
548
                                                 // |2   3   4|
549
                                                 // |2   3   4|
549
                                                 // |         |
550
                                                 // |         |
550
                                                 // |1       5|
551
                                                 // |1       5|
551
                                                 // |         |
552
                                                 // |         |
552
                                                 // |_________|
553
                                                 // |_________|
553
                                                 //
554
                                                 //
554
                                                 // roll stick leftmost and pitch stick centered --> setting 1
555
                                                 // roll stick leftmost and pitch stick centered --> setting 1
555
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 1;
556
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 1;
556
                                                 // roll stick leftmost and pitch stick topmost --> setting 2
557
                                                 // roll stick leftmost and pitch stick topmost --> setting 2
557
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 2;
558
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 2;
558
                                                 // roll stick centered an pitch stick topmost --> setting 3
559
                                                 // roll stick centered an pitch stick topmost --> setting 3
559
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 3;
560
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 3;
560
                                                 // roll stick rightmost and pitch stick topmost --> setting 4
561
                                                 // roll stick rightmost and pitch stick topmost --> setting 4
561
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 4;
562
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 4;
562
                                                 // roll stick rightmost and pitch stick centered --> setting 5
563
                                                 // roll stick rightmost and pitch stick centered --> setting 5
563
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 5;
564
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 5;
564
                                                 // update active parameter set in eeprom
565
                                                 // update active parameter set in eeprom
565
                                                 SetActiveParamSet(setting);
566
                                                 SetActiveParamSet(setting);
566
                                        }
567
                                        }
567
                                        ParamSet_ReadFromEEProm(GetActiveParamSet());
568
                                        ParamSet_ReadFromEEProm(GetActiveParamSet());
568
                                        SetNeutral();
569
                                        SetNeutral();
569
                                        Beep(GetActiveParamSet());
570
                                        Beep(GetActiveParamSet());
570
                                }
571
                                }
571
                        }
572
                        }
572
                        // and if the yaw stick is in the rightmost position
573
                        // and if the yaw stick is in the rightmost position
573
                        // save the ACC neutral setting to eeprom
574
                        // save the ACC neutral setting to eeprom
574
                        else if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
575
                        else if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
575
                        {
576
                        {
576
                                if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
577
                                if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
577
                                {
578
                                {
578
                                        delay_neutral = 0;
579
                                        delay_neutral = 0;
579
                                        GRN_OFF;
580
                                        GRN_OFF;
580
                                        SetParamWord(PID_ACC_PITCH, 0xFFFF); // make value invalid
581
                                        SetParamWord(PID_ACC_PITCH, 0xFFFF); // make value invalid
581
                                        Model_Is_Flying = 0;
582
                                        Model_Is_Flying = 0;
582
                                        SetNeutral();
583
                                        SetNeutral();
583
                                        // Save ACC neutral settings to eeprom
584
                                        // Save ACC neutral settings to eeprom
584
                                        SetParamWord(PID_ACC_PITCH, (uint16_t)NeutralAccX);
585
                                        SetParamWord(PID_ACC_PITCH, (uint16_t)NeutralAccX);
585
                                        SetParamWord(PID_ACC_ROLL,  (uint16_t)NeutralAccY);
586
                                        SetParamWord(PID_ACC_ROLL,  (uint16_t)NeutralAccY);
586
                                        SetParamWord(PID_ACC_Z,     (uint16_t)NeutralAccZ);
587
                                        SetParamWord(PID_ACC_Z,     (uint16_t)NeutralAccZ);
587
                                        Beep(GetActiveParamSet());
588
                                        Beep(GetActiveParamSet());
588
                                }
589
                                }
589
                        }
590
                        }
590
                        else delay_neutral = 0;
591
                        else delay_neutral = 0;
591
                }
592
                }
592
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
593
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
593
// thrust stick is down
594
// thrust stick is down
594
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
595
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
595
                if(PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] < -85)
596
                if(PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] < -85)
596
                {
597
                {
597
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
598
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
598
// and yaw stick is rightmost --> start motors
599
// and yaw stick is rightmost --> start motors
599
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
600
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
600
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
601
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
601
                        {
602
                        {
602
                                if(++delay_startmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
603
                                if(++delay_startmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
603
                                {
604
                                {
604
                                        delay_startmotors = 200; // do not repeat if once executed
605
                                        delay_startmotors = 200; // do not repeat if once executed
605
                                        Model_Is_Flying = 1;
606
                                        Model_Is_Flying = 1;
606
                                        MotorsOn = 1;
607
                                        MotorsOn = 1;
607
                                        SetPointYaw = 0;
608
                                        SetPointYaw = 0;
608
                                        Reading_IntegralGyroYaw = 0;
609
                                        Reading_IntegralGyroYaw = 0;
609
                                        Reading_IntegralGyroPitch = 0;
610
                                        Reading_IntegralGyroPitch = 0;
610
                                        Reading_IntegralGyroRoll = 0;
611
                                        Reading_IntegralGyroRoll = 0;
611
                                        Reading_IntegralGyroPitch2 = IntegralPitch;
612
                                        Reading_IntegralGyroPitch2 = IntegralPitch;
612
                                        Reading_IntegralGyroRoll2 = IntegralRoll;
613
                                        Reading_IntegralGyroRoll2 = IntegralRoll;
613
                                        SumPitch = 0;
614
                                        SumPitch = 0;
614
                                        SumRoll = 0;
615
                                        SumRoll = 0;
615
                                        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
616
                                        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
616
                                        {
617
                                        {
617
                                                GPS_SetHomePosition();
618
                                                GPS_SetHomePosition();
618
                                        }
619
                                        }
619
                                }
620
                                }
620
                        }
621
                        }
621
                        else delay_startmotors = 0; // reset delay timer if sticks are not in this position
622
                        else delay_startmotors = 0; // reset delay timer if sticks are not in this position
622
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
623
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
623
// and yaw stick is leftmost --> stop motors
624
// and yaw stick is leftmost --> stop motors
624
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
625
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
625
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
626
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
626
                                {
627
                                {
627
                                if(++delay_stopmotors > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
628
                                if(++delay_stopmotors > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
628
                                {
629
                                {
629
                                        delay_stopmotors = 200; // do not repeat if once executed
630
                                        delay_stopmotors = 200; // do not repeat if once executed
630
                                        Model_Is_Flying = 0;
631
                                        Model_Is_Flying = 0;
631
                                        MotorsOn = 0;
632
                                        MotorsOn = 0;
632
                                        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
633
                                        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
633
                                        {
634
                                        {
634
                                                GPS_ClearHomePosition();
635
                                                GPS_ClearHomePosition();
635
                                        }
636
                                        }
636
                                }
637
                                }
637
                        }
638
                        }
638
                        else delay_stopmotors = 0; // reset delay timer if sticks are not in this position
639
                        else delay_stopmotors = 0; // reset delay timer if sticks are not in this position
639
                }
640
                }
640
                        // remapping of paameters only if the signal rc-sigbnal conditions are good
641
                        // remapping of paameters only if the signal rc-sigbnal conditions are good
641
        } // eof RC_Quality > 150
642
        } // eof RC_Quality > 150
642
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
643
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
643
// new values from RC
644
// new values from RC
644
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
645
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
645
        if(!NewPpmData-- || EmergencyLanding) // NewData = 0 means new data from RC
646
        if(!NewPpmData-- || EmergencyLanding) // NewData = 0 means new data from RC
646
        {
647
        {
647
                int tmp_int;
648
                int tmp_int;
648
                ParameterMapping(); // remapping params (online poti replacement)
649
                ParameterMapping(); // remapping params (online poti replacement)
649
                // calculate Stick inputs by rc channels (P) and changing of rc channels (D)
650
                // calculate Stick inputs by rc channels (P) and changing of rc channels (D)
650
                StickPitch = (StickPitch * 3 + PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_P) / 4;
651
                StickPitch = (StickPitch * 3 + PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_P) / 4;
651
                StickPitch += PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_D;
652
                StickPitch += PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_D;
652
                StickRoll = (StickRoll * 3 + PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_P) / 4;
653
                StickRoll = (StickRoll * 3 + PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_P) / 4;
653
                StickRoll += PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_D;
654
                StickRoll += PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_D;
654
 
655
 
655
                // direct mapping of yaw and thrust
656
                // direct mapping of yaw and thrust
656
                StickYaw = -PPM_in[ParamSet.ChannelAssignment[CH_YAW]];
657
                StickYaw = -PPM_in[ParamSet.ChannelAssignment[CH_YAW]];
657
                StickThrust  = PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] + 120;// shift to positive numbers
658
                StickThrust  = PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] + 120;// shift to positive numbers
658
 
659
 
659
                // update max stick positions for pitch and roll
660
                // update max stick positions for pitch and roll
660
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]) > MaxStickPitch)
661
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]) > MaxStickPitch)
661
                        MaxStickPitch = abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]);
662
                        MaxStickPitch = abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]);
662
                else MaxStickPitch--;
663
                else MaxStickPitch--;
663
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > MaxStickRoll)
664
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > MaxStickRoll)
664
                        MaxStickRoll = abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]);
665
                        MaxStickRoll = abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]);
665
                else MaxStickRoll--;
666
                else MaxStickRoll--;
666
 
667
 
667
                // update gyro control loop factors
668
                // update gyro control loop factors
668
 
669
 
669
                Gyro_P_Factor = ((float) FCParam.Gyro_P + 10.0) / 256.0;
670
                Gyro_P_Factor = ((float) FCParam.Gyro_P + 10.0) / 256.0;
670
                Gyro_I_Factor = ((float) FCParam.Gyro_I) / 44000;
671
                Gyro_I_Factor = ((float) FCParam.Gyro_I) / 44000;
671
 
672
 
672
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
673
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
673
// Digital Control via DubWise
674
// Digital Control via DubWise
674
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
675
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
675
 
676
 
676
                #define KEY_VALUE (FCParam.UserParam1 * 4) // step width
677
                #define KEY_VALUE (FCParam.UserParam1 * 4) // step width
677
                if(DubWiseKeys[1]) BeepTime = 10;
678
                if(DubWiseKeys[1]) BeepTime = 10;
678
                if(DubWiseKeys[1] & DUB_KEY_UP)  tmp_int = KEY_VALUE;
679
                if(DubWiseKeys[1] & DUB_KEY_UP)  tmp_int = KEY_VALUE;
679
                else if(DubWiseKeys[1] & DUB_KEY_DOWN)  tmp_int = -KEY_VALUE;
680
                else if(DubWiseKeys[1] & DUB_KEY_DOWN)  tmp_int = -KEY_VALUE;
680
                else tmp_int = 0;
681
                else tmp_int = 0;
681
                ExternStickPitch = (ExternStickPitch * 7 + tmp_int) / 8;
682
                ExternStickPitch = (ExternStickPitch * 7 + tmp_int) / 8;
682
                if(DubWiseKeys[1] & DUB_KEY_LEFT)  tmp_int = KEY_VALUE;
683
                if(DubWiseKeys[1] & DUB_KEY_LEFT)  tmp_int = KEY_VALUE;
683
                else if(DubWiseKeys[1] & DUB_KEY_RIGHT) tmp_int = -KEY_VALUE;
684
                else if(DubWiseKeys[1] & DUB_KEY_RIGHT) tmp_int = -KEY_VALUE;
684
                else tmp_int = 0;
685
                else tmp_int = 0;
685
                ExternStickRoll = (ExternStickRoll * 7 + tmp_int) / 8;
686
                ExternStickRoll = (ExternStickRoll * 7 + tmp_int) / 8;
686
 
687
 
687
                if(DubWiseKeys[0] & 8)  ExternStickYaw = 50;else
688
                if(DubWiseKeys[0] & 8)  ExternStickYaw = 50;else
688
                if(DubWiseKeys[0] & 4)  ExternStickYaw =-50;else ExternStickYaw = 0;
689
                if(DubWiseKeys[0] & 4)  ExternStickYaw =-50;else ExternStickYaw = 0;
689
                if(DubWiseKeys[0] & 2)  ExternHeightValue++;
690
                if(DubWiseKeys[0] & 2)  ExternHeightValue++;
690
                if(DubWiseKeys[0] & 16) ExternHeightValue--;
691
                if(DubWiseKeys[0] & 16) ExternHeightValue--;
691
 
692
 
692
                StickPitch += ExternStickPitch / 8;
693
                StickPitch += ExternStickPitch / 8;
693
                StickRoll += ExternStickRoll / 8;
694
                StickRoll += ExternStickRoll / 8;
694
                StickYaw += ExternStickYaw;
695
                StickYaw += ExternStickYaw;
695
 
696
 
696
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
697
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
697
//+ Analog control via serial communication
698
//+ Analog control via serial communication
698
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
699
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
699
 
700
 
700
                if(ExternControl.Config & 0x01 && FCParam.UserParam1 > 128)
701
                if(ExternControl.Config & 0x01 && FCParam.UserParam1 > 128)
701
                {
702
                {
702
                         StickPitch += (int16_t) ExternControl.Pitch * (int16_t) ParamSet.Stick_P;
703
                         StickPitch += (int16_t) ExternControl.Pitch * (int16_t) ParamSet.Stick_P;
703
                         StickRoll += (int16_t) ExternControl.Roll * (int16_t) ParamSet.Stick_P;
704
                         StickRoll += (int16_t) ExternControl.Roll * (int16_t) ParamSet.Stick_P;
704
                         StickYaw += ExternControl.Yaw;
705
                         StickYaw += ExternControl.Yaw;
705
                         ExternHeightValue =  (int16_t) ExternControl.Height * (int16_t)ParamSet.Height_Gain;
706
                         ExternHeightValue =  (int16_t) ExternControl.Height * (int16_t)ParamSet.Height_Gain;
706
                         if(ExternControl.Thrust < StickThrust) StickThrust = ExternControl.Thrust;
707
                         if(ExternControl.Thrust < StickThrust) StickThrust = ExternControl.Thrust;
707
                }
708
                }
708
                // disable I part of gyro control feedback
709
                // disable I part of gyro control feedback
709
                if(ParamSet.GlobalConfig & CFG_HEADING_HOLD) Gyro_I_Factor =  0;
710
                if(ParamSet.GlobalConfig & CFG_HEADING_HOLD) Gyro_I_Factor =  0;
710
                // avoid negative scaling factors
711
                // avoid negative scaling factors
711
                if(Gyro_P_Factor < 0) Gyro_P_Factor = 0;
712
                if(Gyro_P_Factor < 0) Gyro_P_Factor = 0;
712
                if(Gyro_I_Factor < 0) Gyro_I_Factor = 0;
713
                if(Gyro_I_Factor < 0) Gyro_I_Factor = 0;
713
 
714
 
714
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
715
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
715
// Looping?
716
// Looping?
716
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
717
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
717
 
718
 
718
                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_LEFT)  Looping_Left = 1;
719
                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_LEFT)  Looping_Left = 1;
719
                else
720
                else
720
                {
721
                {
721
                        if(Looping_Left) // Hysteresis
722
                        if(Looping_Left) // Hysteresis
722
                        {
723
                        {
723
                                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Left = 0;
724
                                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Left = 0;
724
                        }
725
                        }
725
                }
726
                }
726
                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_RIGHT) Looping_Right = 1;
727
                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_RIGHT) Looping_Right = 1;
727
                else
728
                else
728
                {
729
                {
729
                        if(Looping_Right) // Hysteresis
730
                        if(Looping_Right) // Hysteresis
730
                        {
731
                        {
731
                                if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Right = 0;
732
                                if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Right = 0;
732
                        }
733
                        }
733
                }
734
                }
734
 
735
 
735
                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_UP) Looping_Top = 1;
736
                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_UP) Looping_Top = 1;
736
                else
737
                else
737
                {
738
                {
738
                        if(Looping_Top)  // Hysteresis
739
                        if(Looping_Top)  // Hysteresis
739
                        {
740
                        {
740
                                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Top = 0;
741
                                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Top = 0;
741
                        }
742
                        }
742
                }
743
                }
743
                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_DOWN) Looping_Down = 1;
744
                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_DOWN) Looping_Down = 1;
744
                else
745
                else
745
                {
746
                {
746
                        if(Looping_Down) // Hysteresis
747
                        if(Looping_Down) // Hysteresis
747
                        {
748
                        {
748
                                if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Down = 0;
749
                                if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Down = 0;
749
                        }
750
                        }
750
                }
751
                }
751
 
752
 
752
                if(Looping_Left || Looping_Right)   Looping_Roll = 1; else Looping_Roll = 0;
753
                if(Looping_Left || Looping_Right)   Looping_Roll = 1; else Looping_Roll = 0;
753
                if(Looping_Top  || Looping_Down) {Looping_Pitch = 1; Looping_Roll = 0; Looping_Left = 0; Looping_Right = 0;} else Looping_Pitch = 0;
754
                if(Looping_Top  || Looping_Down) {Looping_Pitch = 1; Looping_Roll = 0; Looping_Left = 0; Looping_Right = 0;} else Looping_Pitch = 0;
754
        } // End of new RC-Values or Emergency Landing
755
        } // End of new RC-Values or Emergency Landing
755
 
756
 
756
 
757
 
757
        if(Looping_Roll) BeepTime = 100;
758
        if(Looping_Roll) BeepTime = 100;
758
        if(Looping_Roll || Looping_Pitch)
759
        if(Looping_Roll || Looping_Pitch)
759
        {
760
        {
760
                if(ThrustMixFraction > ParamSet.LoopThrustLimit) ThrustMixFraction = ParamSet.LoopThrustLimit;
761
                if(ThrustMixFraction > ParamSet.LoopThrustLimit) ThrustMixFraction = ParamSet.LoopThrustLimit;
761
        }
762
        }
762
 
763
 
763
 
764
 
764
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
765
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
765
//+ LED Control on J16/J17
766
//+ LED Control on J16/J17
766
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
767
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
767
        LED1_Time = FCParam.UserParam7;
768
        LED1_Time = FCParam.UserParam7;
768
        LED2_Time = FCParam.UserParam8;
769
        LED2_Time = FCParam.UserParam8;
769
        LED_Update();
770
        LED_Update();
770
 
771
 
771
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
772
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
772
// in case of emergency landing
773
// in case of emergency landing
773
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
774
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
774
        // set all inputs to save values
775
        // set all inputs to save values
775
        if(EmergencyLanding)
776
        if(EmergencyLanding)
776
        {
777
        {
777
                StickYaw = 0;
778
                StickYaw = 0;
778
                StickPitch = 0;
779
                StickPitch = 0;
779
                StickRoll = 0;
780
                StickRoll = 0;
780
                Gyro_P_Factor  = 0.5;
781
                Gyro_P_Factor  = 0.5;
781
                Gyro_I_Factor = 0.003;
782
                Gyro_I_Factor = 0.003;
782
                Looping_Roll = 0;
783
                Looping_Roll = 0;
783
                Looping_Pitch = 0;
784
                Looping_Pitch = 0;
784
                MaxStickPitch = 0;
785
                MaxStickPitch = 0;
785
                MaxStickRoll = 0;
786
                MaxStickRoll = 0;
786
        }
787
        }
787
 
788
 
788
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
789
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
789
// Trim Gyro-Integrals to ACC-Signals
790
// Trim Gyro-Integrals to ACC-Signals
790
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
791
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
791
 
792
 
792
        #define BALANCE_NUMBER 256L
793
        #define BALANCE_NUMBER 256L
793
        // sum for averaging
794
        // sum for averaging
794
        MeanIntegralPitch  += IntegralPitch;
795
        MeanIntegralPitch  += IntegralPitch;
795
        MeanIntegralRoll  += IntegralRoll;
796
        MeanIntegralRoll  += IntegralRoll;
796
 
797
 
797
        if(Looping_Pitch || Looping_Roll) // if looping in any direction
798
        if(Looping_Pitch || Looping_Roll) // if looping in any direction
798
        {
799
        {
799
                // reset averaging for acc and gyro integral as well as gyro integral acc correction
800
                // reset averaging for acc and gyro integral as well as gyro integral acc correction
800
                MeasurementCounter = 0;
801
                MeasurementCounter = 0;
801
 
802
 
802
                IntegralAccPitch = 0;
803
                IntegralAccPitch = 0;
803
                IntegralAccRoll = 0;
804
                IntegralAccRoll = 0;
804
 
805
 
805
                MeanIntegralPitch = 0;
806
                MeanIntegralPitch = 0;
806
                MeanIntegralRoll = 0;
807
                MeanIntegralRoll = 0;
807
 
808
 
808
                Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
809
                Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
809
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
810
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
810
 
811
 
811
                AttitudeCorrectionPitch = 0;
812
                AttitudeCorrectionPitch = 0;
812
                AttitudeCorrectionRoll = 0;
813
                AttitudeCorrectionRoll = 0;
813
        }
814
        }
814
 
815
 
815
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
816
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
816
        if(!Looping_Pitch && !Looping_Roll) // if not lopping in any direction
817
        if(!Looping_Pitch && !Looping_Roll) // if not lopping in any direction
817
        {
818
        {
818
                int32_t tmp_long, tmp_long2;
819
                int32_t tmp_long, tmp_long2;
819
                // determine the deviation of gyro integral from averaged acceleration sensor
820
                // determine the deviation of gyro integral from averaged acceleration sensor
820
                tmp_long   =  (int32_t)(IntegralPitch / ParamSet.GyroAccFactor - (int32_t)Mean_AccPitch);
821
                tmp_long   =  (int32_t)(IntegralPitch / ParamSet.GyroAccFactor - (int32_t)Mean_AccPitch);
821
                tmp_long  /= 16;
822
                tmp_long  /= 16;
822
                tmp_long2  = (int32_t)(IntegralRoll   / ParamSet.GyroAccFactor - (int32_t)Mean_AccRoll);
823
                tmp_long2  = (int32_t)(IntegralRoll   / ParamSet.GyroAccFactor - (int32_t)Mean_AccRoll);
823
                tmp_long2 /= 16;
824
                tmp_long2 /= 16;
824
 
825
 
825
                if((MaxStickPitch > 15) || (MaxStickRoll > 15)) // reduce effect during stick commands
826
                if((MaxStickPitch > 15) || (MaxStickRoll > 15)) // reduce effect during stick commands
826
                {
827
                {
827
                        tmp_long  /= 3;
828
                        tmp_long  /= 3;
828
                        tmp_long2 /= 3;
829
                        tmp_long2 /= 3;
829
                }
830
                }
830
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25) // reduce further if yaw stick is active
831
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25) // reduce further if yaw stick is active
831
                {
832
                {
832
                        tmp_long  /= 3;
833
                        tmp_long  /= 3;
833
                        tmp_long2 /= 3;
834
                        tmp_long2 /= 3;
834
                }
835
                }
835
 
836
 
836
                #define BALANCE 32
837
                #define BALANCE 32
837
                // limit correction effect
838
                // limit correction effect
838
                if(tmp_long >  BALANCE)  tmp_long  = BALANCE;
839
                if(tmp_long >  BALANCE)  tmp_long  = BALANCE;
839
                if(tmp_long < -BALANCE)  tmp_long  =-BALANCE;
840
                if(tmp_long < -BALANCE)  tmp_long  =-BALANCE;
840
                if(tmp_long2 > BALANCE)  tmp_long2 = BALANCE;
841
                if(tmp_long2 > BALANCE)  tmp_long2 = BALANCE;
841
                if(tmp_long2 <-BALANCE)  tmp_long2 =-BALANCE;
842
                if(tmp_long2 <-BALANCE)  tmp_long2 =-BALANCE;
842
                // correct current readings
843
                // correct current readings
843
                Reading_IntegralGyroPitch -= tmp_long;
844
                Reading_IntegralGyroPitch -= tmp_long;
844
                Reading_IntegralGyroRoll -= tmp_long2;
845
                Reading_IntegralGyroRoll -= tmp_long2;
845
        }
846
        }
846
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
847
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
847
        // MeasurementCounter is incremented in the isr of analog.c
848
        // MeasurementCounter is incremented in the isr of analog.c
848
        if(MeasurementCounter >= BALANCE_NUMBER) // averaging number has reached
849
        if(MeasurementCounter >= BALANCE_NUMBER) // averaging number has reached
849
        {
850
        {
850
                static int16_t cnt = 0;
851
                static int16_t cnt = 0;
851
                static int8_t last_n_p, last_n_n, last_r_p, last_r_n;
852
                static int8_t last_n_p, last_n_n, last_r_p, last_r_n;
852
                static int32_t MeanIntegralPitch_old, MeanIntegralRoll_old;
853
                static int32_t MeanIntegralPitch_old, MeanIntegralRoll_old;
853
 
854
 
854
                // if not lopping in any direction (this should be alwais the case,
855
                // if not lopping in any direction (this should be alwais the case,
855
                // because the Measurement counter is reset to 0 if looping in any direction is active.)
856
                // because the Measurement counter is reset to 0 if looping in any direction is active.)
856
                if(!Looping_Pitch && !Looping_Roll)
857
                if(!Looping_Pitch && !Looping_Roll)
857
                {
858
                {
858
                        // Calculate mean value of the gyro integrals
859
                        // Calculate mean value of the gyro integrals
859
                        MeanIntegralPitch /= BALANCE_NUMBER;
860
                        MeanIntegralPitch /= BALANCE_NUMBER;
860
                        MeanIntegralRoll  /= BALANCE_NUMBER;
861
                        MeanIntegralRoll  /= BALANCE_NUMBER;
861
 
862
 
862
                        // Calculate mean of the acceleration values
863
                        // Calculate mean of the acceleration values
863
                        IntegralAccPitch = (ParamSet.GyroAccFactor * IntegralAccPitch) / BALANCE_NUMBER;
864
                        IntegralAccPitch = (ParamSet.GyroAccFactor * IntegralAccPitch) / BALANCE_NUMBER;
864
                        IntegralAccRoll  = (ParamSet.GyroAccFactor * IntegralAccRoll ) / BALANCE_NUMBER;
865
                        IntegralAccRoll  = (ParamSet.GyroAccFactor * IntegralAccRoll ) / BALANCE_NUMBER;
865
 
866
 
866
                        // Pitch ++++++++++++++++++++++++++++++++++++++++++++++++
867
                        // Pitch ++++++++++++++++++++++++++++++++++++++++++++++++
867
                        // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
868
                        // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
868
                        IntegralErrorPitch = (int32_t)(MeanIntegralPitch - (int32_t)IntegralAccPitch);
869
                        IntegralErrorPitch = (int32_t)(MeanIntegralPitch - (int32_t)IntegralAccPitch);
869
                        CorrectionPitch = IntegralErrorPitch / ParamSet.GyroAccTrim;
870
                        CorrectionPitch = IntegralErrorPitch / ParamSet.GyroAccTrim;
870
                        AttitudeCorrectionPitch = CorrectionPitch / BALANCE_NUMBER;
871
                        AttitudeCorrectionPitch = CorrectionPitch / BALANCE_NUMBER;
871
                        // Roll ++++++++++++++++++++++++++++++++++++++++++++++++
872
                        // Roll ++++++++++++++++++++++++++++++++++++++++++++++++
872
                        // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
873
                        // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
873
                        IntegralErrorRoll = (int32_t)(MeanIntegralRoll - (int32_t)IntegralAccRoll);
874
                        IntegralErrorRoll = (int32_t)(MeanIntegralRoll - (int32_t)IntegralAccRoll);
874
                        CorrectionRoll  = IntegralErrorRoll / ParamSet.GyroAccTrim;
875
                        CorrectionRoll  = IntegralErrorRoll / ParamSet.GyroAccTrim;
875
                        AttitudeCorrectionRoll  = CorrectionRoll  / BALANCE_NUMBER;
876
                        AttitudeCorrectionRoll  = CorrectionRoll  / BALANCE_NUMBER;
876
 
877
 
877
                        if((MaxStickPitch > 15) || (MaxStickRoll > 15) || (abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25))
878
                        if((MaxStickPitch > 15) || (MaxStickRoll > 15) || (abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25))
878
                        {
879
                        {
879
                                AttitudeCorrectionPitch /= 2;
880
                                AttitudeCorrectionPitch /= 2;
880
                                AttitudeCorrectionRoll /= 2;
881
                                AttitudeCorrectionRoll /= 2;
881
                        }
882
                        }
882
 
883
 
883
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
884
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
884
        // Gyro-Drift ermitteln
885
        // Gyro-Drift ermitteln
885
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
886
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
886
                        // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
887
                        // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
887
                        IntegralErrorPitch  = IntegralPitch2 - IntegralPitch;
888
                        IntegralErrorPitch  = IntegralPitch2 - IntegralPitch;
888
                        Reading_IntegralGyroPitch2 -= IntegralErrorPitch;
889
                        Reading_IntegralGyroPitch2 -= IntegralErrorPitch;
889
                        // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
890
                        // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
890
                        IntegralErrorRoll = IntegralRoll2 - IntegralRoll;
891
                        IntegralErrorRoll = IntegralRoll2 - IntegralRoll;
891
                        Reading_IntegralGyroRoll2 -= IntegralErrorRoll;
892
                        Reading_IntegralGyroRoll2 -= IntegralErrorRoll;
892
 
893
 
893
 
894
 
894
                        // DebugOut.Analog[17] = IntegralAccPitch / 26;
895
                        // DebugOut.Analog[17] = IntegralAccPitch / 26;
895
                        DebugOut.Analog[18] = IntegralAccRoll / 26;
896
                        DebugOut.Analog[18] = IntegralAccRoll / 26;
896
                        DebugOut.Analog[19] = IntegralErrorPitch;// / 26;
897
                        DebugOut.Analog[19] = IntegralErrorPitch;// / 26;
897
                        DebugOut.Analog[20] = IntegralErrorRoll;// / 26;
898
                        DebugOut.Analog[20] = IntegralErrorRoll;// / 26;
898
                        DebugOut.Analog[21] = MeanIntegralPitch / 26;
899
                        DebugOut.Analog[21] = MeanIntegralPitch / 26;
899
                        DebugOut.Analog[22] = MeanIntegralRoll / 26;
900
                        DebugOut.Analog[22] = MeanIntegralRoll / 26;
900
                        //DebugOut.Analog[28] = CorrectionPitch;
901
                        //DebugOut.Analog[28] = CorrectionPitch;
901
                        DebugOut.Analog[29] = CorrectionRoll;
902
                        DebugOut.Analog[29] = CorrectionRoll;
902
                        DebugOut.Analog[30] = AttitudeCorrectionRoll * 10;
903
                        DebugOut.Analog[30] = AttitudeCorrectionRoll * 10;
903
 
904
 
904
                        #define ERROR_LIMIT  (BALANCE_NUMBER * 4)
905
                        #define ERROR_LIMIT  (BALANCE_NUMBER * 4)
905
                        #define ERROR_LIMIT2 (BALANCE_NUMBER * 16)
906
                        #define ERROR_LIMIT2 (BALANCE_NUMBER * 16)
906
                        #define MOVEMENT_LIMIT 20000
907
                        #define MOVEMENT_LIMIT 20000
907
        // Pitch +++++++++++++++++++++++++++++++++++++++++++++++++
908
        // Pitch +++++++++++++++++++++++++++++++++++++++++++++++++
908
                        cnt = 1;// + labs(IntegralErrorPitch) / 4096;
909
                        cnt = 1;// + labs(IntegralErrorPitch) / 4096;
909
                        CorrectionPitch = 0;
910
                        CorrectionPitch = 0;
910
                        if(labs(MeanIntegralPitch_old - MeanIntegralPitch) < MOVEMENT_LIMIT)
911
                        if(labs(MeanIntegralPitch_old - MeanIntegralPitch) < MOVEMENT_LIMIT)
911
                        {
912
                        {
912
                                if(IntegralErrorPitch >  ERROR_LIMIT2)
913
                                if(IntegralErrorPitch >  ERROR_LIMIT2)
913
                                {
914
                                {
914
                                        if(last_n_p)
915
                                        if(last_n_p)
915
                                        {
916
                                        {
916
                                                cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
917
                                                cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
917
                                                CorrectionPitch = IntegralErrorPitch / 8;
918
                                                CorrectionPitch = IntegralErrorPitch / 8;
918
                                                if(CorrectionPitch > 5000) CorrectionPitch = 5000;
919
                                                if(CorrectionPitch > 5000) CorrectionPitch = 5000;
919
                                                AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
920
                                                AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
920
                                        }
921
                                        }
921
                                        else last_n_p = 1;
922
                                        else last_n_p = 1;
922
                                }
923
                                }
923
                                else  last_n_p = 0;
924
                                else  last_n_p = 0;
924
                                if(IntegralErrorPitch < -ERROR_LIMIT2)
925
                                if(IntegralErrorPitch < -ERROR_LIMIT2)
925
                                {
926
                                {
926
                                        if(last_n_n)
927
                                        if(last_n_n)
927
                                        {
928
                                        {
928
                                                cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
929
                                                cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
929
                                                CorrectionPitch = IntegralErrorPitch / 8;
930
                                                CorrectionPitch = IntegralErrorPitch / 8;
930
                                                if(CorrectionPitch < -5000) CorrectionPitch = -5000;
931
                                                if(CorrectionPitch < -5000) CorrectionPitch = -5000;
931
                                                AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
932
                                                AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
932
                                        }
933
                                        }
933
                                        else last_n_n = 1;
934
                                        else last_n_n = 1;
934
                                }
935
                                }
935
                                else  last_n_n = 0;
936
                                else  last_n_n = 0;
936
                        }
937
                        }
937
                        else cnt = 0;
938
                        else cnt = 0;
938
                        if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
939
                        if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
939
                        // correct Gyro Offsets
940
                        // correct Gyro Offsets
940
                        if(IntegralErrorPitch >  ERROR_LIMIT)   AdNeutralPitch += cnt;
941
                        if(IntegralErrorPitch >  ERROR_LIMIT)   AdNeutralPitch += cnt;
941
                        if(IntegralErrorPitch < -ERROR_LIMIT)   AdNeutralPitch -= cnt;
942
                        if(IntegralErrorPitch < -ERROR_LIMIT)   AdNeutralPitch -= cnt;
942
 
943
 
943
        // Roll +++++++++++++++++++++++++++++++++++++++++++++++++
944
        // Roll +++++++++++++++++++++++++++++++++++++++++++++++++
944
                        cnt = 1;// + labs(IntegralErrorPitch) / 4096;
945
                        cnt = 1;// + labs(IntegralErrorPitch) / 4096;
945
                        CorrectionRoll = 0;
946
                        CorrectionRoll = 0;
946
                        if(labs(MeanIntegralRoll_old - MeanIntegralRoll) < MOVEMENT_LIMIT)
947
                        if(labs(MeanIntegralRoll_old - MeanIntegralRoll) < MOVEMENT_LIMIT)
947
                        {
948
                        {
948
                                if(IntegralErrorRoll >  ERROR_LIMIT2)
949
                                if(IntegralErrorRoll >  ERROR_LIMIT2)
949
                                {
950
                                {
950
                                        if(last_r_p)
951
                                        if(last_r_p)
951
                                        {
952
                                        {
952
                                                cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
953
                                                cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
953
                                                CorrectionRoll = IntegralErrorRoll / 8;
954
                                                CorrectionRoll = IntegralErrorRoll / 8;
954
                                                if(CorrectionRoll > 5000) CorrectionRoll = 5000;
955
                                                if(CorrectionRoll > 5000) CorrectionRoll = 5000;
955
                                                AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
956
                                                AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
956
                                        }
957
                                        }
957
                                        else last_r_p = 1;
958
                                        else last_r_p = 1;
958
                                }
959
                                }
959
                                else  last_r_p = 0;
960
                                else  last_r_p = 0;
960
                                if(IntegralErrorRoll < -ERROR_LIMIT2)
961
                                if(IntegralErrorRoll < -ERROR_LIMIT2)
961
                                {
962
                                {
962
                                        if(last_r_n)
963
                                        if(last_r_n)
963
                                        {
964
                                        {
964
                                                cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
965
                                                cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
965
                                                CorrectionRoll = IntegralErrorRoll / 8;
966
                                                CorrectionRoll = IntegralErrorRoll / 8;
966
                                                if(CorrectionRoll < -5000) CorrectionRoll = -5000;
967
                                                if(CorrectionRoll < -5000) CorrectionRoll = -5000;
967
                                                AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
968
                                                AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
968
                                        }
969
                                        }
969
                                        else last_r_n = 1;
970
                                        else last_r_n = 1;
970
                                }
971
                                }
971
                                else  last_r_n = 0;
972
                                else  last_r_n = 0;
972
                        }
973
                        }
973
                        else cnt = 0;
974
                        else cnt = 0;
974
                        // correct Gyro Offsets
975
                        // correct Gyro Offsets
975
                        if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
976
                        if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
976
                        if(IntegralErrorRoll >  ERROR_LIMIT)   AdNeutralRoll += cnt;
977
                        if(IntegralErrorRoll >  ERROR_LIMIT)   AdNeutralRoll += cnt;
977
                        if(IntegralErrorRoll < -ERROR_LIMIT)   AdNeutralRoll -= cnt;
978
                        if(IntegralErrorRoll < -ERROR_LIMIT)   AdNeutralRoll -= cnt;
978
 
979
 
979
                        DebugOut.Analog[27] = CorrectionRoll;
980
                        DebugOut.Analog[27] = CorrectionRoll;
980
                        DebugOut.Analog[23] = AdNeutralPitch;//10*(AdNeutralPitch - StartNeutralPitch);
981
                        DebugOut.Analog[23] = AdNeutralPitch;//10*(AdNeutralPitch - StartNeutralPitch);
981
                        DebugOut.Analog[24] = 10*(AdNeutralRoll - StartNeutralRoll);
982
                        DebugOut.Analog[24] = 10*(AdNeutralRoll - StartNeutralRoll);
982
                }
983
                }
983
                else // looping is active
984
                else // looping is active
984
                {
985
                {
985
                        AttitudeCorrectionRoll  = 0;
986
                        AttitudeCorrectionRoll  = 0;
986
                        AttitudeCorrectionPitch = 0;
987
                        AttitudeCorrectionPitch = 0;
987
                }
988
                }
988
 
989
 
989
                // if Gyro_I_Factor == 0 , for example at Heading Hold, ignore attitude correction
990
                // if Gyro_I_Factor == 0 , for example at Heading Hold, ignore attitude correction
990
                if(!Gyro_I_Factor)
991
                if(!Gyro_I_Factor)
991
                {
992
                {
992
                        AttitudeCorrectionRoll  = 0;
993
                        AttitudeCorrectionRoll  = 0;
993
                        AttitudeCorrectionPitch = 0;
994
                        AttitudeCorrectionPitch = 0;
994
                }
995
                }
995
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++
996
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++
996
                MeanIntegralPitch_old = MeanIntegralPitch;
997
                MeanIntegralPitch_old = MeanIntegralPitch;
997
                MeanIntegralRoll_old  = MeanIntegralRoll;
998
                MeanIntegralRoll_old  = MeanIntegralRoll;
998
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++
999
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++
999
                // reset variables used for averaging
1000
                // reset variables used for averaging
1000
                IntegralAccPitch = 0;
1001
                IntegralAccPitch = 0;
1001
                IntegralAccRoll = 0;
1002
                IntegralAccRoll = 0;
1002
                MeanIntegralPitch = 0;
1003
                MeanIntegralPitch = 0;
1003
                MeanIntegralRoll = 0;
1004
                MeanIntegralRoll = 0;
1004
                MeasurementCounter = 0;
1005
                MeasurementCounter = 0;
1005
        } // end of averaging
1006
        } // end of averaging
1006
 
1007
 
1007
 
1008
 
1008
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1009
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1009
//  Yawing
1010
//  Yawing
1010
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1011
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1011
        if(abs(StickYaw) > 20 ) // yaw stick is activated
1012
        if(abs(StickYaw) > 20 ) // yaw stick is activated
1012
        {
1013
        {
1013
                if(!(ParamSet.GlobalConfig & CFG_COMPASS_FIX)) UpdateCompassCourse = 1;
1014
                if(!(ParamSet.GlobalConfig & CFG_COMPASS_FIX)) UpdateCompassCourse = 1;
1014
        }
1015
        }
1015
        // exponential stick sensitivity in yawring rate
1016
        // exponential stick sensitivity in yawring rate
1016
        tmp_int  = (int32_t) ParamSet.Yaw_P * ((int32_t)StickYaw * abs(StickYaw)) / 512L; // expo  y = ax + bx²
1017
        tmp_int  = (int32_t) ParamSet.Yaw_P * ((int32_t)StickYaw * abs(StickYaw)) / 512L; // expo  y = ax + bx²
1017
        tmp_int += (ParamSet.Yaw_P * StickYaw) / 4;
1018
        tmp_int += (ParamSet.Yaw_P * StickYaw) / 4;
1018
        SetPointYaw = tmp_int;
1019
        SetPointYaw = tmp_int;
1019
        // trimm drift of Reading_IntegralGyroYaw with SetPointYaw(StickYaw)
1020
        // trimm drift of Reading_IntegralGyroYaw with SetPointYaw(StickYaw)
1020
        Reading_IntegralGyroYaw -= tmp_int;
1021
        Reading_IntegralGyroYaw -= tmp_int;
1021
        // limit the effect
1022
        // limit the effect
1022
        if(Reading_IntegralGyroYaw > 50000) Reading_IntegralGyroYaw = 50000;
1023
        if(Reading_IntegralGyroYaw > 50000) Reading_IntegralGyroYaw = 50000;
1023
        if(Reading_IntegralGyroYaw <-50000) Reading_IntegralGyroYaw =-50000;
1024
        if(Reading_IntegralGyroYaw <-50000) Reading_IntegralGyroYaw =-50000;
1024
 
1025
 
1025
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1026
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1026
//  Compass
1027
//  Compass
1027
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1028
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1028
    // compass code is used if Compass option or GPS option is selected
1029
    // compass code is used if Compass option or GPS option is selected
1029
        if((ParamSet.GlobalConfig & CFG_COMPASS_ACTIVE) || (ParamSet.GlobalConfig & CFG_GPS_ACTIVE))
1030
        if((ParamSet.GlobalConfig & CFG_COMPASS_ACTIVE) || (ParamSet.GlobalConfig & CFG_GPS_ACTIVE))
1030
        {
1031
        {
1031
                static uint8_t updCompass = 0;
1032
                static uint8_t updCompass = 0;
1032
                int16_t w,v;
1033
                int16_t w,v;
1033
 
1034
 
1034
                if (!updCompass--)
1035
                if (!updCompass--)
1035
                {
1036
                {
1036
                        updCompass = 49; // update only at 2ms*50 = 100ms (10Hz)
1037
                        updCompass = 49; // update only at 2ms*50 = 100ms (10Hz)
1037
                        // get current compass heading (angle between MK head and magnetic north)
1038
                        // get current compass heading (angle between MK head and magnetic north)
1038
                        #ifdef USE_MM3
1039
                        #ifdef USE_MM3
1039
                        CompassHeading = MM3_Heading();
1040
                        CompassHeading = MM3_Heading();
1040
                        #endif
1041
                        #endif
1041
                        #ifdef USE_CMPS03
1042
                        #ifdef USE_CMPS03
1042
                        CompassHeading = CMPS03_Heading();
1043
                        CompassHeading = CMPS03_Heading();
1043
                        #endif
1044
                        #endif
1044
                        if (CompassHeading < 0) CompassOffCourse = 0; // disable gyro compass correction on bad compass data
1045
                        if (CompassHeading < 0) CompassOffCourse = 0; // disable gyro compass correction on bad compass data
1045
                        else CompassOffCourse = ((540 + CompassHeading - CompassCourse) % 360) - 180; // calc course deviation
1046
                        else CompassOffCourse = ((540 + CompassHeading - CompassCourse) % 360) - 180; // calc course deviation
1046
                }
1047
                }
1047
 
1048
 
1048
                // get maximum attitude angle
1049
                // get maximum attitude angle
1049
                w = abs(IntegralPitch/512);
1050
                w = abs(IntegralPitch/512);
1050
                v = abs(IntegralRoll /512);
1051
                v = abs(IntegralRoll /512);
1051
                if(v > w) w = v;
1052
                if(v > w) w = v;
1052
                if (w < 25)
1053
                if (w < 25)
1053
                {
1054
                {
1054
                        if(UpdateCompassCourse)
1055
                        if(UpdateCompassCourse)
1055
                        {
1056
                        {
1056
                                UpdateCompassCourse = 0;
1057
                                UpdateCompassCourse = 0;
1057
                                CompassCourse = CompassHeading;
1058
                                CompassCourse = CompassHeading;
1058
                                CompassOffCourse = 0;
1059
                                CompassOffCourse = 0;
1059
                        }
1060
                        }
1060
                        w = (w * FCParam.CompassYawEffect) / 64;
1061
                        w = (w * FCParam.CompassYawEffect) / 64;
1061
                w = FCParam.CompassYawEffect - w;
1062
                w = FCParam.CompassYawEffect - w;
1062
                        if(w > 0) Reading_IntegralGyroYaw += (CompassOffCourse * w) / 32;
1063
                        if(w > 0) Reading_IntegralGyroYaw += (CompassOffCourse * w) / 32;
1063
                }
1064
                }
1064
        }
1065
        }
1065
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1066
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1066
//  GPS
1067
//  GPS
1067
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1068
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1068
        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
1069
        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
1069
        {
1070
        {
1070
                GPS_I_Factor = FCParam.UserParam2;
1071
                GPS_I_Factor = FCParam.UserParam2;
1071
                GPS_P_Factor = FCParam.UserParam5;
1072
                GPS_P_Factor = FCParam.UserParam5;
1072
                GPS_D_Factor = FCParam.UserParam6;
1073
                GPS_D_Factor = FCParam.UserParam6;
1073
                if(EmergencyLanding) GPS_Main(230); // enables Comming Home
1074
                if(EmergencyLanding) GPS_Main(230); // enables Comming Home
1074
                else GPS_Main(Poti3);               // behavior controlled by Poti3
1075
                else GPS_Main(Poti3);               // behavior controlled by Poti3
1075
        }
1076
        }
1076
        else
1077
        else
1077
        {
1078
        {
1078
                GPS_Neutral();
1079
                GPS_Neutral();
1079
        }
1080
        }
1080
 
1081
 
1081
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1082
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1082
//  Debugwerte zuordnen
1083
//  Debugwerte zuordnen
1083
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1084
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1084
        if(!TimerDebugOut--)
1085
        if(!TimerDebugOut--)
1085
        {
1086
        {
1086
                TimerDebugOut = 24; // update debug outputs every 25*2ms = 50 ms (20Hz)
1087
                TimerDebugOut = 24; // update debug outputs every 25*2ms = 50 ms (20Hz)
1087
                DebugOut.Analog[0]  = IntegralPitch / ParamSet.GyroAccFactor;
1088
                DebugOut.Analog[0]  = IntegralPitch / ParamSet.GyroAccFactor;
1088
                DebugOut.Analog[1]  = IntegralRoll / ParamSet.GyroAccFactor;
1089
                DebugOut.Analog[1]  = IntegralRoll / ParamSet.GyroAccFactor;
1089
                DebugOut.Analog[2]  = Mean_AccPitch;
1090
                DebugOut.Analog[2]  = Mean_AccPitch;
1090
                DebugOut.Analog[3]  = Mean_AccRoll;
1091
                DebugOut.Analog[3]  = Mean_AccRoll;
1091
                DebugOut.Analog[4]  = Reading_GyroYaw;
1092
                DebugOut.Analog[4]  = Reading_GyroYaw;
1092
                DebugOut.Analog[5]  = ReadingHeight;
1093
                DebugOut.Analog[5]  = ReadingHeight;
1093
                DebugOut.Analog[6]  = (Reading_Integral_Top / 512);
1094
                DebugOut.Analog[6]  = (Reading_Integral_Top / 512);
1094
                DebugOut.Analog[8]  = CompassHeading;
1095
                DebugOut.Analog[8]  = CompassHeading;
1095
                DebugOut.Analog[9]  = UBat;
1096
                DebugOut.Analog[9]  = UBat;
1096
                DebugOut.Analog[10] = RC_Quality;
1097
                DebugOut.Analog[10] = RC_Quality;
1097
                //DebugOut.Analog[11] = RC_Quality;
1098
                //DebugOut.Analog[11] = RC_Quality;
1098
                //DebugOut.Analog[16] = Mean_AccTop;
1099
                //DebugOut.Analog[16] = Mean_AccTop;
1099
 
1100
 
1100
                /*    DebugOut.Analog[16] = motor_rx[0];
1101
                /*    DebugOut.Analog[16] = motor_rx[0];
1101
                DebugOut.Analog[17] = motor_rx[1];
1102
                DebugOut.Analog[17] = motor_rx[1];
1102
                DebugOut.Analog[18] = motor_rx[2];
1103
                DebugOut.Analog[18] = motor_rx[2];
1103
                DebugOut.Analog[19] = motor_rx[3];
1104
                DebugOut.Analog[19] = motor_rx[3];
1104
                DebugOut.Analog[20] = motor_rx[0] + motor_rx[1] + motor_rx[2] + motor_rx[3];
1105
                DebugOut.Analog[20] = motor_rx[0] + motor_rx[1] + motor_rx[2] + motor_rx[3];
1105
                DebugOut.Analog[20] /= 14;
1106
                DebugOut.Analog[20] /= 14;
1106
                DebugOut.Analog[21] = motor_rx[4];
1107
                DebugOut.Analog[21] = motor_rx[4];
1107
                DebugOut.Analog[22] = motor_rx[5];
1108
                DebugOut.Analog[22] = motor_rx[5];
1108
                DebugOut.Analog[23] = motor_rx[6];
1109
                DebugOut.Analog[23] = motor_rx[6];
1109
                DebugOut.Analog[24] = motor_rx[7];
1110
                DebugOut.Analog[24] = motor_rx[7];
1110
                DebugOut.Analog[25] = motor_rx[4] + motor_rx[5] + motor_rx[6] + motor_rx[7];
1111
                DebugOut.Analog[25] = motor_rx[4] + motor_rx[5] + motor_rx[6] + motor_rx[7];
1111
 
1112
 
1112
                DebugOut.Analog[9]  = Reading_GyroPitch;
1113
                DebugOut.Analog[9]  = Reading_GyroPitch;
1113
                DebugOut.Analog[9]  = SetPointHeight;
1114
                DebugOut.Analog[9]  = SetPointHeight;
1114
                DebugOut.Analog[10] = Reading_IntegralGyroYaw / 128;
1115
                DebugOut.Analog[10] = Reading_IntegralGyroYaw / 128;
1115
 
1116
 
1116
                DebugOut.Analog[10] = FCParam.Gyro_I;
1117
                DebugOut.Analog[10] = FCParam.Gyro_I;
1117
                DebugOut.Analog[10] = ParamSet.Gyro_I;
1118
                DebugOut.Analog[10] = ParamSet.Gyro_I;
1118
                DebugOut.Analog[9]  = CompassOffCourse;
1119
                DebugOut.Analog[9]  = CompassOffCourse;
1119
                DebugOut.Analog[10] = ThrustMixFraction;
1120
                DebugOut.Analog[10] = ThrustMixFraction;
1120
                DebugOut.Analog[3]  = HeightD * 32;
1121
                DebugOut.Analog[3]  = HeightD * 32;
1121
                DebugOut.Analog[4]  = HeightControlThrust;
1122
                DebugOut.Analog[4]  = HeightControlThrust;
1122
                */
1123
                */
1123
        }
1124
        }
1124
 
1125
 
1125
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1126
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1126
//  calculate control feedback from angle (gyro integral) and agular velocity (gyro signal)
1127
//  calculate control feedback from angle (gyro integral) and agular velocity (gyro signal)
1127
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1128
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1128
 
1129
 
1129
        if(Looping_Pitch) Reading_GyroPitch = Reading_GyroPitch * Gyro_P_Factor;
1130
        if(Looping_Pitch) Reading_GyroPitch = Reading_GyroPitch * Gyro_P_Factor;
1130
        else Reading_GyroPitch = IntegralPitch * Gyro_I_Factor + Reading_GyroPitch * Gyro_P_Factor;
1131
        else Reading_GyroPitch = IntegralPitch * Gyro_I_Factor + Reading_GyroPitch * Gyro_P_Factor;
1131
        if(Looping_Roll) Reading_GyroRoll = Reading_GyroRoll * Gyro_P_Factor;
1132
        if(Looping_Roll) Reading_GyroRoll = Reading_GyroRoll * Gyro_P_Factor;
1132
        else Reading_GyroRoll = IntegralRoll * Gyro_I_Factor + Reading_GyroRoll * Gyro_P_Factor;
1133
        else Reading_GyroRoll = IntegralRoll * Gyro_I_Factor + Reading_GyroRoll * Gyro_P_Factor;
1133
        Reading_GyroYaw = Reading_GyroYaw * (2 * Gyro_P_Factor) + IntegralYaw * Gyro_I_Factor / 2;
1134
        Reading_GyroYaw = Reading_GyroYaw * (2 * Gyro_P_Factor) + IntegralYaw * Gyro_I_Factor / 2;
1134
 
1135
 
1135
        DebugOut.Analog[25] = IntegralRoll * Gyro_I_Factor;
1136
        DebugOut.Analog[25] = IntegralRoll * Gyro_I_Factor;
1136
        DebugOut.Analog[31] = StickRoll;// / (26*Gyro_I_Factor);
1137
        DebugOut.Analog[31] = StickRoll;// / (26*Gyro_I_Factor);
1137
        DebugOut.Analog[28] = Reading_GyroRoll;
1138
        DebugOut.Analog[28] = Reading_GyroRoll;
1138
 
1139
 
1139
        // limit control feedback
1140
        // limit control feedback
1140
        #define MAX_SENSOR  2048
1141
        #define MAX_SENSOR  2048
1141
        if(Reading_GyroPitch >  MAX_SENSOR) Reading_GyroPitch =  MAX_SENSOR;
1142
        if(Reading_GyroPitch >  MAX_SENSOR) Reading_GyroPitch =  MAX_SENSOR;
1142
        if(Reading_GyroPitch < -MAX_SENSOR) Reading_GyroPitch = -MAX_SENSOR;
1143
        if(Reading_GyroPitch < -MAX_SENSOR) Reading_GyroPitch = -MAX_SENSOR;
1143
        if(Reading_GyroRoll  >  MAX_SENSOR) Reading_GyroRoll  =  MAX_SENSOR;
1144
        if(Reading_GyroRoll  >  MAX_SENSOR) Reading_GyroRoll  =  MAX_SENSOR;
1144
        if(Reading_GyroRoll  < -MAX_SENSOR) Reading_GyroRoll  = -MAX_SENSOR;
1145
        if(Reading_GyroRoll  < -MAX_SENSOR) Reading_GyroRoll  = -MAX_SENSOR;
1145
        if(Reading_GyroYaw   >  MAX_SENSOR) Reading_GyroYaw   =  MAX_SENSOR;
1146
        if(Reading_GyroYaw   >  MAX_SENSOR) Reading_GyroYaw   =  MAX_SENSOR;
1146
        if(Reading_GyroYaw   < -MAX_SENSOR) Reading_GyroYaw   = -MAX_SENSOR;
1147
        if(Reading_GyroYaw   < -MAX_SENSOR) Reading_GyroYaw   = -MAX_SENSOR;
1147
 
1148
 
1148
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1149
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1149
// Height Control
1150
// Height Control
1150
// The height control algorithm reduces the thrust but does not increase the thrust.
1151
// The height control algorithm reduces the thrust but does not increase the thrust.
1151
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1152
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1152
        // If height control is activated and no emergency landing is active
1153
        // If height control is activated and no emergency landing is active
1153
        if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL) && (!EmergencyLanding) )
1154
        if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL) && (!EmergencyLanding) )
1154
        {
1155
        {
1155
                int tmp_int;
1156
                int tmp_int;
1156
                // if height control is activated by an rc channel
1157
                // if height control is activated by an rc channel
1157
                if(ParamSet.GlobalConfig & CFG_HEIGHT_SWITCH)
1158
                if(ParamSet.GlobalConfig & CFG_HEIGHT_SWITCH)
1158
                {       // check if parameter is less than activation threshold
1159
                {       // check if parameter is less than activation threshold
1159
                        if(FCParam.MaxHeight < 50)
1160
                        if(FCParam.MaxHeight < 50)
1160
                        {
1161
                        {
1161
                                SetPointHeight = ReadingHeight - 20;  // update SetPoint with current reading
1162
                                SetPointHeight = ReadingHeight - 20;  // update SetPoint with current reading
1162
                                HeightControlActive = 0; // disable height control
1163
                                HeightControlActive = 0; // disable height control
1163
                        }
1164
                        }
1164
                        else HeightControlActive = 1; // enable height control
1165
                        else HeightControlActive = 1; // enable height control
1165
                }
1166
                }
1166
                else // no switchable height control
1167
                else // no switchable height control
1167
                {
1168
                {
1168
                        SetPointHeight = ((int16_t) ExternHeightValue + (int16_t) FCParam.MaxHeight) * (int16_t)ParamSet.Height_Gain - 20;
1169
                        SetPointHeight = ((int16_t) ExternHeightValue + (int16_t) FCParam.MaxHeight) * (int16_t)ParamSet.Height_Gain - 20;
1169
                        HeightControlActive = 1;
1170
                        HeightControlActive = 1;
1170
                }
1171
                }
1171
                // get current height
1172
                // get current height
1172
                h = ReadingHeight;
1173
                h = ReadingHeight;
1173
                // if current height is above the setpoint reduce thrust
1174
                // if current height is above the setpoint reduce thrust
1174
                if((h > SetPointHeight) && HeightControlActive)
1175
                if((h > SetPointHeight) && HeightControlActive)
1175
                {
1176
                {
1176
                        // ThrustMixFraction - HightDeviation * P  - HeightChange * D - ACCTop * DACC
1177
                        // ThrustMixFraction - HightDeviation * P  - HeightChange * D - ACCTop * DACC
1177
                        // height difference -> P control part
1178
                        // height difference -> P control part
1178
                        h = ((h - SetPointHeight) * (int16_t) FCParam.Height_P) / 16;
1179
                        h = ((h - SetPointHeight) * (int16_t) FCParam.Height_P) / 16;
1179
                        h = ThrustMixFraction - h; // reduce gas
1180
                        h = ThrustMixFraction - h; // reduce gas
1180
                        // height gradient --> D control part
1181
                        // height gradient --> D control part
1181
                        h -= (HeightD * FCParam.Height_D) / 8;  // D control part
1182
                        h -= (HeightD * FCParam.Height_D) / 8;  // D control part
1182
                        // acceleration sensor effect
1183
                        // acceleration sensor effect
1183
                        tmp_int = ((Reading_Integral_Top / 512) * (int32_t) FCParam.Height_ACC_Effect) / 32;
1184
                        tmp_int = ((Reading_Integral_Top / 512) * (int32_t) FCParam.Height_ACC_Effect) / 32;
1184
                        if(tmp_int > 50) tmp_int = 50;
1185
                        if(tmp_int > 50) tmp_int = 50;
1185
                        if(tmp_int < -50) tmp_int = -50;
1186
                        if(tmp_int < -50) tmp_int = -50;
1186
                        h -= tmp_int;
1187
                        h -= tmp_int;
1187
                        // update height control thrust
1188
                        // update height control thrust
1188
                        HeightControlThrust = (HeightControlThrust*15 + h) / 16;
1189
                        HeightControlThrust = (HeightControlThrust*15 + h) / 16;
1189
                        // limit thrust reduction
1190
                        // limit thrust reduction
1190
                        if(HeightControlThrust < ParamSet.Height_MinThrust)
1191
                        if(HeightControlThrust < ParamSet.Height_MinThrust)
1191
                        {
1192
                        {
1192
                                if(ThrustMixFraction >= ParamSet.Height_MinThrust) HeightControlThrust = ParamSet.Height_MinThrust;
1193
                                if(ThrustMixFraction >= ParamSet.Height_MinThrust) HeightControlThrust = ParamSet.Height_MinThrust;
1193
                                // allows landing also if thrust stick is reduced below min thrust on height control
1194
                                // allows landing also if thrust stick is reduced below min thrust on height control
1194
                                if(ThrustMixFraction < ParamSet.Height_MinThrust) HeightControlThrust = ThrustMixFraction;
1195
                                if(ThrustMixFraction < ParamSet.Height_MinThrust) HeightControlThrust = ThrustMixFraction;
1195
                        }
1196
                        }
1196
                        // limit thrust to stick setting
1197
                        // limit thrust to stick setting
1197
                        if(HeightControlThrust > ThrustMixFraction) HeightControlThrust = ThrustMixFraction;
1198
                        if(HeightControlThrust > ThrustMixFraction) HeightControlThrust = ThrustMixFraction;
1198
                        ThrustMixFraction = HeightControlThrust;
1199
                        ThrustMixFraction = HeightControlThrust;
1199
                }
1200
                }
1200
        }
1201
        }
1201
        // limit thrust to parameter setting
1202
        // limit thrust to parameter setting
1202
        if(ThrustMixFraction > ParamSet.Trust_Max - 20) ThrustMixFraction = ParamSet.Trust_Max - 20;
1203
        if(ThrustMixFraction > ParamSet.Trust_Max - 20) ThrustMixFraction = ParamSet.Trust_Max - 20;
1203
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1204
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1204
// + Mixer and PI-Controller
1205
// + Mixer and PI-Controller
1205
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1206
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1206
 
1207
 
1207
        DebugOut.Analog[7] = ThrustMixFraction;
1208
        DebugOut.Analog[7] = ThrustMixFraction;
1208
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1209
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1209
// Yaw-Fraction
1210
// Yaw-Fraction
1210
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1211
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1211
    YawMixFraction = Reading_GyroYaw - SetPointYaw;     // yaw controller
1212
    YawMixFraction = Reading_GyroYaw - SetPointYaw;     // yaw controller
1212
 
1213
 
1213
        // limit YawMixFraction
1214
        // limit YawMixFraction
1214
    if(YawMixFraction > (ThrustMixFraction / 2)) YawMixFraction = ThrustMixFraction / 2;
1215
    if(YawMixFraction > (ThrustMixFraction / 2)) YawMixFraction = ThrustMixFraction / 2;
1215
    if(YawMixFraction < -(ThrustMixFraction / 2)) YawMixFraction = -(ThrustMixFraction / 2);
1216
    if(YawMixFraction < -(ThrustMixFraction / 2)) YawMixFraction = -(ThrustMixFraction / 2);
1216
    if(YawMixFraction > ((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = ((ParamSet.Trust_Max - ThrustMixFraction));
1217
    if(YawMixFraction > ((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = ((ParamSet.Trust_Max - ThrustMixFraction));
1217
    if(YawMixFraction < -((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = -((ParamSet.Trust_Max - ThrustMixFraction));
1218
    if(YawMixFraction < -((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = -((ParamSet.Trust_Max - ThrustMixFraction));
1218
    if(ThrustMixFraction < 20) YawMixFraction = 0;
1219
    if(ThrustMixFraction < 20) YawMixFraction = 0;
1219
       
1220
       
1220
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1221
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1221
// Pitch-Axis
1222
// Pitch-Axis
1222
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1223
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1223
    DiffPitch = Reading_GyroPitch - (StickPitch - GPS_Pitch);   // get difference
1224
    DiffPitch = Reading_GyroPitch - (StickPitch - GPS_Pitch);   // get difference
1224
    if(Gyro_I_Factor) SumPitch += IntegralPitch * Gyro_I_Factor - (StickPitch - GPS_Pitch); // I-part for attitude control
1225
    if(Gyro_I_Factor) SumPitch += IntegralPitch * Gyro_I_Factor - (StickPitch - GPS_Pitch); // I-part for attitude control
1225
    else SumPitch += DiffPitch; // I-part for head holding
1226
    else SumPitch += DiffPitch; // I-part for head holding
1226
    if(SumPitch >  16000) SumPitch =  16000;
1227
    if(SumPitch >  16000) SumPitch =  16000;
1227
    if(SumPitch < -16000) SumPitch = -16000;
1228
    if(SumPitch < -16000) SumPitch = -16000;
1228
    pd_result = DiffPitch + Ki * SumPitch; // PI-controller for pitch
1229
    pd_result = DiffPitch + Ki * SumPitch; // PI-controller for pitch
1229
 
1230
 
1230
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
1231
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
1231
    if(pd_result >  tmp_int) pd_result =  tmp_int;
1232
    if(pd_result >  tmp_int) pd_result =  tmp_int;
1232
    if(pd_result < -tmp_int) pd_result = -tmp_int;
1233
    if(pd_result < -tmp_int) pd_result = -tmp_int;
1233
       
1234
       
1234
        PitchMixFraction = pd_result;  
1235
        PitchMixFraction = pd_result;  
1235
       
1236
       
1236
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1237
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1237
// Roll-Axis
1238
// Roll-Axis
1238
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1239
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1239
        DiffRoll = Reading_GyroRoll - (StickRoll  - GPS_Roll);  // get difference
1240
        DiffRoll = Reading_GyroRoll - (StickRoll  - GPS_Roll);  // get difference
1240
    if(Gyro_I_Factor) SumRoll += IntegralRoll * Gyro_I_Factor - (StickRoll  - GPS_Roll); // I-part for attitude control
1241
    if(Gyro_I_Factor) SumRoll += IntegralRoll * Gyro_I_Factor - (StickRoll  - GPS_Roll); // I-part for attitude control
1241
    else SumRoll += DiffRoll;  // I-part for head holding
1242
    else SumRoll += DiffRoll;  // I-part for head holding
1242
    if(SumRoll >  16000) SumRoll =  16000;
1243
    if(SumRoll >  16000) SumRoll =  16000;
1243
    if(SumRoll < -16000) SumRoll = -16000;
1244
    if(SumRoll < -16000) SumRoll = -16000;
1244
    pd_result = DiffRoll + Ki * SumRoll;         // PI-controller for roll
1245
    pd_result = DiffRoll + Ki * SumRoll;         // PI-controller for roll
1245
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
1246
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
1246
    if(pd_result >  tmp_int) pd_result =  tmp_int;
1247
    if(pd_result >  tmp_int) pd_result =  tmp_int;
1247
    if(pd_result < -tmp_int) pd_result = -tmp_int;
1248
    if(pd_result < -tmp_int) pd_result = -tmp_int;
1248
 
1249
 
1249
    RollMixFraction = pd_result;
1250
    RollMixFraction = pd_result;
1250
 
1251
 
1251
// Calculate Motor Mixes
1252
// Calculate Motor Mixes
1252
       
1253
       
1253
        // Motor FrontLeft
1254
        // Motor FrontLeft
1254
    MotorValue =        ThrustMixFraction
1255
    MotorValue =        ThrustMixFraction
1255
                                        + PitchMixFraction
1256
                                        + PitchMixFraction
1256
                                        + RollMixFraction/2
1257
                                        + RollMixFraction/2
1257
                                        - YawMixFraction;         // Mixer
1258
                                        - YawMixFraction;         // Mixer
1258
        if ((MotorValue < 0)) MotorValue = 0;
1259
        if ((MotorValue < 0)) MotorValue = 0;
1259
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
1260
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
1260
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1261
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1261
        Motor_FrontLeft = MotorValue;
1262
        Motor_FrontLeft = MotorValue;
1262
 
1263
 
1263
        // Motor FrontRight
1264
        // Motor FrontRight
1264
    MotorValue =        ThrustMixFraction
1265
    MotorValue =        ThrustMixFraction
1265
                                        + PitchMixFraction
1266
                                        + PitchMixFraction
1266
                                        - RollMixFraction/2
1267
                                        - RollMixFraction/2
1267
                                        + YawMixFraction;         // Mixer
1268
                                        + YawMixFraction;         // Mixer
1268
        if ((MotorValue < 0)) MotorValue = 0;
1269
        if ((MotorValue < 0)) MotorValue = 0;
1269
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
1270
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
1270
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1271
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1271
        Motor_FrontRight = MotorValue;
1272
        Motor_FrontRight = MotorValue;
1272
 
1273
 
1273
        // Motor RearLeft
1274
        // Motor RearLeft
1274
        MotorValue =    ThrustMixFraction
1275
        MotorValue =    ThrustMixFraction
1275
                                        - PitchMixFraction
1276
                                        - PitchMixFraction
1276
                                        + RollMixFraction/2
1277
                                        + RollMixFraction/2
1277
                                        - YawMixFraction;     // Mixer
1278
                                        - YawMixFraction;     // Mixer
1278
        if ((MotorValue < 0)) MotorValue = 0;
1279
        if ((MotorValue < 0)) MotorValue = 0;
1279
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
1280
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
1280
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1281
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1281
        Motor_RearLeft = MotorValue;
1282
        Motor_RearLeft = MotorValue;
1282
        // Motor RearRight
1283
        // Motor RearRight
1283
        MotorValue =    ThrustMixFraction
1284
        MotorValue =    ThrustMixFraction
1284
                                        - PitchMixFraction
1285
                                        - PitchMixFraction
1285
                                        - RollMixFraction/2
1286
                                        - RollMixFraction/2
1286
                                        + YawMixFraction;     // Mixer
1287
                                        + YawMixFraction;     // Mixer
1287
        if ((MotorValue < 0)) MotorValue = 0;
1288
        if ((MotorValue < 0)) MotorValue = 0;
1288
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
1289
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
1289
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1290
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1290
        Motor_RearRight= MotorValue;
1291
        Motor_RearRight= MotorValue;
1291
       
1292
       
1292
    // Motor Left
1293
    // Motor Left
1293
    MotorValue =        ThrustMixFraction
1294
    MotorValue =        ThrustMixFraction
1294
                                        + RollMixFraction
1295
                                        + RollMixFraction
1295
                                        + YawMixFraction;  // Mixer
1296
                                        + YawMixFraction;  // Mixer
1296
        if ((MotorValue < 0)) MotorValue = 0;
1297
        if ((MotorValue < 0)) MotorValue = 0;
1297
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
1298
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
1298
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1299
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1299
    Motor_Left = MotorValue;
1300
    Motor_Left = MotorValue;
1300
 
1301
 
1301
        // Motor Right
1302
        // Motor Right
1302
        MotorValue =    ThrustMixFraction
1303
        MotorValue =    ThrustMixFraction
1303
                                        - RollMixFraction
1304
                                        - RollMixFraction
1304
                                        - YawMixFraction;  // Mixer
1305
                                        - YawMixFraction;  // Mixer
1305
        if ((MotorValue < 0)) MotorValue = 0;
1306
        if ((MotorValue < 0)) MotorValue = 0;
1306
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
1307
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
1307
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1308
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1308
    Motor_Right = MotorValue;
1309
    Motor_Right = MotorValue;
1309
}
1310
}
1310
 
1311
 
1311
 
1312