Subversion Repositories FlightCtrl

Rev

Rev 844 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 844 Rev 898
1
/*#######################################################################################
1
/*#######################################################################################
2
Flight Control
2
Flight Control
3
#######################################################################################*/
3
#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + Copyright (c) 04.2007 Holger Buss
5
// + Copyright (c) 04.2007 Holger Buss
6
// + Nur für den privaten Gebrauch
6
// + Nur für den privaten Gebrauch
7
// + www.MikroKopter.com
7
// + www.MikroKopter.com
8
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
8
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
9
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
9
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
10
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
10
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
11
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
11
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
12
// + bzgl. der Nutzungsbedingungen aufzunehmen.
12
// + bzgl. der Nutzungsbedingungen aufzunehmen.
13
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
13
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
14
// + Verkauf von Luftbildaufnahmen, usw.
14
// + Verkauf von Luftbildaufnahmen, usw.
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
16
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
17
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
17
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
18
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
18
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
19
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
20
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
20
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
21
// + eindeutig als Ursprung verlinkt werden
21
// + eindeutig als Ursprung verlinkt werden
22
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
22
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
23
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
24
// + Benutzung auf eigene Gefahr
24
// + Benutzung auf eigene Gefahr
25
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
25
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
27
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
28
// + mit unserer Zustimmung zulässig
28
// + mit unserer Zustimmung zulässig
29
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
30
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
30
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
31
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
31
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
32
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
32
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
33
// + this list of conditions and the following disclaimer.
33
// + this list of conditions and the following disclaimer.
34
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
34
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
35
// +     from this software without specific prior written permission.
35
// +     from this software without specific prior written permission.
36
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
36
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
37
// +     for non-commercial use (directly or indirectly)
37
// +     for non-commercial use (directly or indirectly)
38
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
38
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
39
// +     with our written permission
39
// +     with our written permission
40
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
40
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
41
// +     clearly linked as origin
41
// +     clearly linked as origin
42
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
42
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
43
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
43
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
44
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
46
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
47
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
47
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
48
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
48
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
49
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
49
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
50
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
51
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
52
// +  POSSIBILITY OF SUCH DAMAGE.
52
// +  POSSIBILITY OF SUCH DAMAGE.
53
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
53
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
54
#include <stdlib.h>
54
#include <stdlib.h>
55
#include <avr/io.h>
55
#include <avr/io.h>
56
 
56
 
57
#include "main.h"
57
#include "main.h"
58
#include "eeprom.h"
58
#include "eeprom.h"
59
#include "timer0.h"
59
#include "timer0.h"
60
#include "_Settings.h"
60
#include "_Settings.h"
61
#include "analog.h"
61
#include "analog.h"
62
#include "fc.h"
62
#include "fc.h"
63
#include "gps.h"
63
#include "gps.h"
64
#include "uart.h"
64
#include "uart.h"
65
#include "rc.h"
65
#include "rc.h"
66
#include "twimaster.h"
66
#include "twimaster.h"
67
#ifdef USE_MM3
67
#ifdef USE_MM3
68
#include "mm3.h"
68
#include "mm3.h"
69
#endif
69
#endif
70
#ifdef USE_CMPS03
70
#ifdef USE_CMPS03
71
#include "cmps03.h"
71
#include "cmps03.h"
72
#endif
72
#endif
73
#include "led.h"
73
#include "led.h"
74
 
74
 
75
volatile uint16_t I2CTimeout = 100;
75
volatile uint16_t I2CTimeout = 100;
76
// gyro readings
76
// gyro readings
77
volatile int16_t Reading_GyroPitch, Reading_GyroRoll, Reading_GyroYaw;
77
volatile int16_t Reading_GyroPitch, Reading_GyroRoll, Reading_GyroYaw;
78
// gyro neutral readings
78
// gyro neutral readings
79
volatile int16_t AdNeutralPitch = 0, AdNeutralRoll = 0, AdNeutralYaw = 0;
79
volatile int16_t AdNeutralPitch = 0, AdNeutralRoll = 0, AdNeutralYaw = 0;
80
volatile int16_t StartNeutralRoll = 0, StartNeutralPitch = 0;
80
volatile int16_t StartNeutralRoll = 0, StartNeutralPitch = 0;
81
// mean accelerations
81
// mean accelerations
82
volatile int16_t Mean_AccPitch, Mean_AccRoll, Mean_AccTop;
82
volatile int16_t Mean_AccPitch, Mean_AccRoll, Mean_AccTop;
83
 
83
 
84
// neutral acceleration readings
84
// neutral acceleration readings
85
volatile int16_t NeutralAccX=0, NeutralAccY=0;
85
volatile int16_t NeutralAccX=0, NeutralAccY=0;
86
volatile float NeutralAccZ = 0;
86
volatile float NeutralAccZ = 0;
87
 
87
 
88
// attitude gyro integrals
88
// attitude gyro integrals
89
volatile int32_t IntegralPitch = 0,IntegralPitch2 = 0;
89
volatile int32_t IntegralPitch = 0,IntegralPitch2 = 0;
90
volatile int32_t IntegralRoll = 0,IntegralRoll2 = 0;
90
volatile int32_t IntegralRoll = 0,IntegralRoll2 = 0;
91
volatile int32_t IntegralYaw = 0;
91
volatile int32_t IntegralYaw = 0;
92
volatile int32_t Reading_IntegralGyroPitch = 0, Reading_IntegralGyroPitch2 = 0;
92
volatile int32_t Reading_IntegralGyroPitch = 0, Reading_IntegralGyroPitch2 = 0;
93
volatile int32_t Reading_IntegralGyroRoll = 0,  Reading_IntegralGyroRoll2 = 0;
93
volatile int32_t Reading_IntegralGyroRoll = 0,  Reading_IntegralGyroRoll2 = 0;
94
volatile int32_t Reading_IntegralGyroYaw = 0;
94
volatile int32_t Reading_IntegralGyroYaw = 0;
95
volatile int32_t MeanIntegralPitch;
95
volatile int32_t MeanIntegralPitch;
96
volatile int32_t MeanIntegralRoll;
96
volatile int32_t MeanIntegralRoll;
97
 
97
 
98
// attitude acceleration integrals
98
// attitude acceleration integrals
99
volatile int32_t IntegralAccPitch = 0, IntegralAccRoll = 0;
99
volatile int32_t IntegralAccPitch = 0, IntegralAccRoll = 0;
100
volatile int32_t Reading_Integral_Top = 0;
100
volatile int32_t Reading_Integral_Top = 0;
101
 
101
 
102
// compass course
102
// compass course
103
volatile int16_t CompassHeading = -1; // negative angle indicates invalid data.
103
volatile int16_t CompassHeading = -1; // negative angle indicates invalid data.
104
volatile int16_t CompassCourse = -1;
104
volatile int16_t CompassCourse = -1;
105
volatile int16_t CompassOffCourse = 0;
105
volatile int16_t CompassOffCourse = 0;
106
 
106
 
107
// flags
107
// flags
108
uint8_t MotorsOn = 0;
108
uint8_t MotorsOn = 0;
109
uint8_t EmergencyLanding = 0;
109
uint8_t EmergencyLanding = 0;
110
 
110
 
111
int32_t TurnOver180Pitch = 250000L, TurnOver180Roll = 250000L;
111
int32_t TurnOver180Pitch = 250000L, TurnOver180Roll = 250000L;
112
 
112
 
113
float Gyro_P_Factor;
113
float Gyro_P_Factor;
114
float Gyro_I_Factor;
114
float Gyro_I_Factor;
115
 
115
 
116
volatile int16_t  DiffPitch, DiffRoll;
116
volatile int16_t  DiffPitch, DiffRoll;
117
 
117
 
118
int16_t  Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0, Poti5 = 0, Poti6 = 0, Poti7 = 0, Poti8 = 0;
118
int16_t  Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0, Poti5 = 0, Poti6 = 0, Poti7 = 0, Poti8 = 0;
119
 
119
 
120
// setpoints for motors
120
// setpoints for motors
121
volatile uint8_t Motor_Front, Motor_Rear, Motor_Right, Motor_Left;
121
volatile uint8_t Motor_FrontLeft, Motor_FrontRight, Motor_RearLeft, Motor_RearRight, Motor_Right, Motor_Left;
122
 
122
 
123
// stick values derived by rc channels readings
123
// stick values derived by rc channels readings
124
int16_t StickPitch = 0, StickRoll = 0, StickYaw = 0, StickThrust = 0;
124
int16_t StickPitch = 0, StickRoll = 0, StickYaw = 0, StickThrust = 0;
125
int16_t MaxStickPitch = 0, MaxStickRoll = 0;
125
int16_t MaxStickPitch = 0, MaxStickRoll = 0;
126
// stick values derived by uart inputs
126
// stick values derived by uart inputs
127
int16_t ExternStickPitch = 0, ExternStickRoll = 0, ExternStickYaw = 0, ExternHeightValue = -20;
127
int16_t ExternStickPitch = 0, ExternStickRoll = 0, ExternStickYaw = 0, ExternHeightValue = -20;
128
 
128
 
129
 
129
 
130
 
130
 
131
 
131
 
132
int16_t ReadingHeight = 0;
132
int16_t ReadingHeight = 0;
133
int16_t SetPointHeight = 0;
133
int16_t SetPointHeight = 0;
134
 
134
 
135
int16_t AttitudeCorrectionRoll = 0, AttitudeCorrectionPitch = 0;
135
int16_t AttitudeCorrectionRoll = 0, AttitudeCorrectionPitch = 0;
136
 
136
 
137
float Ki =  FACTOR_I;
137
float Ki =  FACTOR_I;
138
 
138
 
139
uint8_t Looping_Pitch = 0, Looping_Roll = 0;
139
uint8_t Looping_Pitch = 0, Looping_Roll = 0;
140
uint8_t Looping_Left = 0, Looping_Right = 0, Looping_Down = 0, Looping_Top = 0;
140
uint8_t Looping_Left = 0, Looping_Right = 0, Looping_Down = 0, Looping_Top = 0;
141
 
141
 
142
 
142
 
143
fc_param_t FCParam = {48,251,16,58,64,150,150,2,10,0,0,0,0,0,0,0,0,100,70,0,0,100};
143
fc_param_t FCParam = {48,251,16,58,64,150,150,2,10,0,0,0,0,0,0,0,0,100,70,0,0,100};
144
 
144
 
145
 
145
 
146
/************************************************************************/
146
/************************************************************************/
147
/*  Creates numbeeps beeps at the speaker                               */
147
/*  Creates numbeeps beeps at the speaker                               */
148
/************************************************************************/
148
/************************************************************************/
149
void Beep(uint8_t numbeeps)
149
void Beep(uint8_t numbeeps)
150
{
150
{
151
        while(numbeeps--)
151
        while(numbeeps--)
152
        {
152
        {
153
                if(MotorsOn) return; //auf keinen Fall im Flug!
153
                if(MotorsOn) return; //auf keinen Fall im Flug!
154
                BeepTime = 100; // 0.1 second
154
                BeepTime = 100; // 0.1 second
155
                Delay_ms(250); // blocks 250 ms as pause to next beep,
155
                Delay_ms(250); // blocks 250 ms as pause to next beep,
156
                // this will block the flight control loop,
156
                // this will block the flight control loop,
157
                // therefore do not use this funktion if motors are running
157
                // therefore do not use this funktion if motors are running
158
        }
158
        }
159
}
159
}
160
 
160
 
161
/************************************************************************/
161
/************************************************************************/
162
/*  Neutral Readings                                                    */
162
/*  Neutral Readings                                                    */
163
/************************************************************************/
163
/************************************************************************/
164
void SetNeutral(void)
164
void SetNeutral(void)
165
{
165
{
166
        NeutralAccX = 0;
166
        NeutralAccX = 0;
167
        NeutralAccY = 0;
167
        NeutralAccY = 0;
168
        NeutralAccZ = 0;
168
        NeutralAccZ = 0;
169
    AdNeutralPitch = 0;
169
    AdNeutralPitch = 0;
170
        AdNeutralRoll = 0;
170
        AdNeutralRoll = 0;
171
        AdNeutralYaw = 0;
171
        AdNeutralYaw = 0;
172
    FCParam.Yaw_PosFeedback = 0;
172
    FCParam.Yaw_PosFeedback = 0;
173
    FCParam.Yaw_NegFeedback = 0;
173
    FCParam.Yaw_NegFeedback = 0;
174
    CalibMean();
174
    CalibMean();
175
    Delay_ms_Mess(100);
175
    Delay_ms_Mess(100);
176
        CalibMean();
176
        CalibMean();
177
    if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL))  // Height Control activated?
177
    if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL))  // Height Control activated?
178
    {
178
    {
179
                if((ReadingAirPressure > 950) || (ReadingAirPressure < 750)) SearchAirPressureOffset();
179
                if((ReadingAirPressure > 950) || (ReadingAirPressure < 750)) SearchAirPressureOffset();
180
    }
180
    }
181
        AdNeutralPitch = AdValueGyrPitch;
181
        AdNeutralPitch = AdValueGyrPitch;
182
        AdNeutralRoll  = AdValueGyrRoll;
182
        AdNeutralRoll  = AdValueGyrRoll;
183
        AdNeutralYaw   = AdValueGyrYaw;
183
        AdNeutralYaw   = AdValueGyrYaw;
184
        StartNeutralRoll  = AdNeutralRoll;
184
        StartNeutralRoll  = AdNeutralRoll;
185
        StartNeutralPitch = AdNeutralPitch;
185
        StartNeutralPitch = AdNeutralPitch;
186
    if(GetParamWord(PID_ACC_PITCH) > 1023)
186
    if(GetParamWord(PID_ACC_PITCH) > 1023)
187
    {
187
    {
188
                NeutralAccY = abs(Mean_AccRoll) / ACC_AMPLIFY;
188
                NeutralAccY = abs(Mean_AccRoll) / ACC_AMPLIFY;
189
                NeutralAccX = abs(Mean_AccPitch) / ACC_AMPLIFY;
189
                NeutralAccX = abs(Mean_AccPitch) / ACC_AMPLIFY;
190
                NeutralAccZ = Current_AccZ;
190
                NeutralAccZ = Current_AccZ;
191
    }
191
    }
192
    else
192
    else
193
    {
193
    {
194
                NeutralAccX = (int16_t)GetParamWord(PID_ACC_PITCH);
194
                NeutralAccX = (int16_t)GetParamWord(PID_ACC_PITCH);
195
            NeutralAccY = (int16_t)GetParamWord(PID_ACC_ROLL);
195
            NeutralAccY = (int16_t)GetParamWord(PID_ACC_ROLL);
196
            NeutralAccZ = (int16_t)GetParamWord(PID_ACC_Z);
196
            NeutralAccZ = (int16_t)GetParamWord(PID_ACC_Z);
197
    }
197
    }
198
        Reading_IntegralGyroPitch = 0;
198
        Reading_IntegralGyroPitch = 0;
199
    Reading_IntegralGyroPitch2 = 0;
199
    Reading_IntegralGyroPitch2 = 0;
200
    Reading_IntegralGyroRoll = 0;
200
    Reading_IntegralGyroRoll = 0;
201
    Reading_IntegralGyroRoll2 = 0;
201
    Reading_IntegralGyroRoll2 = 0;
202
    Reading_IntegralGyroYaw = 0;
202
    Reading_IntegralGyroYaw = 0;
203
    Reading_GyroPitch = 0;
203
    Reading_GyroPitch = 0;
204
    Reading_GyroRoll = 0;
204
    Reading_GyroRoll = 0;
205
    Reading_GyroYaw = 0;
205
    Reading_GyroYaw = 0;
206
    StartAirPressure = AirPressure;
206
    StartAirPressure = AirPressure;
207
    HeightD = 0;
207
    HeightD = 0;
208
    Reading_Integral_Top = 0;
208
    Reading_Integral_Top = 0;
209
    CompassCourse = CompassHeading;
209
    CompassCourse = CompassHeading;
210
    BeepTime = 50;
210
    BeepTime = 50;
211
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
211
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
212
        TurnOver180Roll = (int32_t) ParamSet.AngleTurnOverRoll * 2500L;
212
        TurnOver180Roll = (int32_t) ParamSet.AngleTurnOverRoll * 2500L;
213
    ExternHeightValue = 0;
213
    ExternHeightValue = 0;
214
    GPS_Neutral();
214
    GPS_Neutral();
215
}
215
}
216
 
216
 
217
/************************************************************************/
217
/************************************************************************/
218
/*  Averaging Measurement Readings                                      */
218
/*  Averaging Measurement Readings                                      */
219
/************************************************************************/
219
/************************************************************************/
220
void Mean(void)
220
void Mean(void)
221
{
221
{
222
    static int32_t tmpl,tmpl2;
222
    static int32_t tmpl,tmpl2;
223
 
223
 
224
 // Get offset corrected gyro readings (~ to angular velocity)
224
 // Get offset corrected gyro readings (~ to angular velocity)
225
    Reading_GyroYaw   = AdNeutralYaw    - AdValueGyrYaw;
225
    Reading_GyroYaw   = AdNeutralYaw    - AdValueGyrYaw;
226
    Reading_GyroRoll  = AdValueGyrRoll  - AdNeutralRoll;
226
    Reading_GyroRoll  = AdValueGyrRoll  - AdNeutralRoll;
227
    Reading_GyroPitch = AdValueGyrPitch - AdNeutralPitch;
227
    Reading_GyroPitch = AdValueGyrPitch - AdNeutralPitch;
228
 
228
 
229
        DebugOut.Analog[26] = Reading_GyroPitch;
229
        DebugOut.Analog[26] = Reading_GyroPitch;
230
        DebugOut.Analog[28] = Reading_GyroRoll;
230
        DebugOut.Analog[28] = Reading_GyroRoll;
231
 
231
 
232
// Acceleration Sensor
232
// Acceleration Sensor
233
        // sliding average sensor readings
233
        // sliding average sensor readings
234
        Mean_AccPitch = ((int32_t)Mean_AccPitch * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccPitch))) / 2L;
234
        Mean_AccPitch = ((int32_t)Mean_AccPitch * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccPitch))) / 2L;
235
        Mean_AccRoll  = ((int32_t)Mean_AccRoll * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccRoll))) / 2L;
235
        Mean_AccRoll  = ((int32_t)Mean_AccRoll * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccRoll))) / 2L;
236
        Mean_AccTop   = ((int32_t)Mean_AccTop * 1 + ((int32_t)AdValueAccTop)) / 2L;
236
        Mean_AccTop   = ((int32_t)Mean_AccTop * 1 + ((int32_t)AdValueAccTop)) / 2L;
237
 
237
 
238
        // sum sensor readings for later averaging
238
        // sum sensor readings for later averaging
239
    IntegralAccPitch += ACC_AMPLIFY * AdValueAccPitch;
239
    IntegralAccPitch += ACC_AMPLIFY * AdValueAccPitch;
240
    IntegralAccRoll  += ACC_AMPLIFY * AdValueAccRoll;
240
    IntegralAccRoll  += ACC_AMPLIFY * AdValueAccRoll;
241
 
241
 
242
// Yaw
242
// Yaw
243
        // calculate yaw gyro intergral (~ to rotation angle)
243
        // calculate yaw gyro intergral (~ to rotation angle)
244
    Reading_IntegralGyroYaw  += Reading_GyroYaw;
244
    Reading_IntegralGyroYaw  += Reading_GyroYaw;
245
        // Coupling fraction
245
        // Coupling fraction
246
        if(!Looping_Pitch && !Looping_Roll && (ParamSet.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE))
246
        if(!Looping_Pitch && !Looping_Roll && (ParamSet.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE))
247
        {
247
        {
248
                tmpl = Reading_IntegralGyroPitch / 4096L;
248
                tmpl = Reading_IntegralGyroPitch / 4096L;
249
                tmpl *= Reading_GyroYaw;
249
                tmpl *= Reading_GyroYaw;
250
                tmpl *= FCParam.Yaw_PosFeedback;  //125
250
                tmpl *= FCParam.Yaw_PosFeedback;  //125
251
                tmpl /= 2048L;
251
                tmpl /= 2048L;
252
                tmpl2 = Reading_IntegralGyroRoll / 4096L;
252
                tmpl2 = Reading_IntegralGyroRoll / 4096L;
253
                tmpl2 *= Reading_GyroYaw;
253
                tmpl2 *= Reading_GyroYaw;
254
                tmpl2 *= FCParam.Yaw_PosFeedback;
254
                tmpl2 *= FCParam.Yaw_PosFeedback;
255
                tmpl2 /= 2048L;
255
                tmpl2 /= 2048L;
256
        }
256
        }
257
        else  tmpl = tmpl2 = 0;
257
        else  tmpl = tmpl2 = 0;
258
 
258
 
259
// Roll
259
// Roll
260
        Reading_GyroRoll += tmpl;
260
        Reading_GyroRoll += tmpl;
261
        Reading_GyroRoll += (tmpl2 * FCParam.Yaw_NegFeedback) / 512L;
261
        Reading_GyroRoll += (tmpl2 * FCParam.Yaw_NegFeedback) / 512L;
262
        Reading_IntegralGyroRoll2 += Reading_GyroRoll;
262
        Reading_IntegralGyroRoll2 += Reading_GyroRoll;
263
        Reading_IntegralGyroRoll +=  Reading_GyroRoll - AttitudeCorrectionRoll;
263
        Reading_IntegralGyroRoll +=  Reading_GyroRoll - AttitudeCorrectionRoll;
264
        if(Reading_IntegralGyroRoll > TurnOver180Roll)
264
        if(Reading_IntegralGyroRoll > TurnOver180Roll)
265
        {
265
        {
266
                Reading_IntegralGyroRoll  = -(TurnOver180Roll - 10000L);
266
                Reading_IntegralGyroRoll  = -(TurnOver180Roll - 10000L);
267
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
267
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
268
        }
268
        }
269
        if(Reading_IntegralGyroRoll < -TurnOver180Roll)
269
        if(Reading_IntegralGyroRoll < -TurnOver180Roll)
270
        {
270
        {
271
                Reading_IntegralGyroRoll =  (TurnOver180Roll - 10000L);
271
                Reading_IntegralGyroRoll =  (TurnOver180Roll - 10000L);
272
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
272
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
273
        }
273
        }
274
        if(AdValueGyrRoll < 15)   Reading_GyroRoll = -1000;
274
        if(AdValueGyrRoll < 15)   Reading_GyroRoll = -1000;
275
        if(AdValueGyrRoll <  7)   Reading_GyroRoll = -2000;
275
        if(AdValueGyrRoll <  7)   Reading_GyroRoll = -2000;
276
        if(BoardRelease == 10)
276
        if(BoardRelease == 10)
277
        {
277
        {
278
                if(AdValueGyrRoll > 1010) Reading_GyroRoll = +1000;
278
                if(AdValueGyrRoll > 1010) Reading_GyroRoll = +1000;
279
                if(AdValueGyrRoll > 1017) Reading_GyroRoll = +2000;
279
                if(AdValueGyrRoll > 1017) Reading_GyroRoll = +2000;
280
        }
280
        }
281
        else
281
        else
282
        {
282
        {
283
                if(AdValueGyrRoll > 2020) Reading_GyroRoll = +1000;
283
                if(AdValueGyrRoll > 2020) Reading_GyroRoll = +1000;
284
                if(AdValueGyrRoll > 2034) Reading_GyroRoll = +2000;
284
                if(AdValueGyrRoll > 2034) Reading_GyroRoll = +2000;
285
        }
285
        }
286
// Pitch
286
// Pitch
287
        Reading_GyroPitch -= tmpl2;
287
        Reading_GyroPitch -= tmpl2;
288
        Reading_GyroPitch -= (tmpl*FCParam.Yaw_NegFeedback) / 512L;
288
        Reading_GyroPitch -= (tmpl*FCParam.Yaw_NegFeedback) / 512L;
289
        Reading_IntegralGyroPitch2 += Reading_GyroPitch;
289
        Reading_IntegralGyroPitch2 += Reading_GyroPitch;
290
        Reading_IntegralGyroPitch  += Reading_GyroPitch - AttitudeCorrectionPitch;
290
        Reading_IntegralGyroPitch  += Reading_GyroPitch - AttitudeCorrectionPitch;
291
        if(Reading_IntegralGyroPitch > TurnOver180Pitch)
291
        if(Reading_IntegralGyroPitch > TurnOver180Pitch)
292
        {
292
        {
293
         Reading_IntegralGyroPitch = -(TurnOver180Pitch - 10000L);
293
         Reading_IntegralGyroPitch = -(TurnOver180Pitch - 10000L);
294
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
294
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
295
        }
295
        }
296
        if(Reading_IntegralGyroPitch < -TurnOver180Pitch)
296
        if(Reading_IntegralGyroPitch < -TurnOver180Pitch)
297
        {
297
        {
298
         Reading_IntegralGyroPitch =  (TurnOver180Pitch - 10000L);
298
         Reading_IntegralGyroPitch =  (TurnOver180Pitch - 10000L);
299
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
299
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
300
        }
300
        }
301
        if(AdValueGyrPitch < 15)   Reading_GyroPitch = -1000;
301
        if(AdValueGyrPitch < 15)   Reading_GyroPitch = -1000;
302
        if(AdValueGyrPitch <  7)   Reading_GyroPitch = -2000;
302
        if(AdValueGyrPitch <  7)   Reading_GyroPitch = -2000;
303
        if(BoardRelease == 10)
303
        if(BoardRelease == 10)
304
        {
304
        {
305
                if(AdValueGyrPitch > 1010) Reading_GyroPitch = +1000;
305
                if(AdValueGyrPitch > 1010) Reading_GyroPitch = +1000;
306
                if(AdValueGyrPitch > 1017) Reading_GyroPitch = +2000;
306
                if(AdValueGyrPitch > 1017) Reading_GyroPitch = +2000;
307
        }
307
        }
308
        else
308
        else
309
        {
309
        {
310
                if(AdValueGyrPitch > 2020) Reading_GyroPitch = +1000;
310
                if(AdValueGyrPitch > 2020) Reading_GyroPitch = +1000;
311
                if(AdValueGyrPitch > 2034) Reading_GyroPitch = +2000;
311
                if(AdValueGyrPitch > 2034) Reading_GyroPitch = +2000;
312
        }
312
        }
313
 
313
 
314
// start ADC again to capture measurement values for the next loop
314
// start ADC again to capture measurement values for the next loop
315
    ADC_Enable();
315
    ADC_Enable();
316
 
316
 
317
    IntegralYaw    = Reading_IntegralGyroYaw;
317
    IntegralYaw    = Reading_IntegralGyroYaw;
318
    IntegralPitch  = Reading_IntegralGyroPitch;
318
    IntegralPitch  = Reading_IntegralGyroPitch;
319
    IntegralRoll   = Reading_IntegralGyroRoll;
319
    IntegralRoll   = Reading_IntegralGyroRoll;
320
    IntegralPitch2 = Reading_IntegralGyroPitch2;
320
    IntegralPitch2 = Reading_IntegralGyroPitch2;
321
    IntegralRoll2  = Reading_IntegralGyroRoll2;
321
    IntegralRoll2  = Reading_IntegralGyroRoll2;
322
 
322
 
323
        if((ParamSet.GlobalConfig & CFG_ROTARY_RATE_LIMITER) && !Looping_Pitch && !Looping_Roll)
323
        if((ParamSet.GlobalConfig & CFG_ROTARY_RATE_LIMITER) && !Looping_Pitch && !Looping_Roll)
324
        {
324
        {
325
                if(Reading_GyroPitch > 200)       Reading_GyroPitch += 4 * (Reading_GyroPitch - 200);
325
                if(Reading_GyroPitch > 200)       Reading_GyroPitch += 4 * (Reading_GyroPitch - 200);
326
                else if(Reading_GyroPitch < -200) Reading_GyroPitch += 4 * (Reading_GyroPitch + 200);
326
                else if(Reading_GyroPitch < -200) Reading_GyroPitch += 4 * (Reading_GyroPitch + 200);
327
                if(Reading_GyroRoll > 200)        Reading_GyroRoll  += 4 * (Reading_GyroRoll - 200);
327
                if(Reading_GyroRoll > 200)        Reading_GyroRoll  += 4 * (Reading_GyroRoll - 200);
328
                else if(Reading_GyroRoll < -200)  Reading_GyroRoll  += 4 * (Reading_GyroRoll + 200);
328
                else if(Reading_GyroRoll < -200)  Reading_GyroRoll  += 4 * (Reading_GyroRoll + 200);
329
        }
329
        }
330
}
330
}
331
 
331
 
332
/************************************************************************/
332
/************************************************************************/
333
/*  Averaging Measurement Readings  for Calibration                     */
333
/*  Averaging Measurement Readings  for Calibration                     */
334
/************************************************************************/
334
/************************************************************************/
335
void CalibMean(void)
335
void CalibMean(void)
336
{
336
{
337
    // stop ADC to avoid changing values during calculation
337
    // stop ADC to avoid changing values during calculation
338
        ADC_Disable();
338
        ADC_Disable();
339
 
339
 
340
        Reading_GyroPitch = AdValueGyrPitch;
340
        Reading_GyroPitch = AdValueGyrPitch;
341
        Reading_GyroRoll  = AdValueGyrRoll;
341
        Reading_GyroRoll  = AdValueGyrRoll;
342
        Reading_GyroYaw   = AdValueGyrYaw;
342
        Reading_GyroYaw   = AdValueGyrYaw;
343
 
343
 
344
        Mean_AccPitch = ACC_AMPLIFY * (int32_t)AdValueAccPitch;
344
        Mean_AccPitch = ACC_AMPLIFY * (int32_t)AdValueAccPitch;
345
        Mean_AccRoll  = ACC_AMPLIFY * (int32_t)AdValueAccRoll;
345
        Mean_AccRoll  = ACC_AMPLIFY * (int32_t)AdValueAccRoll;
346
        Mean_AccTop   = (int32_t)AdValueAccTop;
346
        Mean_AccTop   = (int32_t)AdValueAccTop;
347
    // start ADC (enables internal trigger so that the ISR in analog.c
347
    // start ADC (enables internal trigger so that the ISR in analog.c
348
    // updates the readings once)
348
    // updates the readings once)
349
    ADC_Enable();
349
    ADC_Enable();
350
 
350
 
351
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
351
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
352
        TurnOver180Roll =  (int32_t) ParamSet.AngleTurnOverRoll  * 2500L;
352
        TurnOver180Roll =  (int32_t) ParamSet.AngleTurnOverRoll  * 2500L;
353
}
353
}
354
 
354
 
355
/************************************************************************/
355
/************************************************************************/
356
/*  Transmit Motor Data via I2C                                         */
356
/*  Transmit Motor Data via I2C                                         */
357
/************************************************************************/
357
/************************************************************************/
358
void SendMotorData(void)
358
void SendMotorData(void)
359
{
359
{
360
    if(MOTOR_OFF || !MotorsOn)
360
    if(MOTOR_OFF || !MotorsOn)
361
    {
361
    {
362
        Motor_Rear = 0;
362
        Motor_RearLeft = 0;
-
 
363
                Motor_RearRight = 0;
363
        Motor_Front = 0;
364
        Motor_FrontLeft = 0;
-
 
365
                Motor_FrontRight = 0;
364
        Motor_Right = 0;
366
        Motor_Right = 0;
365
        Motor_Left = 0;
367
        Motor_Left = 0;
366
        if(MotorTest[0]) Motor_Front = MotorTest[0];
368
        if(MotorTest[0]) Motor_FrontLeft = Motor_FrontRight = MotorTest[0];
367
        if(MotorTest[1]) Motor_Rear  = MotorTest[1];
369
        if(MotorTest[1]) Motor_RearLeft  = Motor_RearRight  = MotorTest[1];
368
        if(MotorTest[2]) Motor_Left  = MotorTest[2];
370
        if(MotorTest[2]) Motor_Left  = MotorTest[2];
369
        if(MotorTest[3]) Motor_Right = MotorTest[3];
371
        if(MotorTest[3]) Motor_Right = MotorTest[3];
370
     }
372
     }
371
 
373
 
372
    //DebugOut.Analog[12] = Motor_Front;
374
    DebugOut.Analog[12] = Motor_FrontLeft;
-
 
375
    DebugOut.Analog[13] = Motor_RearRight;
-
 
376
    DebugOut.Analog[14] = Motor_FrontRight;
373
    //DebugOut.Analog[13] = Motor_Rear;
377
    DebugOut.Analog[15] = Motor_RearLeft;
374
    //DebugOut.Analog[14] = Motor_Left;
378
    DebugOut.Analog[16] = Motor_Left;
375
    //DebugOut.Analog[15] = Motor_Right;
379
    DebugOut.Analog[17] = Motor_Right;
376
 
380
       
377
    //Start I2C Interrupt Mode
381
    //Start I2C Interrupt Mode
378
    twi_state = 0;
382
    twi_state = 0;
379
    motor = 0;
383
    motor = 0;
380
    I2C_Start();
384
    I2C_Start();
381
}
385
}
382
 
386
 
383
 
387
 
384
 
388
 
385
/************************************************************************/
389
/************************************************************************/
386
/*  Maps the parameter to poti values                                   */
390
/*  Maps the parameter to poti values                                   */
387
/************************************************************************/
391
/************************************************************************/
388
void ParameterMapping(void)
392
void ParameterMapping(void)
389
{
393
{
390
        if(RC_Quality > 160) // do the mapping of RC-Potis only if the rc-signal is ok
394
        if(RC_Quality > 160) // do the mapping of RC-Potis only if the rc-signal is ok
391
        // else the last updated values are used
395
        // else the last updated values are used
392
        {
396
        {
393
                 //update poti values by rc-signals
397
                 //update poti values by rc-signals
394
                #define CHK_POTI(b,a,min,max) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a; if(b <= min) b = min; else if(b >= max) b = max;}
398
                #define CHK_POTI(b,a,min,max) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a; if(b <= min) b = min; else if(b >= max) b = max;}
395
                CHK_POTI(FCParam.MaxHeight,ParamSet.MaxHeight,0,255);
399
                CHK_POTI(FCParam.MaxHeight,ParamSet.MaxHeight,0,255);
396
                CHK_POTI(FCParam.Height_D,ParamSet.Height_D,0,100);
400
                CHK_POTI(FCParam.Height_D,ParamSet.Height_D,0,100);
397
                CHK_POTI(FCParam.Height_P,ParamSet.Height_P,0,100);
401
                CHK_POTI(FCParam.Height_P,ParamSet.Height_P,0,100);
398
                CHK_POTI(FCParam.Height_ACC_Effect,ParamSet.Height_ACC_Effect,0,255);
402
                CHK_POTI(FCParam.Height_ACC_Effect,ParamSet.Height_ACC_Effect,0,255);
399
                CHK_POTI(FCParam.CompassYawEffect,ParamSet.CompassYawEffect,0,255);
403
                CHK_POTI(FCParam.CompassYawEffect,ParamSet.CompassYawEffect,0,255);
400
                CHK_POTI(FCParam.Gyro_P,ParamSet.Gyro_P,10,255);
404
                CHK_POTI(FCParam.Gyro_P,ParamSet.Gyro_P,10,255);
401
                CHK_POTI(FCParam.Gyro_I,ParamSet.Gyro_I,0,255);
405
                CHK_POTI(FCParam.Gyro_I,ParamSet.Gyro_I,0,255);
402
                CHK_POTI(FCParam.I_Factor,ParamSet.I_Factor,0,255);
406
                CHK_POTI(FCParam.I_Factor,ParamSet.I_Factor,0,255);
403
                CHK_POTI(FCParam.UserParam1,ParamSet.UserParam1,0,255);
407
                CHK_POTI(FCParam.UserParam1,ParamSet.UserParam1,0,255);
404
                CHK_POTI(FCParam.UserParam2,ParamSet.UserParam2,0,255);
408
                CHK_POTI(FCParam.UserParam2,ParamSet.UserParam2,0,255);
405
                CHK_POTI(FCParam.UserParam3,ParamSet.UserParam3,0,255);
409
                CHK_POTI(FCParam.UserParam3,ParamSet.UserParam3,0,255);
406
                CHK_POTI(FCParam.UserParam4,ParamSet.UserParam4,0,255);
410
                CHK_POTI(FCParam.UserParam4,ParamSet.UserParam4,0,255);
407
                CHK_POTI(FCParam.UserParam5,ParamSet.UserParam5,0,255);
411
                CHK_POTI(FCParam.UserParam5,ParamSet.UserParam5,0,255);
408
                CHK_POTI(FCParam.UserParam6,ParamSet.UserParam6,0,255);
412
                CHK_POTI(FCParam.UserParam6,ParamSet.UserParam6,0,255);
409
                CHK_POTI(FCParam.UserParam7,ParamSet.UserParam7,0,255);
413
                CHK_POTI(FCParam.UserParam7,ParamSet.UserParam7,0,255);
410
                CHK_POTI(FCParam.UserParam8,ParamSet.UserParam8,0,255);
414
                CHK_POTI(FCParam.UserParam8,ParamSet.UserParam8,0,255);
411
                CHK_POTI(FCParam.ServoPitchControl,ParamSet.ServoPitchControl,0,255);
415
                CHK_POTI(FCParam.ServoPitchControl,ParamSet.ServoPitchControl,0,255);
412
                CHK_POTI(FCParam.LoopThrustLimit,ParamSet.LoopThrustLimit,0,255);
416
                CHK_POTI(FCParam.LoopThrustLimit,ParamSet.LoopThrustLimit,0,255);
413
                CHK_POTI(FCParam.Yaw_PosFeedback,ParamSet.Yaw_PosFeedback,0,255);
417
                CHK_POTI(FCParam.Yaw_PosFeedback,ParamSet.Yaw_PosFeedback,0,255);
414
                CHK_POTI(FCParam.Yaw_NegFeedback,ParamSet.Yaw_NegFeedback,0,255);
418
                CHK_POTI(FCParam.Yaw_NegFeedback,ParamSet.Yaw_NegFeedback,0,255);
415
                CHK_POTI(FCParam.DynamicStability,ParamSet.DynamicStability,0,255);
419
                CHK_POTI(FCParam.DynamicStability,ParamSet.DynamicStability,0,255);
416
                Ki = (float) FCParam.I_Factor * FACTOR_I;
420
                Ki = (float) FCParam.I_Factor * FACTOR_I;
417
        }
421
        }
418
}
422
}
419
 
423
 
420
 
424
 
421
/************************************************************************/
425
/************************************************************************/
422
/*  MotorControl                                                        */
426
/*  MotorControl                                                        */
423
/************************************************************************/
427
/************************************************************************/
424
void MotorControl(void)
428
void MotorControl(void)
425
{
429
{
426
        int16_t MotorValue, pd_result, h, tmp_int;
430
        int16_t MotorValue, pd_result, h, tmp_int;
427
        int16_t YawMixFraction, ThrustMixFraction;
431
        int16_t YawMixFraction, ThrustMixFraction, PitchMixFraction, RollMixFraction;
428
        static int32_t SumPitch = 0, SumRoll = 0;
432
        static int32_t SumPitch = 0, SumRoll = 0;
429
        static int32_t SetPointYaw = 0;
433
        static int32_t SetPointYaw = 0;
430
        static int32_t IntegralErrorPitch = 0;
434
        static int32_t IntegralErrorPitch = 0;
431
        static int32_t IntegralErrorRoll = 0;
435
        static int32_t IntegralErrorRoll = 0;
432
        static uint16_t RcLostTimer;
436
        static uint16_t RcLostTimer;
433
        static uint8_t delay_neutral = 0, delay_startmotors = 0, delay_stopmotors = 0;
437
        static uint8_t delay_neutral = 0, delay_startmotors = 0, delay_stopmotors = 0;
434
        static uint16_t Model_Is_Flying = 0;
438
        static uint16_t Model_Is_Flying = 0;
435
        static uint8_t HeightControlActive = 0;
439
        static uint8_t HeightControlActive = 0;
436
        static int16_t HeightControlThrust = 0;
440
        static int16_t HeightControlThrust = 0;
437
        static int8_t TimerDebugOut = 0;
441
        static int8_t TimerDebugOut = 0;
438
        static uint16_t UpdateCompassCourse = 0;
442
        static uint16_t UpdateCompassCourse = 0;
439
        static int32_t CorrectionPitch, CorrectionRoll;
443
        static int32_t CorrectionPitch, CorrectionRoll;
440
 
444
 
441
        Mean();
445
        Mean();
442
        GRN_ON;
446
        GRN_ON;
443
 
447
 
444
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
448
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
445
// determine thrust value
449
// determine thrust value
446
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
450
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
447
        ThrustMixFraction = StickThrust;
451
        ThrustMixFraction = StickThrust;
448
    if(ThrustMixFraction < 0) ThrustMixFraction = 0;
452
    if(ThrustMixFraction < 0) ThrustMixFraction = 0;
449
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
453
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
450
// RC-signal is bad
454
// RC-signal is bad
451
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
455
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
452
        if(RC_Quality < 120)  // the rc-frame signal is not reveived or noisy
456
        if(RC_Quality < 120)  // the rc-frame signal is not reveived or noisy
453
        {
457
        {
454
                if(!PcAccess) // if also no PC-Access via UART
458
                if(!PcAccess) // if also no PC-Access via UART
455
                {
459
                {
456
                        if(BeepModulation == 0xFFFF)
460
                        if(BeepModulation == 0xFFFF)
457
                        {
461
                        {
458
                         BeepTime = 15000; // 1.5 seconds
462
                         BeepTime = 15000; // 1.5 seconds
459
                         BeepModulation = 0x0C00;
463
                         BeepModulation = 0x0C00;
460
                        }
464
                        }
461
                }
465
                }
462
                if(RcLostTimer) RcLostTimer--; // decremtent timer after rc sigal lost
466
                if(RcLostTimer) RcLostTimer--; // decremtent timer after rc sigal lost
463
                else // rc lost countdown finished
467
                else // rc lost countdown finished
464
                {
468
                {
465
                  MotorsOn = 0; // stop all motors
469
                  MotorsOn = 0; // stop all motors
466
                  EmergencyLanding = 0; // emergency landing is over
470
                  EmergencyLanding = 0; // emergency landing is over
467
                }
471
                }
468
                ROT_ON; // set red led
472
                ROT_ON; // set red led
469
                if(Model_Is_Flying > 2000)  // wahrscheinlich in der Luft --> langsam absenken
473
                if(Model_Is_Flying > 2000)  // wahrscheinlich in der Luft --> langsam absenken
470
                {
474
                {
471
                        ThrustMixFraction = ParamSet.EmergencyThrust; // set emergency thrust
475
                        ThrustMixFraction = ParamSet.EmergencyThrust; // set emergency thrust
472
                        EmergencyLanding = 1; // enable emergency landing
476
                        EmergencyLanding = 1; // enable emergency landing
473
                        // set neutral rc inputs
477
                        // set neutral rc inputs
474
                        PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
478
                        PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
475
                        PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
479
                        PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
476
                        PPM_diff[ParamSet.ChannelAssignment[CH_YAW]] = 0;
480
                        PPM_diff[ParamSet.ChannelAssignment[CH_YAW]] = 0;
477
                        PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
481
                        PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
478
                        PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
482
                        PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
479
                        PPM_in[ParamSet.ChannelAssignment[CH_YAW]] = 0;
483
                        PPM_in[ParamSet.ChannelAssignment[CH_YAW]] = 0;
480
                }
484
                }
481
                else MotorsOn = 0; // switch of all motors
485
                else MotorsOn = 0; // switch of all motors
482
        } // eof RC_Quality < 120
486
        } // eof RC_Quality < 120
483
        else
487
        else
484
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
488
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
485
// RC-signal is good
489
// RC-signal is good
486
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
490
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
487
        if(RC_Quality > 150)
491
        if(RC_Quality > 150)
488
        {
492
        {
489
                EmergencyLanding = 0; // switch off emergency landing if RC-signal is okay
493
                EmergencyLanding = 0; // switch off emergency landing if RC-signal is okay
490
                // reset emergency timer
494
                // reset emergency timer
491
                RcLostTimer = ParamSet.EmergencyThrustDuration * 50;
495
                RcLostTimer = ParamSet.EmergencyThrustDuration * 50;
492
                if(ThrustMixFraction > 40)
496
                if(ThrustMixFraction > 40)
493
                {
497
                {
494
                        if(Model_Is_Flying < 0xFFFF) Model_Is_Flying++;
498
                        if(Model_Is_Flying < 0xFFFF) Model_Is_Flying++;
495
                }
499
                }
496
                if((Model_Is_Flying < 200) || (ThrustMixFraction < 40))
500
                if((Model_Is_Flying < 200) || (ThrustMixFraction < 40))
497
                {
501
                {
498
                        SumPitch = 0;
502
                        SumPitch = 0;
499
                        SumRoll = 0;
503
                        SumRoll = 0;
500
                        Reading_IntegralGyroYaw = 0;
504
                        Reading_IntegralGyroYaw = 0;
501
                }
505
                }
502
 
506
 
503
                if(Poti1 < PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110 && Poti1) Poti1--;
507
                if(Poti1 < PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110 && Poti1) Poti1--;
504
                if(Poti2 < PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110 && Poti2) Poti2--;
508
                if(Poti2 < PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110 && Poti2) Poti2--;
505
                if(Poti3 < PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110 && Poti3) Poti3--;
509
                if(Poti3 < PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110 && Poti3) Poti3--;
506
                if(Poti4 < PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110) Poti4++; else if(Poti4 > PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110 && Poti4) Poti4--;
510
                if(Poti4 < PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110) Poti4++; else if(Poti4 > PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110 && Poti4) Poti4--;
507
                //PPM24-Extension
511
                //PPM24-Extension
508
                if(Poti5 < PPM_in[9] + 110)  Poti5++; else if(Poti5 >  PPM_in[9] + 110 && Poti5) Poti5--;
512
                if(Poti5 < PPM_in[9] + 110)  Poti5++; else if(Poti5 >  PPM_in[9] + 110 && Poti5) Poti5--;
509
                if(Poti6 < PPM_in[10] + 110) Poti6++; else if(Poti6 > PPM_in[10] + 110 && Poti6) Poti6--;
513
                if(Poti6 < PPM_in[10] + 110) Poti6++; else if(Poti6 > PPM_in[10] + 110 && Poti6) Poti6--;
510
                if(Poti7 < PPM_in[11] + 110) Poti7++; else if(Poti7 > PPM_in[11] + 110 && Poti7) Poti7--;
514
                if(Poti7 < PPM_in[11] + 110) Poti7++; else if(Poti7 > PPM_in[11] + 110 && Poti7) Poti7--;
511
                if(Poti8 < PPM_in[12] + 110) Poti8++; else if(Poti8 > PPM_in[12] + 110 && Poti8) Poti8--;
515
                if(Poti8 < PPM_in[12] + 110) Poti8++; else if(Poti8 > PPM_in[12] + 110 && Poti8) Poti8--;
512
                //limit poti values
516
                //limit poti values
513
                if(Poti1 < 0) Poti1 = 0; else if(Poti1 > 255) Poti1 = 255;
517
                if(Poti1 < 0) Poti1 = 0; else if(Poti1 > 255) Poti1 = 255;
514
                if(Poti2 < 0) Poti2 = 0; else if(Poti2 > 255) Poti2 = 255;
518
                if(Poti2 < 0) Poti2 = 0; else if(Poti2 > 255) Poti2 = 255;
515
                if(Poti3 < 0) Poti3 = 0; else if(Poti3 > 255) Poti3 = 255;
519
                if(Poti3 < 0) Poti3 = 0; else if(Poti3 > 255) Poti3 = 255;
516
                if(Poti4 < 0) Poti4 = 0; else if(Poti4 > 255) Poti4 = 255;
520
                if(Poti4 < 0) Poti4 = 0; else if(Poti4 > 255) Poti4 = 255;
517
                //PPM24-Extension
521
                //PPM24-Extension
518
                if(Poti5 < 0) Poti5 = 0; else if(Poti5 > 255) Poti5 = 255;
522
                if(Poti5 < 0) Poti5 = 0; else if(Poti5 > 255) Poti5 = 255;
519
                if(Poti6 < 0) Poti6 = 0; else if(Poti6 > 255) Poti6 = 255;
523
                if(Poti6 < 0) Poti6 = 0; else if(Poti6 > 255) Poti6 = 255;
520
                if(Poti7 < 0) Poti7 = 0; else if(Poti7 > 255) Poti7 = 255;
524
                if(Poti7 < 0) Poti7 = 0; else if(Poti7 > 255) Poti7 = 255;
521
                if(Poti8 < 0) Poti8 = 0; else if(Poti8 > 255) Poti8 = 255;
525
                if(Poti8 < 0) Poti8 = 0; else if(Poti8 > 255) Poti8 = 255;
522
 
526
 
523
                // if motors are off and the thrust stick is in the upper position
527
                // if motors are off and the thrust stick is in the upper position
524
                if((PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] > 80) && MotorsOn == 0)
528
                if((PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] > 80) && MotorsOn == 0)
525
                {
529
                {
526
                        // and if the yaw stick is in the leftmost position
530
                        // and if the yaw stick is in the leftmost position
527
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
531
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
528
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
532
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
529
// calibrate the neutral readings of all attitude sensors
533
// calibrate the neutral readings of all attitude sensors
530
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
534
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
531
                        {
535
                        {
532
                                if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
536
                                if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
533
                                {
537
                                {
534
                                        delay_neutral = 0;
538
                                        delay_neutral = 0;
535
                                        GRN_OFF;
539
                                        GRN_OFF;
536
                                        Model_Is_Flying = 0;
540
                                        Model_Is_Flying = 0;
537
                                        // check roll/pitch stick position
541
                                        // check roll/pitch stick position
538
                                        // if pitch stick is topmost or roll stick is leftmost --> change parameter setting
542
                                        // if pitch stick is topmost or roll stick is leftmost --> change parameter setting
539
                                        // according to roll/pitch stick position
543
                                        // according to roll/pitch stick position
540
                                        if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70 || abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > 70)
544
                                        if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70 || abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > 70)
541
                                        {
545
                                        {
542
                                                 uint8_t setting = 1; // default
546
                                                 uint8_t setting = 1; // default
543
                                                 //  _________
547
                                                 //  _________
544
                                                 // |2   3   4|
548
                                                 // |2   3   4|
545
                                                 // |         |
549
                                                 // |         |
546
                                                 // |1       5|
550
                                                 // |1       5|
547
                                                 // |         |
551
                                                 // |         |
548
                                                 // |_________|
552
                                                 // |_________|
549
                                                 //
553
                                                 //
550
                                                 // roll stick leftmost and pitch stick centered --> setting 1
554
                                                 // roll stick leftmost and pitch stick centered --> setting 1
551
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 1;
555
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 1;
552
                                                 // roll stick leftmost and pitch stick topmost --> setting 2
556
                                                 // roll stick leftmost and pitch stick topmost --> setting 2
553
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 2;
557
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 2;
554
                                                 // roll stick centered an pitch stick topmost --> setting 3
558
                                                 // roll stick centered an pitch stick topmost --> setting 3
555
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 3;
559
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 3;
556
                                                 // roll stick rightmost and pitch stick topmost --> setting 4
560
                                                 // roll stick rightmost and pitch stick topmost --> setting 4
557
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 4;
561
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 4;
558
                                                 // roll stick rightmost and pitch stick centered --> setting 5
562
                                                 // roll stick rightmost and pitch stick centered --> setting 5
559
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 5;
563
                                                 if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 5;
560
                                                 // update active parameter set in eeprom
564
                                                 // update active parameter set in eeprom
561
                                                 SetActiveParamSet(setting);
565
                                                 SetActiveParamSet(setting);
562
                                        }
566
                                        }
563
                                        ParamSet_ReadFromEEProm(GetActiveParamSet());
567
                                        ParamSet_ReadFromEEProm(GetActiveParamSet());
564
                                        SetNeutral();
568
                                        SetNeutral();
565
                                        Beep(GetActiveParamSet());
569
                                        Beep(GetActiveParamSet());
566
                                }
570
                                }
567
                        }
571
                        }
568
                        // and if the yaw stick is in the rightmost position
572
                        // and if the yaw stick is in the rightmost position
569
                        // save the ACC neutral setting to eeprom
573
                        // save the ACC neutral setting to eeprom
570
                        else if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
574
                        else if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
571
                        {
575
                        {
572
                                if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
576
                                if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
573
                                {
577
                                {
574
                                        delay_neutral = 0;
578
                                        delay_neutral = 0;
575
                                        GRN_OFF;
579
                                        GRN_OFF;
576
                                        SetParamWord(PID_ACC_PITCH, 0xFFFF); // make value invalid
580
                                        SetParamWord(PID_ACC_PITCH, 0xFFFF); // make value invalid
577
                                        Model_Is_Flying = 0;
581
                                        Model_Is_Flying = 0;
578
                                        SetNeutral();
582
                                        SetNeutral();
579
                                        // Save ACC neutral settings to eeprom
583
                                        // Save ACC neutral settings to eeprom
580
                                        SetParamWord(PID_ACC_PITCH, (uint16_t)NeutralAccX);
584
                                        SetParamWord(PID_ACC_PITCH, (uint16_t)NeutralAccX);
581
                                        SetParamWord(PID_ACC_ROLL,  (uint16_t)NeutralAccY);
585
                                        SetParamWord(PID_ACC_ROLL,  (uint16_t)NeutralAccY);
582
                                        SetParamWord(PID_ACC_Z,     (uint16_t)NeutralAccZ);
586
                                        SetParamWord(PID_ACC_Z,     (uint16_t)NeutralAccZ);
583
                                        Beep(GetActiveParamSet());
587
                                        Beep(GetActiveParamSet());
584
                                }
588
                                }
585
                        }
589
                        }
586
                        else delay_neutral = 0;
590
                        else delay_neutral = 0;
587
                }
591
                }
588
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
592
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
589
// thrust stick is down
593
// thrust stick is down
590
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
594
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
591
                if(PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] < -85)
595
                if(PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] < -85)
592
                {
596
                {
593
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
597
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
594
// and yaw stick is rightmost --> start motors
598
// and yaw stick is rightmost --> start motors
595
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
599
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
596
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
600
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
597
                        {
601
                        {
598
                                if(++delay_startmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
602
                                if(++delay_startmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
599
                                {
603
                                {
600
                                        delay_startmotors = 200; // do not repeat if once executed
604
                                        delay_startmotors = 200; // do not repeat if once executed
601
                                        Model_Is_Flying = 1;
605
                                        Model_Is_Flying = 1;
602
                                        MotorsOn = 1;
606
                                        MotorsOn = 1;
603
                                        SetPointYaw = 0;
607
                                        SetPointYaw = 0;
604
                                        Reading_IntegralGyroYaw = 0;
608
                                        Reading_IntegralGyroYaw = 0;
605
                                        Reading_IntegralGyroPitch = 0;
609
                                        Reading_IntegralGyroPitch = 0;
606
                                        Reading_IntegralGyroRoll = 0;
610
                                        Reading_IntegralGyroRoll = 0;
607
                                        Reading_IntegralGyroPitch2 = IntegralPitch;
611
                                        Reading_IntegralGyroPitch2 = IntegralPitch;
608
                                        Reading_IntegralGyroRoll2 = IntegralRoll;
612
                                        Reading_IntegralGyroRoll2 = IntegralRoll;
609
                                        SumPitch = 0;
613
                                        SumPitch = 0;
610
                                        SumRoll = 0;
614
                                        SumRoll = 0;
611
                                        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
615
                                        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
612
                                        {
616
                                        {
613
                                                GPS_SetHomePosition();
617
                                                GPS_SetHomePosition();
614
                                        }
618
                                        }
615
                                }
619
                                }
616
                        }
620
                        }
617
                        else delay_startmotors = 0; // reset delay timer if sticks are not in this position
621
                        else delay_startmotors = 0; // reset delay timer if sticks are not in this position
618
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
622
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
619
// and yaw stick is leftmost --> stop motors
623
// and yaw stick is leftmost --> stop motors
620
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
624
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
621
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
625
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
622
                                {
626
                                {
623
                                if(++delay_stopmotors > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
627
                                if(++delay_stopmotors > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
624
                                {
628
                                {
625
                                        delay_stopmotors = 200; // do not repeat if once executed
629
                                        delay_stopmotors = 200; // do not repeat if once executed
626
                                        Model_Is_Flying = 0;
630
                                        Model_Is_Flying = 0;
627
                                        MotorsOn = 0;
631
                                        MotorsOn = 0;
628
                                        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
632
                                        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
629
                                        {
633
                                        {
630
                                                GPS_ClearHomePosition();
634
                                                GPS_ClearHomePosition();
631
                                        }
635
                                        }
632
                                }
636
                                }
633
                        }
637
                        }
634
                        else delay_stopmotors = 0; // reset delay timer if sticks are not in this position
638
                        else delay_stopmotors = 0; // reset delay timer if sticks are not in this position
635
                }
639
                }
636
                        // remapping of paameters only if the signal rc-sigbnal conditions are good
640
                        // remapping of paameters only if the signal rc-sigbnal conditions are good
637
        } // eof RC_Quality > 150
641
        } // eof RC_Quality > 150
638
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
642
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
639
// new values from RC
643
// new values from RC
640
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
644
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
641
        if(!NewPpmData-- || EmergencyLanding) // NewData = 0 means new data from RC
645
        if(!NewPpmData-- || EmergencyLanding) // NewData = 0 means new data from RC
642
        {
646
        {
643
                int tmp_int;
647
                int tmp_int;
644
                ParameterMapping(); // remapping params (online poti replacement)
648
                ParameterMapping(); // remapping params (online poti replacement)
645
                // calculate Stick inputs by rc channels (P) and changing of rc channels (D)
649
                // calculate Stick inputs by rc channels (P) and changing of rc channels (D)
646
                StickPitch = (StickPitch * 3 + PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_P) / 4;
650
                StickPitch = (StickPitch * 3 + PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_P) / 4;
647
                StickPitch += PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_D;
651
                StickPitch += PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_D;
648
                StickRoll = (StickRoll * 3 + PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_P) / 4;
652
                StickRoll = (StickRoll * 3 + PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_P) / 4;
649
                StickRoll += PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_D;
653
                StickRoll += PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_D;
650
 
654
 
651
                // direct mapping of yaw and thrust
655
                // direct mapping of yaw and thrust
652
                StickYaw = -PPM_in[ParamSet.ChannelAssignment[CH_YAW]];
656
                StickYaw = -PPM_in[ParamSet.ChannelAssignment[CH_YAW]];
653
                StickThrust  = PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] + 120;// shift to positive numbers
657
                StickThrust  = PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] + 120;// shift to positive numbers
654
 
658
 
655
                // update max stick positions for pitch and roll
659
                // update max stick positions for pitch and roll
656
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]) > MaxStickPitch)
660
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]) > MaxStickPitch)
657
                        MaxStickPitch = abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]);
661
                        MaxStickPitch = abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]);
658
                else MaxStickPitch--;
662
                else MaxStickPitch--;
659
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > MaxStickRoll)
663
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > MaxStickRoll)
660
                        MaxStickRoll = abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]);
664
                        MaxStickRoll = abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]);
661
                else MaxStickRoll--;
665
                else MaxStickRoll--;
662
 
666
 
663
                // update gyro control loop factors
667
                // update gyro control loop factors
664
 
668
 
665
                Gyro_P_Factor = ((float) FCParam.Gyro_P + 10.0) / 256.0;
669
                Gyro_P_Factor = ((float) FCParam.Gyro_P + 10.0) / 256.0;
666
                Gyro_I_Factor = ((float) FCParam.Gyro_I) / 44000;
670
                Gyro_I_Factor = ((float) FCParam.Gyro_I) / 44000;
667
 
671
 
668
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
672
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
669
// Digital Control via DubWise
673
// Digital Control via DubWise
670
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
674
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
671
 
675
 
672
                #define KEY_VALUE (FCParam.UserParam1 * 4) // step width
676
                #define KEY_VALUE (FCParam.UserParam1 * 4) // step width
673
                if(DubWiseKeys[1]) BeepTime = 10;
677
                if(DubWiseKeys[1]) BeepTime = 10;
674
                if(DubWiseKeys[1] & DUB_KEY_UP)  tmp_int = KEY_VALUE;
678
                if(DubWiseKeys[1] & DUB_KEY_UP)  tmp_int = KEY_VALUE;
675
                else if(DubWiseKeys[1] & DUB_KEY_DOWN)  tmp_int = -KEY_VALUE;
679
                else if(DubWiseKeys[1] & DUB_KEY_DOWN)  tmp_int = -KEY_VALUE;
676
                else tmp_int = 0;
680
                else tmp_int = 0;
677
                ExternStickPitch = (ExternStickPitch * 7 + tmp_int) / 8;
681
                ExternStickPitch = (ExternStickPitch * 7 + tmp_int) / 8;
678
                if(DubWiseKeys[1] & DUB_KEY_LEFT)  tmp_int = KEY_VALUE;
682
                if(DubWiseKeys[1] & DUB_KEY_LEFT)  tmp_int = KEY_VALUE;
679
                else if(DubWiseKeys[1] & DUB_KEY_RIGHT) tmp_int = -KEY_VALUE;
683
                else if(DubWiseKeys[1] & DUB_KEY_RIGHT) tmp_int = -KEY_VALUE;
680
                else tmp_int = 0;
684
                else tmp_int = 0;
681
                ExternStickRoll = (ExternStickRoll * 7 + tmp_int) / 8;
685
                ExternStickRoll = (ExternStickRoll * 7 + tmp_int) / 8;
682
 
686
 
683
                if(DubWiseKeys[0] & 8)  ExternStickYaw = 50;else
687
                if(DubWiseKeys[0] & 8)  ExternStickYaw = 50;else
684
                if(DubWiseKeys[0] & 4)  ExternStickYaw =-50;else ExternStickYaw = 0;
688
                if(DubWiseKeys[0] & 4)  ExternStickYaw =-50;else ExternStickYaw = 0;
685
                if(DubWiseKeys[0] & 2)  ExternHeightValue++;
689
                if(DubWiseKeys[0] & 2)  ExternHeightValue++;
686
                if(DubWiseKeys[0] & 16) ExternHeightValue--;
690
                if(DubWiseKeys[0] & 16) ExternHeightValue--;
687
 
691
 
688
                StickPitch += ExternStickPitch / 8;
692
                StickPitch += ExternStickPitch / 8;
689
                StickRoll += ExternStickRoll / 8;
693
                StickRoll += ExternStickRoll / 8;
690
                StickYaw += ExternStickYaw;
694
                StickYaw += ExternStickYaw;
691
 
695
 
692
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
696
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
693
//+ Analog control via serial communication
697
//+ Analog control via serial communication
694
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
698
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
695
 
699
 
696
                if(ExternControl.Config & 0x01 && FCParam.UserParam1 > 128)
700
                if(ExternControl.Config & 0x01 && FCParam.UserParam1 > 128)
697
                {
701
                {
698
                         StickPitch += (int16_t) ExternControl.Pitch * (int16_t) ParamSet.Stick_P;
702
                         StickPitch += (int16_t) ExternControl.Pitch * (int16_t) ParamSet.Stick_P;
699
                         StickRoll += (int16_t) ExternControl.Roll * (int16_t) ParamSet.Stick_P;
703
                         StickRoll += (int16_t) ExternControl.Roll * (int16_t) ParamSet.Stick_P;
700
                         StickYaw += ExternControl.Yaw;
704
                         StickYaw += ExternControl.Yaw;
701
                         ExternHeightValue =  (int16_t) ExternControl.Height * (int16_t)ParamSet.Height_Gain;
705
                         ExternHeightValue =  (int16_t) ExternControl.Height * (int16_t)ParamSet.Height_Gain;
702
                         if(ExternControl.Thrust < StickThrust) StickThrust = ExternControl.Thrust;
706
                         if(ExternControl.Thrust < StickThrust) StickThrust = ExternControl.Thrust;
703
                }
707
                }
704
                // disable I part of gyro control feedback
708
                // disable I part of gyro control feedback
705
                if(ParamSet.GlobalConfig & CFG_HEADING_HOLD) Gyro_I_Factor =  0;
709
                if(ParamSet.GlobalConfig & CFG_HEADING_HOLD) Gyro_I_Factor =  0;
706
                // avoid negative scaling factors
710
                // avoid negative scaling factors
707
                if(Gyro_P_Factor < 0) Gyro_P_Factor = 0;
711
                if(Gyro_P_Factor < 0) Gyro_P_Factor = 0;
708
                if(Gyro_I_Factor < 0) Gyro_I_Factor = 0;
712
                if(Gyro_I_Factor < 0) Gyro_I_Factor = 0;
709
 
713
 
710
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
714
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
711
// Looping?
715
// Looping?
712
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
716
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
713
 
717
 
714
                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_LEFT)  Looping_Left = 1;
718
                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_LEFT)  Looping_Left = 1;
715
                else
719
                else
716
                {
720
                {
717
                        if(Looping_Left) // Hysteresis
721
                        if(Looping_Left) // Hysteresis
718
                        {
722
                        {
719
                                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Left = 0;
723
                                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Left = 0;
720
                        }
724
                        }
721
                }
725
                }
722
                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_RIGHT) Looping_Right = 1;
726
                if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_RIGHT) Looping_Right = 1;
723
                else
727
                else
724
                {
728
                {
725
                        if(Looping_Right) // Hysteresis
729
                        if(Looping_Right) // Hysteresis
726
                        {
730
                        {
727
                                if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Right = 0;
731
                                if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Right = 0;
728
                        }
732
                        }
729
                }
733
                }
730
 
734
 
731
                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_UP) Looping_Top = 1;
735
                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_UP) Looping_Top = 1;
732
                else
736
                else
733
                {
737
                {
734
                        if(Looping_Top)  // Hysteresis
738
                        if(Looping_Top)  // Hysteresis
735
                        {
739
                        {
736
                                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Top = 0;
740
                                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Top = 0;
737
                        }
741
                        }
738
                }
742
                }
739
                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_DOWN) Looping_Down = 1;
743
                if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_DOWN) Looping_Down = 1;
740
                else
744
                else
741
                {
745
                {
742
                        if(Looping_Down) // Hysteresis
746
                        if(Looping_Down) // Hysteresis
743
                        {
747
                        {
744
                                if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Down = 0;
748
                                if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Down = 0;
745
                        }
749
                        }
746
                }
750
                }
747
 
751
 
748
                if(Looping_Left || Looping_Right)   Looping_Roll = 1; else Looping_Roll = 0;
752
                if(Looping_Left || Looping_Right)   Looping_Roll = 1; else Looping_Roll = 0;
749
                if(Looping_Top  || Looping_Down) {Looping_Pitch = 1; Looping_Roll = 0; Looping_Left = 0; Looping_Right = 0;} else Looping_Pitch = 0;
753
                if(Looping_Top  || Looping_Down) {Looping_Pitch = 1; Looping_Roll = 0; Looping_Left = 0; Looping_Right = 0;} else Looping_Pitch = 0;
750
        } // End of new RC-Values or Emergency Landing
754
        } // End of new RC-Values or Emergency Landing
751
 
755
 
752
 
756
 
753
        if(Looping_Roll) BeepTime = 100;
757
        if(Looping_Roll) BeepTime = 100;
754
        if(Looping_Roll || Looping_Pitch)
758
        if(Looping_Roll || Looping_Pitch)
755
        {
759
        {
756
                if(ThrustMixFraction > ParamSet.LoopThrustLimit) ThrustMixFraction = ParamSet.LoopThrustLimit;
760
                if(ThrustMixFraction > ParamSet.LoopThrustLimit) ThrustMixFraction = ParamSet.LoopThrustLimit;
757
        }
761
        }
758
 
762
 
759
 
763
 
760
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
764
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
761
//+ LED Control on J16/J17
765
//+ LED Control on J16/J17
762
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
766
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
763
        LED1_Time = FCParam.UserParam7;
767
        LED1_Time = FCParam.UserParam7;
764
        LED2_Time = FCParam.UserParam8;
768
        LED2_Time = FCParam.UserParam8;
765
        LED_Update();
769
        LED_Update();
766
 
770
 
767
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
771
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
768
// in case of emergency landing
772
// in case of emergency landing
769
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
773
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
770
        // set all inputs to save values
774
        // set all inputs to save values
771
        if(EmergencyLanding)
775
        if(EmergencyLanding)
772
        {
776
        {
773
                StickYaw = 0;
777
                StickYaw = 0;
774
                StickPitch = 0;
778
                StickPitch = 0;
775
                StickRoll = 0;
779
                StickRoll = 0;
776
                Gyro_P_Factor  = 0.5;
780
                Gyro_P_Factor  = 0.5;
777
                Gyro_I_Factor = 0.003;
781
                Gyro_I_Factor = 0.003;
778
                Looping_Roll = 0;
782
                Looping_Roll = 0;
779
                Looping_Pitch = 0;
783
                Looping_Pitch = 0;
780
                MaxStickPitch = 0;
784
                MaxStickPitch = 0;
781
                MaxStickRoll = 0;
785
                MaxStickRoll = 0;
782
        }
786
        }
783
 
787
 
784
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
788
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
785
// Trim Gyro-Integrals to ACC-Signals
789
// Trim Gyro-Integrals to ACC-Signals
786
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
790
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
787
 
791
 
788
        #define BALANCE_NUMBER 256L
792
        #define BALANCE_NUMBER 256L
789
        // sum for averaging
793
        // sum for averaging
790
        MeanIntegralPitch  += IntegralPitch;
794
        MeanIntegralPitch  += IntegralPitch;
791
        MeanIntegralRoll  += IntegralRoll;
795
        MeanIntegralRoll  += IntegralRoll;
792
 
796
 
793
        if(Looping_Pitch || Looping_Roll) // if looping in any direction
797
        if(Looping_Pitch || Looping_Roll) // if looping in any direction
794
        {
798
        {
795
                // reset averaging for acc and gyro integral as well as gyro integral acc correction
799
                // reset averaging for acc and gyro integral as well as gyro integral acc correction
796
                MeasurementCounter = 0;
800
                MeasurementCounter = 0;
797
 
801
 
798
                IntegralAccPitch = 0;
802
                IntegralAccPitch = 0;
799
                IntegralAccRoll = 0;
803
                IntegralAccRoll = 0;
800
 
804
 
801
                MeanIntegralPitch = 0;
805
                MeanIntegralPitch = 0;
802
                MeanIntegralRoll = 0;
806
                MeanIntegralRoll = 0;
803
 
807
 
804
                Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
808
                Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
805
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
809
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
806
 
810
 
807
                AttitudeCorrectionPitch = 0;
811
                AttitudeCorrectionPitch = 0;
808
                AttitudeCorrectionRoll = 0;
812
                AttitudeCorrectionRoll = 0;
809
        }
813
        }
810
 
814
 
811
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
815
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
812
        if(!Looping_Pitch && !Looping_Roll) // if not lopping in any direction
816
        if(!Looping_Pitch && !Looping_Roll) // if not lopping in any direction
813
        {
817
        {
814
                int32_t tmp_long, tmp_long2;
818
                int32_t tmp_long, tmp_long2;
815
                // determine the deviation of gyro integral from averaged acceleration sensor
819
                // determine the deviation of gyro integral from averaged acceleration sensor
816
                tmp_long   =  (int32_t)(IntegralPitch / ParamSet.GyroAccFactor - (int32_t)Mean_AccPitch);
820
                tmp_long   =  (int32_t)(IntegralPitch / ParamSet.GyroAccFactor - (int32_t)Mean_AccPitch);
817
                tmp_long  /= 16;
821
                tmp_long  /= 16;
818
                tmp_long2  = (int32_t)(IntegralRoll   / ParamSet.GyroAccFactor - (int32_t)Mean_AccRoll);
822
                tmp_long2  = (int32_t)(IntegralRoll   / ParamSet.GyroAccFactor - (int32_t)Mean_AccRoll);
819
                tmp_long2 /= 16;
823
                tmp_long2 /= 16;
820
 
824
 
821
                if((MaxStickPitch > 15) || (MaxStickRoll > 15)) // reduce effect during stick commands
825
                if((MaxStickPitch > 15) || (MaxStickRoll > 15)) // reduce effect during stick commands
822
                {
826
                {
823
                        tmp_long  /= 3;
827
                        tmp_long  /= 3;
824
                        tmp_long2 /= 3;
828
                        tmp_long2 /= 3;
825
                }
829
                }
826
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25) // reduce further if yaw stick is active
830
                if(abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25) // reduce further if yaw stick is active
827
                {
831
                {
828
                        tmp_long  /= 3;
832
                        tmp_long  /= 3;
829
                        tmp_long2 /= 3;
833
                        tmp_long2 /= 3;
830
                }
834
                }
831
 
835
 
832
                #define BALANCE 32
836
                #define BALANCE 32
833
                // limit correction effect
837
                // limit correction effect
834
                if(tmp_long >  BALANCE)  tmp_long  = BALANCE;
838
                if(tmp_long >  BALANCE)  tmp_long  = BALANCE;
835
                if(tmp_long < -BALANCE)  tmp_long  =-BALANCE;
839
                if(tmp_long < -BALANCE)  tmp_long  =-BALANCE;
836
                if(tmp_long2 > BALANCE)  tmp_long2 = BALANCE;
840
                if(tmp_long2 > BALANCE)  tmp_long2 = BALANCE;
837
                if(tmp_long2 <-BALANCE)  tmp_long2 =-BALANCE;
841
                if(tmp_long2 <-BALANCE)  tmp_long2 =-BALANCE;
838
                // correct current readings
842
                // correct current readings
839
                Reading_IntegralGyroPitch -= tmp_long;
843
                Reading_IntegralGyroPitch -= tmp_long;
840
                Reading_IntegralGyroRoll -= tmp_long2;
844
                Reading_IntegralGyroRoll -= tmp_long2;
841
        }
845
        }
842
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
846
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
843
        // MeasurementCounter is incremented in the isr of analog.c
847
        // MeasurementCounter is incremented in the isr of analog.c
844
        if(MeasurementCounter >= BALANCE_NUMBER) // averaging number has reached
848
        if(MeasurementCounter >= BALANCE_NUMBER) // averaging number has reached
845
        {
849
        {
846
                static int16_t cnt = 0;
850
                static int16_t cnt = 0;
847
                static int8_t last_n_p, last_n_n, last_r_p, last_r_n;
851
                static int8_t last_n_p, last_n_n, last_r_p, last_r_n;
848
                static int32_t MeanIntegralPitch_old, MeanIntegralRoll_old;
852
                static int32_t MeanIntegralPitch_old, MeanIntegralRoll_old;
849
 
853
 
850
                // if not lopping in any direction (this should be alwais the case,
854
                // if not lopping in any direction (this should be alwais the case,
851
                // because the Measurement counter is reset to 0 if looping in any direction is active.)
855
                // because the Measurement counter is reset to 0 if looping in any direction is active.)
852
                if(!Looping_Pitch && !Looping_Roll)
856
                if(!Looping_Pitch && !Looping_Roll)
853
                {
857
                {
854
                        // Calculate mean value of the gyro integrals
858
                        // Calculate mean value of the gyro integrals
855
                        MeanIntegralPitch /= BALANCE_NUMBER;
859
                        MeanIntegralPitch /= BALANCE_NUMBER;
856
                        MeanIntegralRoll  /= BALANCE_NUMBER;
860
                        MeanIntegralRoll  /= BALANCE_NUMBER;
857
 
861
 
858
                        // Calculate mean of the acceleration values
862
                        // Calculate mean of the acceleration values
859
                        IntegralAccPitch = (ParamSet.GyroAccFactor * IntegralAccPitch) / BALANCE_NUMBER;
863
                        IntegralAccPitch = (ParamSet.GyroAccFactor * IntegralAccPitch) / BALANCE_NUMBER;
860
                        IntegralAccRoll  = (ParamSet.GyroAccFactor * IntegralAccRoll ) / BALANCE_NUMBER;
864
                        IntegralAccRoll  = (ParamSet.GyroAccFactor * IntegralAccRoll ) / BALANCE_NUMBER;
861
 
865
 
862
                        // Pitch ++++++++++++++++++++++++++++++++++++++++++++++++
866
                        // Pitch ++++++++++++++++++++++++++++++++++++++++++++++++
863
                        // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
867
                        // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
864
                        IntegralErrorPitch = (int32_t)(MeanIntegralPitch - (int32_t)IntegralAccPitch);
868
                        IntegralErrorPitch = (int32_t)(MeanIntegralPitch - (int32_t)IntegralAccPitch);
865
                        CorrectionPitch = IntegralErrorPitch / ParamSet.GyroAccTrim;
869
                        CorrectionPitch = IntegralErrorPitch / ParamSet.GyroAccTrim;
866
                        AttitudeCorrectionPitch = CorrectionPitch / BALANCE_NUMBER;
870
                        AttitudeCorrectionPitch = CorrectionPitch / BALANCE_NUMBER;
867
                        // Roll ++++++++++++++++++++++++++++++++++++++++++++++++
871
                        // Roll ++++++++++++++++++++++++++++++++++++++++++++++++
868
                        // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
872
                        // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
869
                        IntegralErrorRoll = (int32_t)(MeanIntegralRoll - (int32_t)IntegralAccRoll);
873
                        IntegralErrorRoll = (int32_t)(MeanIntegralRoll - (int32_t)IntegralAccRoll);
870
                        CorrectionRoll  = IntegralErrorRoll / ParamSet.GyroAccTrim;
874
                        CorrectionRoll  = IntegralErrorRoll / ParamSet.GyroAccTrim;
871
                        AttitudeCorrectionRoll  = CorrectionRoll  / BALANCE_NUMBER;
875
                        AttitudeCorrectionRoll  = CorrectionRoll  / BALANCE_NUMBER;
872
 
876
 
873
                        if((MaxStickPitch > 15) || (MaxStickRoll > 15) || (abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25))
877
                        if((MaxStickPitch > 15) || (MaxStickRoll > 15) || (abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > 25))
874
                        {
878
                        {
875
                                AttitudeCorrectionPitch /= 2;
879
                                AttitudeCorrectionPitch /= 2;
876
                                AttitudeCorrectionRoll /= 2;
880
                                AttitudeCorrectionRoll /= 2;
877
                        }
881
                        }
878
 
882
 
879
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
883
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
880
        // Gyro-Drift ermitteln
884
        // Gyro-Drift ermitteln
881
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
885
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
882
                        // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
886
                        // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
883
                        IntegralErrorPitch  = IntegralPitch2 - IntegralPitch;
887
                        IntegralErrorPitch  = IntegralPitch2 - IntegralPitch;
884
                        Reading_IntegralGyroPitch2 -= IntegralErrorPitch;
888
                        Reading_IntegralGyroPitch2 -= IntegralErrorPitch;
885
                        // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
889
                        // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
886
                        IntegralErrorRoll = IntegralRoll2 - IntegralRoll;
890
                        IntegralErrorRoll = IntegralRoll2 - IntegralRoll;
887
                        Reading_IntegralGyroRoll2 -= IntegralErrorRoll;
891
                        Reading_IntegralGyroRoll2 -= IntegralErrorRoll;
888
 
892
 
889
 
893
 
890
                        DebugOut.Analog[17] = IntegralAccPitch / 26;
894
                        // DebugOut.Analog[17] = IntegralAccPitch / 26;
891
                        DebugOut.Analog[18] = IntegralAccRoll / 26;
895
                        DebugOut.Analog[18] = IntegralAccRoll / 26;
892
                        DebugOut.Analog[19] = IntegralErrorPitch;// / 26;
896
                        DebugOut.Analog[19] = IntegralErrorPitch;// / 26;
893
                        DebugOut.Analog[20] = IntegralErrorRoll;// / 26;
897
                        DebugOut.Analog[20] = IntegralErrorRoll;// / 26;
894
                        DebugOut.Analog[21] = MeanIntegralPitch / 26;
898
                        DebugOut.Analog[21] = MeanIntegralPitch / 26;
895
                        DebugOut.Analog[22] = MeanIntegralRoll / 26;
899
                        DebugOut.Analog[22] = MeanIntegralRoll / 26;
896
                        //DebugOut.Analog[28] = CorrectionPitch;
900
                        //DebugOut.Analog[28] = CorrectionPitch;
897
                        DebugOut.Analog[29] = CorrectionRoll;
901
                        DebugOut.Analog[29] = CorrectionRoll;
898
                        DebugOut.Analog[30] = AttitudeCorrectionRoll * 10;
902
                        DebugOut.Analog[30] = AttitudeCorrectionRoll * 10;
899
 
903
 
900
                        #define ERROR_LIMIT  (BALANCE_NUMBER * 4)
904
                        #define ERROR_LIMIT  (BALANCE_NUMBER * 4)
901
                        #define ERROR_LIMIT2 (BALANCE_NUMBER * 16)
905
                        #define ERROR_LIMIT2 (BALANCE_NUMBER * 16)
902
                        #define MOVEMENT_LIMIT 20000
906
                        #define MOVEMENT_LIMIT 20000
903
        // Pitch +++++++++++++++++++++++++++++++++++++++++++++++++
907
        // Pitch +++++++++++++++++++++++++++++++++++++++++++++++++
904
                        cnt = 1;// + labs(IntegralErrorPitch) / 4096;
908
                        cnt = 1;// + labs(IntegralErrorPitch) / 4096;
905
                        CorrectionPitch = 0;
909
                        CorrectionPitch = 0;
906
                        if(labs(MeanIntegralPitch_old - MeanIntegralPitch) < MOVEMENT_LIMIT)
910
                        if(labs(MeanIntegralPitch_old - MeanIntegralPitch) < MOVEMENT_LIMIT)
907
                        {
911
                        {
908
                                if(IntegralErrorPitch >  ERROR_LIMIT2)
912
                                if(IntegralErrorPitch >  ERROR_LIMIT2)
909
                                {
913
                                {
910
                                        if(last_n_p)
914
                                        if(last_n_p)
911
                                        {
915
                                        {
912
                                                cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
916
                                                cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
913
                                                CorrectionPitch = IntegralErrorPitch / 8;
917
                                                CorrectionPitch = IntegralErrorPitch / 8;
914
                                                if(CorrectionPitch > 5000) CorrectionPitch = 5000;
918
                                                if(CorrectionPitch > 5000) CorrectionPitch = 5000;
915
                                                AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
919
                                                AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
916
                                        }
920
                                        }
917
                                        else last_n_p = 1;
921
                                        else last_n_p = 1;
918
                                }
922
                                }
919
                                else  last_n_p = 0;
923
                                else  last_n_p = 0;
920
                                if(IntegralErrorPitch < -ERROR_LIMIT2)
924
                                if(IntegralErrorPitch < -ERROR_LIMIT2)
921
                                {
925
                                {
922
                                        if(last_n_n)
926
                                        if(last_n_n)
923
                                        {
927
                                        {
924
                                                cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
928
                                                cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
925
                                                CorrectionPitch = IntegralErrorPitch / 8;
929
                                                CorrectionPitch = IntegralErrorPitch / 8;
926
                                                if(CorrectionPitch < -5000) CorrectionPitch = -5000;
930
                                                if(CorrectionPitch < -5000) CorrectionPitch = -5000;
927
                                                AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
931
                                                AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
928
                                        }
932
                                        }
929
                                        else last_n_n = 1;
933
                                        else last_n_n = 1;
930
                                }
934
                                }
931
                                else  last_n_n = 0;
935
                                else  last_n_n = 0;
932
                        }
936
                        }
933
                        else cnt = 0;
937
                        else cnt = 0;
934
                        if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
938
                        if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
935
                        // correct Gyro Offsets
939
                        // correct Gyro Offsets
936
                        if(IntegralErrorPitch >  ERROR_LIMIT)   AdNeutralPitch += cnt;
940
                        if(IntegralErrorPitch >  ERROR_LIMIT)   AdNeutralPitch += cnt;
937
                        if(IntegralErrorPitch < -ERROR_LIMIT)   AdNeutralPitch -= cnt;
941
                        if(IntegralErrorPitch < -ERROR_LIMIT)   AdNeutralPitch -= cnt;
938
 
942
 
939
        // Roll +++++++++++++++++++++++++++++++++++++++++++++++++
943
        // Roll +++++++++++++++++++++++++++++++++++++++++++++++++
940
                        cnt = 1;// + labs(IntegralErrorPitch) / 4096;
944
                        cnt = 1;// + labs(IntegralErrorPitch) / 4096;
941
                        CorrectionRoll = 0;
945
                        CorrectionRoll = 0;
942
                        if(labs(MeanIntegralRoll_old - MeanIntegralRoll) < MOVEMENT_LIMIT)
946
                        if(labs(MeanIntegralRoll_old - MeanIntegralRoll) < MOVEMENT_LIMIT)
943
                        {
947
                        {
944
                                if(IntegralErrorRoll >  ERROR_LIMIT2)
948
                                if(IntegralErrorRoll >  ERROR_LIMIT2)
945
                                {
949
                                {
946
                                        if(last_r_p)
950
                                        if(last_r_p)
947
                                        {
951
                                        {
948
                                                cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
952
                                                cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
949
                                                CorrectionRoll = IntegralErrorRoll / 8;
953
                                                CorrectionRoll = IntegralErrorRoll / 8;
950
                                                if(CorrectionRoll > 5000) CorrectionRoll = 5000;
954
                                                if(CorrectionRoll > 5000) CorrectionRoll = 5000;
951
                                                AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
955
                                                AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
952
                                        }
956
                                        }
953
                                        else last_r_p = 1;
957
                                        else last_r_p = 1;
954
                                }
958
                                }
955
                                else  last_r_p = 0;
959
                                else  last_r_p = 0;
956
                                if(IntegralErrorRoll < -ERROR_LIMIT2)
960
                                if(IntegralErrorRoll < -ERROR_LIMIT2)
957
                                {
961
                                {
958
                                        if(last_r_n)
962
                                        if(last_r_n)
959
                                        {
963
                                        {
960
                                                cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
964
                                                cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
961
                                                CorrectionRoll = IntegralErrorRoll / 8;
965
                                                CorrectionRoll = IntegralErrorRoll / 8;
962
                                                if(CorrectionRoll < -5000) CorrectionRoll = -5000;
966
                                                if(CorrectionRoll < -5000) CorrectionRoll = -5000;
963
                                                AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
967
                                                AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
964
                                        }
968
                                        }
965
                                        else last_r_n = 1;
969
                                        else last_r_n = 1;
966
                                }
970
                                }
967
                                else  last_r_n = 0;
971
                                else  last_r_n = 0;
968
                        }
972
                        }
969
                        else cnt = 0;
973
                        else cnt = 0;
970
                        // correct Gyro Offsets
974
                        // correct Gyro Offsets
971
                        if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
975
                        if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
972
                        if(IntegralErrorRoll >  ERROR_LIMIT)   AdNeutralRoll += cnt;
976
                        if(IntegralErrorRoll >  ERROR_LIMIT)   AdNeutralRoll += cnt;
973
                        if(IntegralErrorRoll < -ERROR_LIMIT)   AdNeutralRoll -= cnt;
977
                        if(IntegralErrorRoll < -ERROR_LIMIT)   AdNeutralRoll -= cnt;
974
 
978
 
975
                        DebugOut.Analog[27] = CorrectionRoll;
979
                        DebugOut.Analog[27] = CorrectionRoll;
976
                        DebugOut.Analog[23] = AdNeutralPitch;//10*(AdNeutralPitch - StartNeutralPitch);
980
                        DebugOut.Analog[23] = AdNeutralPitch;//10*(AdNeutralPitch - StartNeutralPitch);
977
                        DebugOut.Analog[24] = 10*(AdNeutralRoll - StartNeutralRoll);
981
                        DebugOut.Analog[24] = 10*(AdNeutralRoll - StartNeutralRoll);
978
                }
982
                }
979
                else // looping is active
983
                else // looping is active
980
                {
984
                {
981
                        AttitudeCorrectionRoll  = 0;
985
                        AttitudeCorrectionRoll  = 0;
982
                        AttitudeCorrectionPitch = 0;
986
                        AttitudeCorrectionPitch = 0;
983
                }
987
                }
984
 
988
 
985
                // if Gyro_I_Factor == 0 , for example at Heading Hold, ignore attitude correction
989
                // if Gyro_I_Factor == 0 , for example at Heading Hold, ignore attitude correction
986
                if(!Gyro_I_Factor)
990
                if(!Gyro_I_Factor)
987
                {
991
                {
988
                        AttitudeCorrectionRoll  = 0;
992
                        AttitudeCorrectionRoll  = 0;
989
                        AttitudeCorrectionPitch = 0;
993
                        AttitudeCorrectionPitch = 0;
990
                }
994
                }
991
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++
995
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++
992
                MeanIntegralPitch_old = MeanIntegralPitch;
996
                MeanIntegralPitch_old = MeanIntegralPitch;
993
                MeanIntegralRoll_old  = MeanIntegralRoll;
997
                MeanIntegralRoll_old  = MeanIntegralRoll;
994
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++
998
        // +++++++++++++++++++++++++++++++++++++++++++++++++++++
995
                // reset variables used for averaging
999
                // reset variables used for averaging
996
                IntegralAccPitch = 0;
1000
                IntegralAccPitch = 0;
997
                IntegralAccRoll = 0;
1001
                IntegralAccRoll = 0;
998
                MeanIntegralPitch = 0;
1002
                MeanIntegralPitch = 0;
999
                MeanIntegralRoll = 0;
1003
                MeanIntegralRoll = 0;
1000
                MeasurementCounter = 0;
1004
                MeasurementCounter = 0;
1001
        } // end of averaging
1005
        } // end of averaging
1002
 
1006
 
1003
 
1007
 
1004
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1008
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1005
//  Yawing
1009
//  Yawing
1006
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1010
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1007
        if(abs(StickYaw) > 20 ) // yaw stick is activated
1011
        if(abs(StickYaw) > 20 ) // yaw stick is activated
1008
        {
1012
        {
1009
                if(!(ParamSet.GlobalConfig & CFG_COMPASS_FIX)) UpdateCompassCourse = 1;
1013
                if(!(ParamSet.GlobalConfig & CFG_COMPASS_FIX)) UpdateCompassCourse = 1;
1010
        }
1014
        }
1011
        // exponential stick sensitivity in yawring rate
1015
        // exponential stick sensitivity in yawring rate
1012
        tmp_int  = (int32_t) ParamSet.Yaw_P * ((int32_t)StickYaw * abs(StickYaw)) / 512L; // expo  y = ax + bx²
1016
        tmp_int  = (int32_t) ParamSet.Yaw_P * ((int32_t)StickYaw * abs(StickYaw)) / 512L; // expo  y = ax + bx²
1013
        tmp_int += (ParamSet.Yaw_P * StickYaw) / 4;
1017
        tmp_int += (ParamSet.Yaw_P * StickYaw) / 4;
1014
        SetPointYaw = tmp_int;
1018
        SetPointYaw = tmp_int;
1015
        // trimm drift of Reading_IntegralGyroYaw with SetPointYaw(StickYaw)
1019
        // trimm drift of Reading_IntegralGyroYaw with SetPointYaw(StickYaw)
1016
        Reading_IntegralGyroYaw -= tmp_int;
1020
        Reading_IntegralGyroYaw -= tmp_int;
1017
        // limit the effect
1021
        // limit the effect
1018
        if(Reading_IntegralGyroYaw > 50000) Reading_IntegralGyroYaw = 50000;
1022
        if(Reading_IntegralGyroYaw > 50000) Reading_IntegralGyroYaw = 50000;
1019
        if(Reading_IntegralGyroYaw <-50000) Reading_IntegralGyroYaw =-50000;
1023
        if(Reading_IntegralGyroYaw <-50000) Reading_IntegralGyroYaw =-50000;
1020
 
1024
 
1021
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1025
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1022
//  Compass
1026
//  Compass
1023
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1027
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1024
    // compass code is used if Compass option or GPS option is selected
1028
    // compass code is used if Compass option or GPS option is selected
1025
        if((ParamSet.GlobalConfig & CFG_COMPASS_ACTIVE) || (ParamSet.GlobalConfig & CFG_GPS_ACTIVE))
1029
        if((ParamSet.GlobalConfig & CFG_COMPASS_ACTIVE) || (ParamSet.GlobalConfig & CFG_GPS_ACTIVE))
1026
        {
1030
        {
1027
                static uint8_t updCompass = 0;
1031
                static uint8_t updCompass = 0;
1028
                int16_t w,v;
1032
                int16_t w,v;
1029
 
1033
 
1030
                if (!updCompass--)
1034
                if (!updCompass--)
1031
                {
1035
                {
1032
                        updCompass = 49; // update only at 2ms*50 = 100ms (10Hz)
1036
                        updCompass = 49; // update only at 2ms*50 = 100ms (10Hz)
1033
                        // get current compass heading (angle between MK head and magnetic north)
1037
                        // get current compass heading (angle between MK head and magnetic north)
1034
                        #ifdef USE_MM3
1038
                        #ifdef USE_MM3
1035
                        CompassHeading = MM3_Heading();
1039
                        CompassHeading = MM3_Heading();
1036
                        #endif
1040
                        #endif
1037
                        #ifdef USE_CMPS03
1041
                        #ifdef USE_CMPS03
1038
                        CompassHeading = CMPS03_Heading();
1042
                        CompassHeading = CMPS03_Heading();
1039
                        #endif
1043
                        #endif
1040
                        if (CompassHeading < 0) CompassOffCourse = 0; // disable gyro compass correction on bad compass data
1044
                        if (CompassHeading < 0) CompassOffCourse = 0; // disable gyro compass correction on bad compass data
1041
                        else CompassOffCourse = ((540 + CompassHeading - CompassCourse) % 360) - 180; // calc course deviation
1045
                        else CompassOffCourse = ((540 + CompassHeading - CompassCourse) % 360) - 180; // calc course deviation
1042
                }
1046
                }
1043
 
1047
 
1044
                // get maximum attitude angle
1048
                // get maximum attitude angle
1045
                w = abs(IntegralPitch/512);
1049
                w = abs(IntegralPitch/512);
1046
                v = abs(IntegralRoll /512);
1050
                v = abs(IntegralRoll /512);
1047
                if(v > w) w = v;
1051
                if(v > w) w = v;
1048
                if (w < 25)
1052
                if (w < 25)
1049
                {
1053
                {
1050
                        if(UpdateCompassCourse)
1054
                        if(UpdateCompassCourse)
1051
                        {
1055
                        {
1052
                                UpdateCompassCourse = 0;
1056
                                UpdateCompassCourse = 0;
1053
                                CompassCourse = CompassHeading;
1057
                                CompassCourse = CompassHeading;
1054
                                CompassOffCourse = 0;
1058
                                CompassOffCourse = 0;
1055
                        }
1059
                        }
1056
                        w = (w * FCParam.CompassYawEffect) / 64;
1060
                        w = (w * FCParam.CompassYawEffect) / 64;
1057
                w = FCParam.CompassYawEffect - w;
1061
                w = FCParam.CompassYawEffect - w;
1058
                        if(w > 0) Reading_IntegralGyroYaw += (CompassOffCourse * w) / 32;
1062
                        if(w > 0) Reading_IntegralGyroYaw += (CompassOffCourse * w) / 32;
1059
                }
1063
                }
1060
        }
1064
        }
1061
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1065
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1062
//  GPS
1066
//  GPS
1063
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1067
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1064
        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
1068
        if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
1065
        {
1069
        {
1066
                GPS_I_Factor = FCParam.UserParam2;
1070
                GPS_I_Factor = FCParam.UserParam2;
1067
                GPS_P_Factor = FCParam.UserParam5;
1071
                GPS_P_Factor = FCParam.UserParam5;
1068
                GPS_D_Factor = FCParam.UserParam6;
1072
                GPS_D_Factor = FCParam.UserParam6;
1069
                if(EmergencyLanding) GPS_Main(230); // enables Comming Home
1073
                if(EmergencyLanding) GPS_Main(230); // enables Comming Home
1070
                else GPS_Main(Poti3);               // behavior controlled by Poti3
1074
                else GPS_Main(Poti3);               // behavior controlled by Poti3
1071
        }
1075
        }
1072
        else
1076
        else
1073
        {
1077
        {
1074
                GPS_Neutral();
1078
                GPS_Neutral();
1075
        }
1079
        }
1076
 
1080
 
1077
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1081
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1078
//  Debugwerte zuordnen
1082
//  Debugwerte zuordnen
1079
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1083
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1080
        if(!TimerDebugOut--)
1084
        if(!TimerDebugOut--)
1081
        {
1085
        {
1082
                TimerDebugOut = 24; // update debug outputs every 25*2ms = 50 ms (20Hz)
1086
                TimerDebugOut = 24; // update debug outputs every 25*2ms = 50 ms (20Hz)
1083
                DebugOut.Analog[0]  = IntegralPitch / ParamSet.GyroAccFactor;
1087
                DebugOut.Analog[0]  = IntegralPitch / ParamSet.GyroAccFactor;
1084
                DebugOut.Analog[1]  = IntegralRoll / ParamSet.GyroAccFactor;
1088
                DebugOut.Analog[1]  = IntegralRoll / ParamSet.GyroAccFactor;
1085
                DebugOut.Analog[2]  = Mean_AccPitch;
1089
                DebugOut.Analog[2]  = Mean_AccPitch;
1086
                DebugOut.Analog[3]  = Mean_AccRoll;
1090
                DebugOut.Analog[3]  = Mean_AccRoll;
1087
                DebugOut.Analog[4]  = Reading_GyroYaw;
1091
                DebugOut.Analog[4]  = Reading_GyroYaw;
1088
                DebugOut.Analog[5]  = ReadingHeight;
1092
                DebugOut.Analog[5]  = ReadingHeight;
1089
                DebugOut.Analog[6]  = (Reading_Integral_Top / 512);
1093
                DebugOut.Analog[6]  = (Reading_Integral_Top / 512);
1090
                DebugOut.Analog[8]  = CompassHeading;
1094
                DebugOut.Analog[8]  = CompassHeading;
1091
                DebugOut.Analog[9]  = UBat;
1095
                DebugOut.Analog[9]  = UBat;
1092
                DebugOut.Analog[10] = RC_Quality;
1096
                DebugOut.Analog[10] = RC_Quality;
1093
                //DebugOut.Analog[11] = RC_Quality;
1097
                //DebugOut.Analog[11] = RC_Quality;
1094
                DebugOut.Analog[16] = Mean_AccTop;
1098
                //DebugOut.Analog[16] = Mean_AccTop;
1095
 
1099
 
1096
                /*    DebugOut.Analog[16] = motor_rx[0];
1100
                /*    DebugOut.Analog[16] = motor_rx[0];
1097
                DebugOut.Analog[17] = motor_rx[1];
1101
                DebugOut.Analog[17] = motor_rx[1];
1098
                DebugOut.Analog[18] = motor_rx[2];
1102
                DebugOut.Analog[18] = motor_rx[2];
1099
                DebugOut.Analog[19] = motor_rx[3];
1103
                DebugOut.Analog[19] = motor_rx[3];
1100
                DebugOut.Analog[20] = motor_rx[0] + motor_rx[1] + motor_rx[2] + motor_rx[3];
1104
                DebugOut.Analog[20] = motor_rx[0] + motor_rx[1] + motor_rx[2] + motor_rx[3];
1101
                DebugOut.Analog[20] /= 14;
1105
                DebugOut.Analog[20] /= 14;
1102
                DebugOut.Analog[21] = motor_rx[4];
1106
                DebugOut.Analog[21] = motor_rx[4];
1103
                DebugOut.Analog[22] = motor_rx[5];
1107
                DebugOut.Analog[22] = motor_rx[5];
1104
                DebugOut.Analog[23] = motor_rx[6];
1108
                DebugOut.Analog[23] = motor_rx[6];
1105
                DebugOut.Analog[24] = motor_rx[7];
1109
                DebugOut.Analog[24] = motor_rx[7];
1106
                DebugOut.Analog[25] = motor_rx[4] + motor_rx[5] + motor_rx[6] + motor_rx[7];
1110
                DebugOut.Analog[25] = motor_rx[4] + motor_rx[5] + motor_rx[6] + motor_rx[7];
1107
 
1111
 
1108
                DebugOut.Analog[9]  = Reading_GyroPitch;
1112
                DebugOut.Analog[9]  = Reading_GyroPitch;
1109
                DebugOut.Analog[9]  = SetPointHeight;
1113
                DebugOut.Analog[9]  = SetPointHeight;
1110
                DebugOut.Analog[10] = Reading_IntegralGyroYaw / 128;
1114
                DebugOut.Analog[10] = Reading_IntegralGyroYaw / 128;
1111
 
1115
 
1112
                DebugOut.Analog[10] = FCParam.Gyro_I;
1116
                DebugOut.Analog[10] = FCParam.Gyro_I;
1113
                DebugOut.Analog[10] = ParamSet.Gyro_I;
1117
                DebugOut.Analog[10] = ParamSet.Gyro_I;
1114
                DebugOut.Analog[9]  = CompassOffCourse;
1118
                DebugOut.Analog[9]  = CompassOffCourse;
1115
                DebugOut.Analog[10] = ThrustMixFraction;
1119
                DebugOut.Analog[10] = ThrustMixFraction;
1116
                DebugOut.Analog[3]  = HeightD * 32;
1120
                DebugOut.Analog[3]  = HeightD * 32;
1117
                DebugOut.Analog[4]  = HeightControlThrust;
1121
                DebugOut.Analog[4]  = HeightControlThrust;
1118
                */
1122
                */
1119
        }
1123
        }
1120
 
1124
 
1121
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1125
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1122
//  calculate control feedback from angle (gyro integral) and agular velocity (gyro signal)
1126
//  calculate control feedback from angle (gyro integral) and agular velocity (gyro signal)
1123
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1127
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1124
 
1128
 
1125
        if(Looping_Pitch) Reading_GyroPitch = Reading_GyroPitch * Gyro_P_Factor;
1129
        if(Looping_Pitch) Reading_GyroPitch = Reading_GyroPitch * Gyro_P_Factor;
1126
        else Reading_GyroPitch = IntegralPitch * Gyro_I_Factor + Reading_GyroPitch * Gyro_P_Factor;
1130
        else Reading_GyroPitch = IntegralPitch * Gyro_I_Factor + Reading_GyroPitch * Gyro_P_Factor;
1127
        if(Looping_Roll) Reading_GyroRoll = Reading_GyroRoll * Gyro_P_Factor;
1131
        if(Looping_Roll) Reading_GyroRoll = Reading_GyroRoll * Gyro_P_Factor;
1128
        else Reading_GyroRoll = IntegralRoll * Gyro_I_Factor + Reading_GyroRoll * Gyro_P_Factor;
1132
        else Reading_GyroRoll = IntegralRoll * Gyro_I_Factor + Reading_GyroRoll * Gyro_P_Factor;
1129
        Reading_GyroYaw = Reading_GyroYaw * (2 * Gyro_P_Factor) + IntegralYaw * Gyro_I_Factor / 2;
1133
        Reading_GyroYaw = Reading_GyroYaw * (2 * Gyro_P_Factor) + IntegralYaw * Gyro_I_Factor / 2;
1130
 
1134
 
1131
        DebugOut.Analog[25] = IntegralRoll * Gyro_I_Factor;
1135
        DebugOut.Analog[25] = IntegralRoll * Gyro_I_Factor;
1132
        DebugOut.Analog[31] = StickRoll;// / (26*Gyro_I_Factor);
1136
        DebugOut.Analog[31] = StickRoll;// / (26*Gyro_I_Factor);
1133
        DebugOut.Analog[28] = Reading_GyroRoll;
1137
        DebugOut.Analog[28] = Reading_GyroRoll;
1134
 
1138
 
1135
        // limit control feedback
1139
        // limit control feedback
1136
        #define MAX_SENSOR  2048
1140
        #define MAX_SENSOR  2048
1137
        if(Reading_GyroPitch >  MAX_SENSOR) Reading_GyroPitch =  MAX_SENSOR;
1141
        if(Reading_GyroPitch >  MAX_SENSOR) Reading_GyroPitch =  MAX_SENSOR;
1138
        if(Reading_GyroPitch < -MAX_SENSOR) Reading_GyroPitch = -MAX_SENSOR;
1142
        if(Reading_GyroPitch < -MAX_SENSOR) Reading_GyroPitch = -MAX_SENSOR;
1139
        if(Reading_GyroRoll  >  MAX_SENSOR) Reading_GyroRoll  =  MAX_SENSOR;
1143
        if(Reading_GyroRoll  >  MAX_SENSOR) Reading_GyroRoll  =  MAX_SENSOR;
1140
        if(Reading_GyroRoll  < -MAX_SENSOR) Reading_GyroRoll  = -MAX_SENSOR;
1144
        if(Reading_GyroRoll  < -MAX_SENSOR) Reading_GyroRoll  = -MAX_SENSOR;
1141
        if(Reading_GyroYaw   >  MAX_SENSOR) Reading_GyroYaw   =  MAX_SENSOR;
1145
        if(Reading_GyroYaw   >  MAX_SENSOR) Reading_GyroYaw   =  MAX_SENSOR;
1142
        if(Reading_GyroYaw   < -MAX_SENSOR) Reading_GyroYaw   = -MAX_SENSOR;
1146
        if(Reading_GyroYaw   < -MAX_SENSOR) Reading_GyroYaw   = -MAX_SENSOR;
1143
 
1147
 
1144
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1148
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1145
// Height Control
1149
// Height Control
1146
// The height control algorithm reduces the thrust but does not increase the thrust.
1150
// The height control algorithm reduces the thrust but does not increase the thrust.
1147
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1151
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1148
        // If height control is activated and no emergency landing is active
1152
        // If height control is activated and no emergency landing is active
1149
        if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL) && (!EmergencyLanding) )
1153
        if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL) && (!EmergencyLanding) )
1150
        {
1154
        {
1151
                int tmp_int;
1155
                int tmp_int;
1152
                // if height control is activated by an rc channel
1156
                // if height control is activated by an rc channel
1153
                if(ParamSet.GlobalConfig & CFG_HEIGHT_SWITCH)
1157
                if(ParamSet.GlobalConfig & CFG_HEIGHT_SWITCH)
1154
                {       // check if parameter is less than activation threshold
1158
                {       // check if parameter is less than activation threshold
1155
                        if(FCParam.MaxHeight < 50)
1159
                        if(FCParam.MaxHeight < 50)
1156
                        {
1160
                        {
1157
                                SetPointHeight = ReadingHeight - 20;  // update SetPoint with current reading
1161
                                SetPointHeight = ReadingHeight - 20;  // update SetPoint with current reading
1158
                                HeightControlActive = 0; // disable height control
1162
                                HeightControlActive = 0; // disable height control
1159
                        }
1163
                        }
1160
                        else HeightControlActive = 1; // enable height control
1164
                        else HeightControlActive = 1; // enable height control
1161
                }
1165
                }
1162
                else // no switchable height control
1166
                else // no switchable height control
1163
                {
1167
                {
1164
                        SetPointHeight = ((int16_t) ExternHeightValue + (int16_t) FCParam.MaxHeight) * (int16_t)ParamSet.Height_Gain - 20;
1168
                        SetPointHeight = ((int16_t) ExternHeightValue + (int16_t) FCParam.MaxHeight) * (int16_t)ParamSet.Height_Gain - 20;
1165
                        HeightControlActive = 1;
1169
                        HeightControlActive = 1;
1166
                }
1170
                }
1167
                // get current height
1171
                // get current height
1168
                h = ReadingHeight;
1172
                h = ReadingHeight;
1169
                // if current height is above the setpoint reduce thrust
1173
                // if current height is above the setpoint reduce thrust
1170
                if((h > SetPointHeight) && HeightControlActive)
1174
                if((h > SetPointHeight) && HeightControlActive)
1171
                {
1175
                {
1172
                        // ThrustMixFraction - HightDeviation * P  - HeightChange * D - ACCTop * DACC
1176
                        // ThrustMixFraction - HightDeviation * P  - HeightChange * D - ACCTop * DACC
1173
                        // height difference -> P control part
1177
                        // height difference -> P control part
1174
                        h = ((h - SetPointHeight) * (int16_t) FCParam.Height_P) / 16;
1178
                        h = ((h - SetPointHeight) * (int16_t) FCParam.Height_P) / 16;
1175
                        h = ThrustMixFraction - h; // reduce gas
1179
                        h = ThrustMixFraction - h; // reduce gas
1176
                        // height gradient --> D control part
1180
                        // height gradient --> D control part
1177
                        h -= (HeightD * FCParam.Height_D) / 8;  // D control part
1181
                        h -= (HeightD * FCParam.Height_D) / 8;  // D control part
1178
                        // acceleration sensor effect
1182
                        // acceleration sensor effect
1179
                        tmp_int = ((Reading_Integral_Top / 512) * (int32_t) FCParam.Height_ACC_Effect) / 32;
1183
                        tmp_int = ((Reading_Integral_Top / 512) * (int32_t) FCParam.Height_ACC_Effect) / 32;
1180
                        if(tmp_int > 50) tmp_int = 50;
1184
                        if(tmp_int > 50) tmp_int = 50;
1181
                        if(tmp_int < -50) tmp_int = -50;
1185
                        if(tmp_int < -50) tmp_int = -50;
1182
                        h -= tmp_int;
1186
                        h -= tmp_int;
1183
                        // update height control thrust
1187
                        // update height control thrust
1184
                        HeightControlThrust = (HeightControlThrust*15 + h) / 16;
1188
                        HeightControlThrust = (HeightControlThrust*15 + h) / 16;
1185
                        // limit thrust reduction
1189
                        // limit thrust reduction
1186
                        if(HeightControlThrust < ParamSet.Height_MinThrust)
1190
                        if(HeightControlThrust < ParamSet.Height_MinThrust)
1187
                        {
1191
                        {
1188
                                if(ThrustMixFraction >= ParamSet.Height_MinThrust) HeightControlThrust = ParamSet.Height_MinThrust;
1192
                                if(ThrustMixFraction >= ParamSet.Height_MinThrust) HeightControlThrust = ParamSet.Height_MinThrust;
1189
                                // allows landing also if thrust stick is reduced below min thrust on height control
1193
                                // allows landing also if thrust stick is reduced below min thrust on height control
1190
                                if(ThrustMixFraction < ParamSet.Height_MinThrust) HeightControlThrust = ThrustMixFraction;
1194
                                if(ThrustMixFraction < ParamSet.Height_MinThrust) HeightControlThrust = ThrustMixFraction;
1191
                        }
1195
                        }
1192
                        // limit thrust to stick setting
1196
                        // limit thrust to stick setting
1193
                        if(HeightControlThrust > ThrustMixFraction) HeightControlThrust = ThrustMixFraction;
1197
                        if(HeightControlThrust > ThrustMixFraction) HeightControlThrust = ThrustMixFraction;
1194
                        ThrustMixFraction = HeightControlThrust;
1198
                        ThrustMixFraction = HeightControlThrust;
1195
                }
1199
                }
1196
        }
1200
        }
1197
        // limit thrust to parameter setting
1201
        // limit thrust to parameter setting
1198
        if(ThrustMixFraction > ParamSet.Trust_Max - 20) ThrustMixFraction = ParamSet.Trust_Max - 20;
1202
        if(ThrustMixFraction > ParamSet.Trust_Max - 20) ThrustMixFraction = ParamSet.Trust_Max - 20;
1199
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1203
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1200
// + Mixer and PI-Controller
1204
// + Mixer and PI-Controller
1201
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1205
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-
 
1206
 
1202
        DebugOut.Analog[7] = ThrustMixFraction;
1207
        DebugOut.Analog[7] = ThrustMixFraction;
1203
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1208
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1204
// Yaw-Fraction
1209
// Yaw-Fraction
1205
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1210
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1206
    YawMixFraction = Reading_GyroYaw - SetPointYaw;     // yaw controller
1211
    YawMixFraction = Reading_GyroYaw - SetPointYaw;     // yaw controller
1207
 
1212
 
1208
        // limit YawMixFraction
1213
        // limit YawMixFraction
1209
    if(YawMixFraction > (ThrustMixFraction / 2)) YawMixFraction = ThrustMixFraction / 2;
1214
    if(YawMixFraction > (ThrustMixFraction / 2)) YawMixFraction = ThrustMixFraction / 2;
1210
    if(YawMixFraction < -(ThrustMixFraction / 2)) YawMixFraction = -(ThrustMixFraction / 2);
1215
    if(YawMixFraction < -(ThrustMixFraction / 2)) YawMixFraction = -(ThrustMixFraction / 2);
1211
    if(YawMixFraction > ((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = ((ParamSet.Trust_Max - ThrustMixFraction));
1216
    if(YawMixFraction > ((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = ((ParamSet.Trust_Max - ThrustMixFraction));
1212
    if(YawMixFraction < -((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = -((ParamSet.Trust_Max - ThrustMixFraction));
1217
    if(YawMixFraction < -((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = -((ParamSet.Trust_Max - ThrustMixFraction));
1213
    if(ThrustMixFraction < 20) YawMixFraction = 0;
1218
    if(ThrustMixFraction < 20) YawMixFraction = 0;
-
 
1219
       
1214
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1220
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1215
// Pitch-Axis
1221
// Pitch-Axis
1216
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1222
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1217
    DiffPitch = Reading_GyroPitch - (StickPitch - GPS_Pitch);   // get difference
1223
    DiffPitch = Reading_GyroPitch - (StickPitch - GPS_Pitch);   // get difference
1218
    if(Gyro_I_Factor) SumPitch += IntegralPitch * Gyro_I_Factor - (StickPitch - GPS_Pitch); // I-part for attitude control
1224
    if(Gyro_I_Factor) SumPitch += IntegralPitch * Gyro_I_Factor - (StickPitch - GPS_Pitch); // I-part for attitude control
1219
    else SumPitch += DiffPitch; // I-part for head holding
1225
    else SumPitch += DiffPitch; // I-part for head holding
1220
    if(SumPitch >  16000) SumPitch =  16000;
1226
    if(SumPitch >  16000) SumPitch =  16000;
1221
    if(SumPitch < -16000) SumPitch = -16000;
1227
    if(SumPitch < -16000) SumPitch = -16000;
1222
    pd_result = DiffPitch + Ki * SumPitch; // PI-controller for pitch
1228
    pd_result = DiffPitch + Ki * SumPitch; // PI-controller for pitch
1223
 
1229
 
1224
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
1230
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
1225
    if(pd_result >  tmp_int) pd_result =  tmp_int;
1231
    if(pd_result >  tmp_int) pd_result =  tmp_int;
1226
    if(pd_result < -tmp_int) pd_result = -tmp_int;
1232
    if(pd_result < -tmp_int) pd_result = -tmp_int;
1227
 
1233
       
1228
        // Motor Front
-
 
1229
    MotorValue = ThrustMixFraction + pd_result + YawMixFraction;          // Mixer
-
 
1230
        if ((MotorValue < 0)) MotorValue = 0;
-
 
1231
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
-
 
1232
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
-
 
1233
        Motor_Front = MotorValue;
1234
        PitchMixFraction = pd_result;  
1234
 
1235
       
1235
 // Motor Rear
-
 
1236
        MotorValue = ThrustMixFraction - pd_result + YawMixFraction;     // Mixer
-
 
1237
        if ((MotorValue < 0)) MotorValue = 0;
-
 
1238
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
-
 
1239
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
-
 
1240
        Motor_Rear = MotorValue;
-
 
1241
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1236
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1242
// Roll-Axis
1237
// Roll-Axis
1243
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1238
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1244
        DiffRoll = Reading_GyroRoll - (StickRoll  - GPS_Roll);  // get difference
1239
        DiffRoll = Reading_GyroRoll - (StickRoll  - GPS_Roll);  // get difference
1245
    if(Gyro_I_Factor) SumRoll += IntegralRoll * Gyro_I_Factor - (StickRoll  - GPS_Roll); // I-part for attitude control
1240
    if(Gyro_I_Factor) SumRoll += IntegralRoll * Gyro_I_Factor - (StickRoll  - GPS_Roll); // I-part for attitude control
1246
    else SumRoll += DiffRoll;  // I-part for head holding
1241
    else SumRoll += DiffRoll;  // I-part for head holding
1247
    if(SumRoll >  16000) SumRoll =  16000;
1242
    if(SumRoll >  16000) SumRoll =  16000;
1248
    if(SumRoll < -16000) SumRoll = -16000;
1243
    if(SumRoll < -16000) SumRoll = -16000;
1249
    pd_result = DiffRoll + Ki * SumRoll;         // PI-controller for roll
1244
    pd_result = DiffRoll + Ki * SumRoll;         // PI-controller for roll
1250
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
1245
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
1251
    if(pd_result >  tmp_int) pd_result =  tmp_int;
1246
    if(pd_result >  tmp_int) pd_result =  tmp_int;
1252
    if(pd_result < -tmp_int) pd_result = -tmp_int;
1247
    if(pd_result < -tmp_int) pd_result = -tmp_int;
-
 
1248
 
-
 
1249
    RollMixFraction = pd_result;
-
 
1250
 
-
 
1251
// Calculate Motor Mixes
-
 
1252
       
-
 
1253
        // Motor FrontLeft
-
 
1254
    MotorValue =        ThrustMixFraction
-
 
1255
                                        + PitchMixFraction
-
 
1256
                                        + RollMixFraction/2
-
 
1257
                                        - YawMixFraction;         // Mixer
-
 
1258
        if ((MotorValue < 0)) MotorValue = 0;
-
 
1259
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
-
 
1260
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
-
 
1261
        Motor_FrontLeft = MotorValue;
-
 
1262
 
-
 
1263
        // Motor FrontRight
-
 
1264
    MotorValue =        ThrustMixFraction
-
 
1265
                                        + PitchMixFraction
-
 
1266
                                        - RollMixFraction/2
-
 
1267
                                        + YawMixFraction;         // Mixer
-
 
1268
        if ((MotorValue < 0)) MotorValue = 0;
-
 
1269
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
-
 
1270
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
-
 
1271
        Motor_FrontRight = MotorValue;
-
 
1272
 
-
 
1273
        // Motor RearLeft
-
 
1274
        MotorValue =    ThrustMixFraction
-
 
1275
                                        - PitchMixFraction
-
 
1276
                                        + RollMixFraction/2
-
 
1277
                                        - YawMixFraction;     // Mixer
-
 
1278
        if ((MotorValue < 0)) MotorValue = 0;
-
 
1279
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
-
 
1280
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
-
 
1281
        Motor_RearLeft = MotorValue;
-
 
1282
        // Motor RearRight
-
 
1283
        MotorValue =    ThrustMixFraction
-
 
1284
                                        - PitchMixFraction
-
 
1285
                                        - RollMixFraction/2
-
 
1286
                                        + YawMixFraction;     // Mixer
-
 
1287
        if ((MotorValue < 0)) MotorValue = 0;
-
 
1288
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
-
 
1289
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
-
 
1290
        Motor_RearRight= MotorValue;
1253
 
1291
       
1254
    // Motor Left
1292
    // Motor Left
-
 
1293
    MotorValue =        ThrustMixFraction
-
 
1294
                                        + RollMixFraction
1255
    MotorValue = ThrustMixFraction + pd_result - YawMixFraction;  // Mixer
1295
                                        + YawMixFraction;  // Mixer
1256
        if ((MotorValue < 0)) MotorValue = 0;
1296
        if ((MotorValue < 0)) MotorValue = 0;
1257
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
1297
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
1258
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1298
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1259
    Motor_Left = MotorValue;
1299
    Motor_Left = MotorValue;
1260
 
1300
 
1261
 // Motor Right
1301
        // Motor Right
-
 
1302
        MotorValue =    ThrustMixFraction
-
 
1303
                                        - RollMixFraction
1262
        MotorValue = ThrustMixFraction - pd_result - YawMixFraction;  // Mixer
1304
                                        - YawMixFraction;  // Mixer
1263
        if ((MotorValue < 0)) MotorValue = 0;
1305
        if ((MotorValue < 0)) MotorValue = 0;
1264
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
1306
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
1265
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1307
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
1266
    Motor_Right = MotorValue;
1308
    Motor_Right = MotorValue;
1267
}
1309
}
1268
 
1310
 
1269
 
1311