Subversion Repositories FlightCtrl

Rev

Rev 1868 | Rev 2039 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1868 Rev 1980
Line 53... Line 53...
53
#include "eeprom.h"
53
#include "eeprom.h"
54
#include "uart0.h"
54
#include "uart0.h"
55
#include "rc.h"
55
#include "rc.h"
56
#include "attitude.h"
56
#include "attitude.h"
Line -... Line 57...
-
 
57
 
-
 
58
#define SLOW 1
-
 
59
 
-
 
60
#ifdef SLOW
-
 
61
#define NEUTRAL_PULSELENGTH 938
-
 
62
#define SERVOLIMIT 500
-
 
63
#define SCALE_FACTOR 4
-
 
64
#define CS2 ((1<<CS21)|(1<<CS20))
-
 
65
#else
-
 
66
#define NEUTRAL_PULSELENGTH 3750
-
 
67
#define SERVOLIMIT 2000
-
 
68
#define SCALE_FACTOR 16
-
 
69
#define CS2 (<<CS21)
-
 
70
#endif
-
 
71
 
-
 
72
#define MAX_SERVOS 8
-
 
73
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
-
 
74
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
-
 
75
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
57
 
76
 
58
volatile int16_t ServoPitchValue = 0;
77
//volatile uint8_t servoActive = 0;
59
volatile int16_t ServoRollValue = 0;
78
volatile uint8_t recalculateServoTimes = 0;
-
 
79
volatile uint16_t servoValues[MAX_SERVOS];
Line 60... Line 80...
60
volatile uint8_t ServoActive = 0;
80
volatile uint16_t previousManualValues[2];
61
 
81
 
Line 62... Line 82...
62
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
82
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
63
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
83
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
64
 
84
 
65
/*****************************************************
-
 
66
 *              Initialize Timer 2                  
-
 
67
 *****************************************************/
85
/*****************************************************
68
// The timer 2 is used to generate the PWM at PD7 (J7)
86
 *              Initialize Timer 2                  
Line 69... Line 87...
69
// to control a camera servo for pitch compensation.
87
 *****************************************************/
70
void timer2_init(void) {
88
void timer2_init(void) {
Line 76... Line 94...
76
        // set PD7 as output of the PWM for pitch servo
94
        // set PD7 as output of the PWM for pitch servo
77
        DDRD |= (1 << DDD7);
95
        DDRD |= (1 << DDD7);
78
        PORTD &= ~(1 << PORTD7); // set PD7 to low
96
        PORTD &= ~(1 << PORTD7); // set PD7 to low
Line 79... Line 97...
79
 
97
 
80
        DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
-
 
81
        //PORTC &= ~(1<<PORTC6);        // set PC6 to low
98
        DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
Line 82... Line 99...
82
        HEF4017R_ON; // enable reset
99
        HEF4017R_ON; // enable reset
83
 
-
 
84
        // Timer/Counter 2 Control Register A
100
 
85
 
101
        // Timer/Counter 2 Control Register A
86
        // Timer Mode is FastPWM with timer reload at OCR2A (Bits: WGM22 = 1, WGM21 = 1, WGM20 = 1)
102
        // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
87
        // PD7: Normal port operation, OC2A disconnected, (Bits: COM2A1 = 0, COM2A0 = 0)
103
        // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
88
        // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
104
        // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
89
        TCCR2A &= ~((1 << COM2A1) | (1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0));
105
        TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
90
        TCCR2A |= (1 << WGM21) | (1 << WGM20);
106
        TCCR2A |= (1 << COM2A1) | (1 << WGM21);
91
 
107
 
92
        // Timer/Counter 2 Control Register B
108
        // Timer/Counter 2 Control Register B
93
 
109
 
94
        // Set clock divider for timer 2 to SYSKLOCK/32 = 20MHz / 32 = 625 kHz
110
        // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
95
        // The timer increments from 0x00 to 0xFF with an update rate of 625 kHz or 1.6 us
111
        // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
96
        // hence the timer overflow interrupt frequency is 625 kHz / 256 = 2.44 kHz or 0.4096 ms
-
 
97
 
112
        // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
98
        // divider 32 (Bits: CS022 = 0, CS21 = 1, CS20 = 1)
113
 
99
        TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS22));
114
        TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
100
        TCCR2B |= (1 << CS21) | (1 << CS20) | (1 << WGM22);
115
        TCCR2B |= CS2;
101
 
116
 
102
        // Initialize the Timer/Counter 2 Register
117
        // Initialize the Timer/Counter 2 Register
103
        TCNT2 = 0;
118
        TCNT2 = 0;
104
 
119
 
105
        // Initialize the Output Compare Register A used for PWM generation on port PD7.
-
 
Line 106... Line 120...
106
        OCR2A = 255;
120
        // Initialize the Output Compare Register A used for signal generation on port PD7.
107
        TCCR2A |= (1 << COM2A1); // set or clear at compare match depends on value of COM2A0
121
        OCR2A = 255;
108
 
122
 
109
        // Timer/Counter 2 Interrupt Mask Register
123
        // Timer/Counter 2 Interrupt Mask Register
Line -... Line 124...
-
 
124
        // Enable timer output compare match A Interrupt only
-
 
125
        TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
-
 
126
        TIMSK2 |= (1 << OCIE2A);
110
        // Enable timer output compare match A Interrupt only
127
 
111
        TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
128
        for (uint8_t axis=0; axis<2; axis++)
Line -... Line 129...
-
 
129
          previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
112
        TIMSK2 |= (1 << OCIE2A);
130
       
113
 
131
        SREG = sreg;
114
        SREG = sreg;
132
}
115
}
-
 
116
 
133
 
117
void Servo_On(void) {
134
/*
118
        ServoActive = 1;
135
void servo_On(void) {
119
}
136
        servoActive = 1;
-
 
137
}
Line 120... Line 138...
120
 
138
void servo_Off(void) {
121
void Servo_Off(void) {
139
        servoActive = 0;
122
        ServoActive = 0;
140
        HEF4017R_ON; // enable reset
123
        HEF4017R_ON; // enable reset
-
 
124
}
-
 
125
 
-
 
126
/*****************************************************
-
 
127
 * Control Servo Position              
-
 
128
 *****************************************************/
-
 
129
ISR(TIMER2_COMPA_vect)
-
 
130
{
-
 
131
        // frame len 22.5 ms = 14063 * 1.6 us
-
 
132
        // stop pulse: 0.3 ms = 188 * 1.6 us
-
 
133
        // min servo pulse: 0.6 ms =  375 * 1.6 us
-
 
134
        // max servo pulse: 2.4 ms = 1500 * 1.6 us
-
 
135
        // resolution: 1500 - 375 = 1125 steps
-
 
136
 
-
 
137
#define PPM_STOPPULSE 188
-
 
138
#define PPM_FRAMELEN (1757 * .ServoRefresh) // 22.5 ms / 8 Channels = 2.8125ms per Servo Channel
-
 
139
#define MINSERVOPULSE 375
-
 
140
#define MAXSERVOPULSE 1500
-
 
141
#define SERVORANGE (MAXSERVOPULSE - MINSERVOPULSE)
-
 
142
 
-
 
143
#if defined(USE_NON_4017_SERVO_OUTPUTS) || defined(USE_4017_SERVO_OUTPUTS)
-
 
144
        static uint8_t isGeneratingPulse = 0;
-
 
145
        static uint16_t remainingPulseLength = 0;
-
 
146
        static uint16_t ServoFrameTime = 0;
-
 
147
        static uint8_t ServoIndex = 0;
-
 
148
 
-
 
149
#define MULTIPLIER 4
-
 
150
        static int16_t ServoPitchOffset = (255 / 2) * MULTIPLIER; // initial value near center position
-
 
151
        static int16_t ServoRollOffset = (255 / 2) * MULTIPLIER; // initial value near center position
-
 
152
#endif
-
 
153
#ifdef USE_NON_4017_SERVO_OUTPUTS 
-
 
154
        //---------------------------
-
 
155
        // Pitch servo state machine
-
 
156
        //---------------------------
-
 
157
        if (!isGeneratingPulse) { // pulse output complete on _next_ interrupt
-
 
158
                if(TCCR2A & (1<<COM2A0)) { // we are still outputting a high pulse
-
 
159
                        TCCR2A &= ~(1<<COM2A0); // make a low pulse on _next_ interrupt, and now
-
 
160
                        remainingPulseLength = MINSERVOPULSE + SERVORANGE / 2; // center position ~ 1.5ms
-
 
161
                        ServoPitchOffset = (ServoPitchOffset * 3 + (int16_t)dynamicParams.ServoPitchControl) / 4; // lowpass offset
-
 
162
                        if(staticParams.ServoPitchCompInvert & 0x01) {
-
 
163
                                // inverting movement of servo
-
 
164
                                // todo: function.
-
 
165
                                ServoPitchValue = ServoPitchOffset + (int16_t)(((int32_t)staticParams.ServoPitchComp (integralGyroPitch / 128L )) / (256L));
-
 
166
                        } else {
-
 
167
                                // todo: function.
-
 
168
                                // non inverting movement of servo
-
 
169
                                ServoPitchValue = ServoPitchOffset - (int16_t)(((int32_t)staticParams.ServoPitchComp (integralGyroPitch / 128L )) / (256L));
-
 
170
                        }
-
 
171
                        // limit servo value to its parameter range definition
-
 
172
                        if(ServoPitchValue < (int16_t)staticParams.ServoPitchMin) {
-
 
173
                                ServoPitchValue = (int16_t)staticParams.ServoPitchMin;
-
 
174
                        } else if(ServoPitchValue > (int16_t)staticParams.ServoPitchMax) {
-
 
175
                                ServoPitchValue = (int16_t)staticParams.ServoPitchMax;
-
 
176
                        }
-
 
177
 
-
 
178
                        remainingPulseLength = (ServoPitchValue - 256 / 2) * MULTIPLIER; // shift ServoPitchValue to center position
-
 
179
 
-
 
180
                        // range servo pulse width
-
 
181
                        if(remainingPulseLength > MAXSERVOPULSE ) remainingPulseLength = MAXSERVOPULSE; // upper servo pulse limit
-
 
182
                        else if(remainingPulseLength < MINSERVOPULSE) remainingPulseLength = MINSERVOPULSE; // lower servo pulse limit
-
 
183
 
-
 
184
                        // accumulate time for correct update rate
-
 
185
                        ServoFrameTime = remainingPulseLength;
-
 
186
                } else { // we had a high pulse
-
 
187
                        TCCR2A |= (1<<COM2A0); // make a low pulse
-
 
188
                        remainingPulseLength = PPM_FRAMELEN - ServoFrameTime;
-
 
189
                }
-
 
190
                // set pulse output active
-
 
191
                isGeneratingPulse = 1;
-
 
192
        } // EOF Pitch servo state machine
-
 
193
 
-
 
194
#elseif defined(USE_4017_SERVOS)
-
 
195
        //-----------------------------------------------------
-
 
196
        // PPM state machine, onboard demultiplexed by HEF4017
-
 
197
        //-----------------------------------------------------
-
 
198
        if(!isGeneratingPulse) { // pulse output complete
-
 
199
                if(TCCR2A & (1<<COM2A0)) { // we had a low pulse
-
 
200
                        TCCR2A &= ~(1<<COM2A0);// make a high pulse
-
 
201
 
-
 
202
                        if(ServoIndex == 0) { // if we are at the sync gap
-
 
203
                                remainingPulseLength = PPM_FRAMELEN - ServoFrameTime; // generate sync gap by filling time to full frame time
-
 
204
                                ServoFrameTime = 0; // reset servo frame time
-
 
205
                                HEF4017R_ON; // enable HEF4017 reset
-
 
206
                        } else { // servo channels
-
 
207
                                remainingPulseLength = MINSERVOPULSE + SERVORANGE/2; // center position ~ 1.5ms
-
 
208
                                switch(ServoIndex) { // map servo channels
-
 
209
                                        case 1: // Pitch Compensation Servo
-
 
210
                                        ServoPitchOffset = (ServoPitchOffset * 3 + (int16_t)dynamicParams.ServoPitchControl * MULTIPLIER) / 4; // lowpass offset
-
 
211
                                        ServoPitchValue = ServoPitchOffset; // offset (Range from 0 to 255 * 3 = 765)
-
 
212
                                        if(staticParams.ServoPitchCompInvert & 0x01) {
-
 
213
                                                // inverting movement of servo
-
 
214
                                                ServoPitchValue += (int16_t)( ( (int32_t)staticParams.ServoPitchComp * MULTIPLIER * (integralGyroPitch / 128L ) ) / (256L) );
-
 
215
                                        } else { // non inverting movement of servo
-
 
216
                                                ServoPitchValue -= (int16_t)( ( (int32_t)staticParams.ServoPitchComp * MULTIPLIER * (integralGyroPitch / 128L ) ) / (256L) );
-
 
217
                                        }
-
 
218
                                        // limit servo value to its parameter range definition
-
 
219
                                        if(ServoPitchValue < ((int16_t)staticParams.ServoPitchMin * MULTIPLIER)) {
-
 
220
                                                ServoPitchValue = (int16_t)staticParams.ServoPitchMin * MULTIPLIER;
-
 
221
                                        } else if(ServoPitchValue > ((int16_t)staticParams.ServoPitchMax * MULTIPLIER)) {
-
 
222
                                                ServoPitchValue = (int16_t)staticParams.ServoPitchMax * MULTIPLIER;
-
 
223
                                        }
-
 
224
                                        remainingPulseLength += ServoPitchValue - (256 / 2) * MULTIPLIER; // shift ServoPitchValue to center position
-
 
225
                                        ServoPitchValue /= MULTIPLIER;
-
 
226
                                        break;
-
 
227
 
-
 
228
                                        case 2: // Roll Compensation Servo
-
 
229
                                        ServoRollOffset = (ServoRollOffset * 3 + (int16_t)80 * MULTIPLIER) / 4; // lowpass offset
-
 
230
                                        ServoRollValue = ServoRollOffset; // offset (Range from 0 to 255 * 3 = 765)
-
 
231
                                        //if(staticParams.ServoRollCompInvert & 0x01)
-
 
232
                                        { // inverting movement of servo
-
 
233
                                                ServoRollValue += (int16_t)( ( (int32_t) 50 * MULTIPLIER * (integralGyroRoll / 128L ) ) / (256L) );
-
 
234
                                        }
-
 
235
                                        /*                                                      else
-
 
236
                                         {      // non inverting movement of servo
-
 
237
                                         ServoRollValue -= (int16_t)( ( (int32_t) 40 * MULTIPLIER * (IntegralGyroRoll / 128L ) ) / (256L) );
-
 
238
                                         }
-
 
239
                                         */// limit servo value to its parameter range definition
-
 
240
                                        if(ServoRollValue < ((int16_t)staticParams.ServoPitchMin * MULTIPLIER)) {
-
 
241
                                                ServoRollValue = (int16_t)staticParams.ServoPitchMin * MULTIPLIER;
-
 
242
                                        } else if(ServoRollValue > ((int16_t)staticParams.ServoPitchMax * MULTIPLIER)) {
-
 
243
                                                ServoRollValue = (int16_t)staticParams.ServoPitchMax * MULTIPLIER;
-
 
244
                                        }
-
 
245
                                        remainingPulseLength += ServoRollValue - (256 / 2) * MULTIPLIER; // shift ServoRollValue to center position
-
 
246
                                        ServoRollValue /= MULTIPLIER;
-
 
247
                                        break;
-
 
248
 
-
 
249
                                        default: // other servo channels
-
 
250
                                        remainingPulseLength += 2 * PPM_in[ServoIndex]; // add channel value, factor of 2 because timer 1 increments 3.2µs
-
 
251
                                        break;
-
 
252
                                }
-
 
253
                                // range servo pulse width
-
 
254
                                if(remainingPulseLength > MAXSERVOPULSE) remainingPulseLength = MAXSERVOPULSE; // upper servo pulse limit
-
 
255
                                else if(remainingPulseLength < MINSERVOPULSE) remainingPulseLength = MINSERVOPULSE; // lower servo pulse limit
-
 
256
                                // substract stop pulse width
-
 
257
                                remainingPulseLength -= PPM_STOPPULSE;
-
 
258
                                // accumulate time for correct sync gap
-
 
259
                                ServoFrameTime += remainingPulseLength;
-
 
260
                        }
-
 
261
                } else { // we had a high pulse
-
 
262
                        TCCR2A |= (1<<COM2A0); // make a low pulse
-
 
263
                        // set pulsewidth to stop pulse width
-
 
264
                        remainingPulseLength = PPM_STOPPULSE;
-
 
265
                        // accumulate time for correct sync gap
-
 
266
                        ServoFrameTime += remainingPulseLength;
-
 
267
                        if(ServoActive && RC_Quality > 180) HEF4017R_OFF; // disable HEF4017 reset
-
 
268
                        ServoIndex++; // change to next servo channel
-
 
Line -... Line 141...
-
 
141
}
-
 
142
*/
-
 
143
 
-
 
144
/*****************************************************
-
 
145
 * Control Servo Position              
-
 
146
 *****************************************************/
-
 
147
 
269
                        if(ServoIndex > staticParams.ServoRefresh) ServoIndex = 0; // reset to the sync gap
148
/*typedef struct {
-
 
149
  uint8_t manualControl;
-
 
150
  uint8_t compensationFactor;
-
 
151
  uint8_t minValue;
-
 
152
  uint8_t maxValue;
-
 
153
  uint8_t flags;
-
 
154
} servo_t;*/
-
 
155
 
-
 
156
int16_t calculateStabilizedServoAxis(uint8_t axis) {
270
                }
157
  int32_t value = angle[axis] / 64L; // between -500000 to 500000 extreme limits. Just about
-
 
158
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
-
 
159
  // That is a divisor of about 1<<14. Same conclusion as H&I.
-
 
160
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
271
                // set pulse output active
161
  value /= 256L;
272
                isGeneratingPulse = 1;
162
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
273
        }
163
        return -value;
-
 
164
  return value;
-
 
165
}
274
#endif
166
 
275
 
167
// With constant-speed limitation.
-
 
168
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
276
        /*
169
  int16_t diff = manualValue - previousManualValues[axis];
-
 
170
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
-
 
171
  if (diff > maxSpeed) diff = maxSpeed;
277
         * Cases:
172
  else if (diff < -maxSpeed) diff = -maxSpeed;
-
 
173
  manualValue = previousManualValues[axis] + diff;
-
 
174
  previousManualValues[axis] = manualValue;
-
 
175
  return manualValue;
-
 
176
}
-
 
177
 
-
 
178
// add stabilization and manual, apply soft position limits.
-
 
179
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
-
 
180
int16_t featuredServoValue(uint8_t axis) {
-
 
181
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
-
 
182
  value += calculateStabilizedServoAxis(axis);
-
 
183
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
278
         * 1) 255 + 128 <= remainingPulseLength --> delta = 255
184
  if (value < limit) value = limit;
-
 
185
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
-
 
186
  if (value > limit) value = limit;
-
 
187
  return value;
-
 
188
}
-
 
189
 
-
 
190
uint16_t servoValue(uint8_t axis) {
-
 
191
  int16_t value;
-
 
192
  if (axis<2) value = featuredServoValue(axis);
-
 
193
  else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8.
-
 
194
  // Shift out of the [0..255*SCALE_FACTOR] space 
-
 
195
  value -= (128 * SCALE_FACTOR);
279
         * 2) 255 <= remainingPulseLength < 255 + 128 --> delta = 255 - 128
196
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
-
 
197
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
-
 
198
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
-
 
199
  return value + NEUTRAL_PULSELENGTH;
280
         *    this is to avoid a too short delta on the last cycle, which would cause
200
}
-
 
201
 
-
 
202
void calculateServoValues(void) {
-
 
203
  if (!recalculateServoTimes) return;
-
 
204
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
-
 
205
        servoValues[axis] = servoValue(axis);
-
 
206
  }  
-
 
207
  recalculateServoTimes = 0;
281
         *    an interupt-on-interrupt condition and the loss of the last interrupt.
208
}
-
 
209
 
-
 
210
ISR(TIMER2_COMPA_vect) {
-
 
211
  static uint16_t remainingPulseTime;
-
 
212
  static uint8_t servoIndex = 0;
282
         * 3) remainingPulseLength < 255 --> delta = remainingPulseLength
213
  static uint16_t sumOfPulseTimes = 0;
283
         */
214
 
-
 
215
  if (!remainingPulseTime) {
284
#if defined(USE_NON_4017_SERVO_OUTPUTS) || defined(USE_4017_SERVO_OUTPUTS)
216
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
285
        uint8_t delta;
217
    if (servoIndex < staticParams.servoCount) {
-
 
218
      // There are more signals to output.
-
 
219
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
-
 
220
      servoIndex++;
286
        if (remainingPulseLength >= (255 + 128)) {
221
    } else {
-
 
222
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
-
 
223
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
-
 
224
      sumOfPulseTimes = servoIndex = 0;
-
 
225
      recalculateServoTimes = 1;
-
 
226
      HEF4017R_ON;
287
                delta = 255;
227
    }
-
 
228
  }
-
 
229
 
-
 
230
  // Schedule the next OCR2A event. The counter is already reset at this time.
-
 
231
  if (remainingPulseTime > 256+128) {
-
 
232
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again, 
-
 
233
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
288
        } else if (remainingPulseLength >= 255) {
234
    OCR2A = 255;
-
 
235
    TCCR2A &= ~(1<<COM2A0);
289
                delta = 255- 128;
236
    remainingPulseTime-=256;
-
 
237
  } else if (remainingPulseTime > 256) {
-
 
238
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard 
-
 
239
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
-
 
240
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
-
 
241
    remainingPulseTime-=128;
-
 
242
    OCR2A=127;
290
        } else {
243
  } else {