Subversion Repositories FlightCtrl

Rev

Rev 2022 | Rev 2099 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2022 Rev 2096
Line -... Line 1...
-
 
1
#include <avr/io.h>
1
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
2
#include <avr/pgmspace.h>
3
#include <avr/pgmspace.h>
-
 
4
#include <stdlib.h>
Line 3... Line 5...
3
 
5
 
4
#include "analog.h"
6
#include "analog.h"
5
#include "attitude.h"
7
#include "attitude.h"
-
 
8
#include "sensors.h"
-
 
9
#include "printf_P.h"
Line 6... Line 10...
6
#include "sensors.h"
10
#include "mk3mag.h"
7
 
11
 
Line 8... Line -...
8
// for Delay functions
-
 
9
#include "timer0.h"
-
 
10
 
-
 
11
// For DebugOut
12
// for Delay functions
12
#include "uart0.h"
13
#include "timer0.h"
Line 13... Line 14...
13
 
14
 
14
// For reading and writing acc. meter offsets.
15
// For reading and writing acc. meter offsets.
Line -... Line 16...
-
 
16
#include "eeprom.h"
-
 
17
 
-
 
18
// For debugOut
-
 
19
#include "output.h"
-
 
20
 
15
#include "eeprom.h"
21
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
16
 
22
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
17
// For DebugOut.Digital
23
 
18
#include "output.h"
24
const char* recal = ", recalibration needed.";
19
 
25
 
20
/*
26
/*
21
 * For each A/D conversion cycle, each analog channel is sampled a number of times
27
 * For each A/D conversion cycle, each analog channel is sampled a number of times
22
 * (see array channelsForStates), and the results for each channel are summed.
28
 * (see array channelsForStates), and the results for each channel are summed.
23
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
29
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
24
 * They are exported in the analog.h file - but please do not use them! The only
30
 * They are exported in the analog.h file - but please do not use them! The only
25
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
31
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
Line 26... Line 32...
26
 * the offsets with the DAC.
32
 * the offsets with the DAC.
27
 */
33
 */
28
volatile int16_t rawGyroSum[3];
34
volatile uint16_t sensorInputs[8];
29
volatile int16_t acc[3];
35
int16_t acc[3];
30
volatile int16_t filteredAcc[2] = { 0,0 };
36
int16_t filteredAcc[3] = { 0,0,0 };
31
 
37
 
32
/*
38
/*
33
 * These 4 exported variables are zero-offset. The "PID" ones are used
39
 * These 4 exported variables are zero-offset. The "PID" ones are used
-
 
40
 * in the attitude control as rotation rates. The "ATT" ones are for
-
 
41
 * integration to angles.
34
 * in the attitude control as rotation rates. The "ATT" ones are for
42
 */
-
 
43
int16_t gyro_PID[2];
-
 
44
int16_t gyro_ATT[2];
-
 
45
int16_t gyroD[2];
-
 
46
int16_t gyroDWindow[2][GYRO_D_WINDOW_LENGTH];
-
 
47
uint8_t gyroDWindowIdx = 0;
-
 
48
int16_t yawGyro;
Line 35... Line 49...
35
 * integration to angles.
49
int16_t magneticHeading;
36
 */
50
 
37
volatile int16_t gyro_PID[2];
51
int32_t groundPressure;
38
volatile int16_t gyro_ATT[2];
52
int16_t dHeight;
39
volatile int16_t gyroD[3];
53
 
40
volatile int16_t yawGyro;
-
 
41
 
-
 
Line -... Line 54...
-
 
54
uint32_t gyroActivity;
-
 
55
 
-
 
56
/*
-
 
57
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
-
 
58
 * standing still. They are used for adjusting the gyro and acc. meter values
-
 
59
 * to be centered on zero.
-
 
60
 */
-
 
61
 
-
 
62
sensorOffset_t gyroOffset;
-
 
63
sensorOffset_t accOffset;
-
 
64
sensorOffset_t gyroAmplifierOffset;
-
 
65
 
-
 
66
/*
-
 
67
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
-
 
68
 * If a sensor is used in an orientation where one but not both of the axes has
-
 
69
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
-
 
70
 * Transform:
-
 
71
 * pitch <- pp*pitch + pr*roll
-
 
72
 * roll  <- rp*pitch + rr*roll
-
 
73
 * Not reversed, GYRO_QUADRANT:
-
 
74
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
-
 
75
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
-
 
76
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
-
 
77
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
-
 
78
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
-
 
79
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
-
 
80
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
-
 
81
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
-
 
82
 * Reversed, GYRO_QUADRANT:
-
 
83
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
-
 
84
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
42
/*
85
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
43
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
86
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
-
 
87
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
-
 
88
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
-
 
89
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
-
 
90
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
-
 
91
 */
-
 
92
 
-
 
93
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
-
 
94
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
-
 
95
  // Pitch to Pitch part
-
 
96
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
-
 
97
  // Roll to Pitch part
-
 
98
  int8_t xy = rotationTab[(quadrant+2)%8];
-
 
99
  // Pitch to Roll part
-
 
100
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
-
 
101
  // Roll to Roll part
-
 
102
  int8_t yy = rotationTab[quadrant];
-
 
103
 
-
 
104
  int16_t xIn = result[0];
-
 
105
  result[0] = xx*xIn + xy*result[1];
-
 
106
  result[1] = yx*xIn + yy*result[1];
-
 
107
 
-
 
108
  if (quadrant & 1) {
Line 44... Line 109...
44
 * standing still. They are used for adjusting the gyro and acc. meter values
109
        // A rotation was used above, where the factors were too large by sqrt(2).
45
 * to be centered on zero.
110
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
46
 */
111
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
47
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
112
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
Line 48... Line 113...
48
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
113
        result[0] = (result[0]*11) >> 4;
49
 
114
        result[1] = (result[1]*11) >> 4;
Line 50... Line 115...
50
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
115
  }
51
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
116
}
-
 
117
 
-
 
118
/*
-
 
119
 * Air pressure
Line 52... Line 120...
52
 
120
 */
53
/*
121
volatile uint8_t rangewidth = 105;
-
 
122
 
-
 
123
// Direct from sensor, irrespective of range.
-
 
124
// volatile uint16_t rawAirPressure;
-
 
125
 
-
 
126
// Value of 2 samples, with range.
-
 
127
uint16_t simpleAirPressure;
-
 
128
 
Line 54... Line 129...
54
 * Air pressure
129
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
55
 */
130
int32_t filteredAirPressure;
Line 56... Line 131...
56
volatile uint8_t rangewidth = 106;
131
 
57
 
132
#define MAX_D_AIRPRESSURE_WINDOW_LENGTH 32
Line 58... Line 133...
58
// Direct from sensor, irrespective of range.
133
//int32_t lastFilteredAirPressure;
59
// volatile uint16_t rawAirPressure;
134
int16_t dAirPressureWindow[MAX_D_AIRPRESSURE_WINDOW_LENGTH];
60
 
135
uint8_t dWindowPtr = 0;
61
// Value of 2 samples, with range.
136
 
62
volatile uint16_t simpleAirPressure;
137
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
63
 
138
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
Line 64... Line 139...
64
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
139
int32_t windowedAirPressure;
65
volatile int32_t filteredAirPressure;
140
uint8_t windowPtr = 0;
66
 
141
 
67
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
-
 
68
volatile int32_t airPressureSum;
142
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
Line 69... Line 143...
69
 
143
int32_t airPressureSum;
70
// The number of samples summed into airPressureSum so far.
144
 
71
volatile uint8_t pressureMeasurementCount;
145
// The number of samples summed into airPressureSum so far.
72
 
146
uint8_t pressureMeasurementCount;
73
/*
147
 
-
 
148
/*
-
 
149
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
-
 
150
 * That is divided by 3 below, for a final 10.34 per volt.
Line 74... Line 151...
74
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
151
 * So the initial value of 100 is for 9.7 volts.
75
 * That is divided by 3 below, for a final 10.34 per volt.
152
 */
76
 * So the initial value of 100 is for 9.7 volts.
153
int16_t UBat = 100;
77
 */
154
 
Line 140... Line 217...
140
        PORTA = 0x00;
217
        PORTA = 0x00;
141
        // Digital Input Disable Register 0
218
        // Digital Input Disable Register 0
142
        // Disable digital input buffer for analog adc_channel pins
219
        // Disable digital input buffer for analog adc_channel pins
143
        DIDR0 = 0xFF;
220
        DIDR0 = 0xFF;
144
        // external reference, adjust data to the right
221
        // external reference, adjust data to the right
145
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
222
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
146
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
223
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
147
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
224
        ADMUX = (ADMUX & 0xE0);
148
        //Set ADC Control and Status Register A
225
        //Set ADC Control and Status Register A
149
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
226
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
150
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
-
 
151
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
227
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
152
        //Set ADC Control and Status Register B
228
        //Set ADC Control and Status Register B
153
        //Trigger Source to Free Running Mode
229
        //Trigger Source to Free Running Mode
154
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
230
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
-
 
231
 
-
 
232
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
155
        // Start AD conversion
233
          airPressureWindow[i] = 0;
-
 
234
        }
-
 
235
    windowedAirPressure = 0;
-
 
236
 
156
        analog_start();
237
        startAnalogConversionCycle();
-
 
238
 
157
        // restore global interrupt flags
239
        // restore global interrupt flags
158
        SREG = sreg;
240
        SREG = sreg;
159
}
241
}
Line -... Line 242...
-
 
242
 
-
 
243
uint16_t rawGyroValue(uint8_t axis) {
-
 
244
        return sensorInputs[AD_GYRO_PITCH-axis];
-
 
245
}
-
 
246
 
-
 
247
uint16_t rawAccValue(uint8_t axis) {
-
 
248
        return sensorInputs[AD_ACC_PITCH-axis];
-
 
249
}
160
 
250
 
161
void measureNoise(const int16_t sensor,
251
void measureNoise(const int16_t sensor,
162
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
252
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
163
        if (sensor > (int16_t) (*noiseMeasurement)) {
253
        if (sensor > (int16_t) (*noiseMeasurement)) {
164
                *noiseMeasurement = sensor;
254
                *noiseMeasurement = sensor;
Line 174... Line 264...
174
/*
264
/*
175
 * Min.: 0
265
 * Min.: 0
176
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
266
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
177
 */
267
 */
178
uint16_t getSimplePressure(int advalue) {
268
uint16_t getSimplePressure(int advalue) {
179
  return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
269
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
-
 
270
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
-
 
271
        return result;
180
}
272
}
Line 181... Line -...
181
 
-
 
182
/*
-
 
183
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
273
 
184
 * If a sensor is used in an orientation where one but not both of the axes has
274
void startAnalogConversionCycle(void) {
185
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
275
  analogDataReady = 0;
186
 */
276
 
187
void transformPRGyro(int16_t* result) {
277
  // Stop the sampling. Cycle is over.
188
  static const uint8_t tab[] = {1,1,0,0-1,-1,-1,0,1};
278
  for (uint8_t i = 0; i < 8; i++) {
189
  // Pitch to Pitch part
-
 
190
  int8_t pp = PR_GYROS_ORIENTATION_REVERSED ? tab[(GYRO_QUADRANT+4)%8] : tab[GYRO_QUADRANT];
-
 
191
  // Pitch to Roll part
-
 
192
  int8_t pr = tab[(GYRO_QUADRANT+2)%8];
279
    sensorInputs[i] = 0;
193
  // Roll to Roll part
-
 
194
  int8_t rp = PR_GYROS_ORIENTATION_REVERSED ? tab[(GYRO_QUADRANT+2)%8] : tab[(GYRO_QUADRANT+6)%8];
280
  }
195
  // Roll to Roll part
281
  adState = 0;
196
  int8_t rr = tab[GYRO_QUADRANT];
-
 
197
 
282
  adChannel = AD_GYRO_PITCH;
198
  int16_t pitchIn = result[PITCH];
-
 
199
 
-
 
200
  result[PITCH] = pp*result[PITCH] + pr*result[ROLL];
283
  ADMUX = (ADMUX & 0xE0) | adChannel;
201
  result[ROLL] = rp*pitchIn + rr*result[ROLL];
284
  startADC();
Line 202... Line 285...
202
}
285
}
203
 
286
 
204
/*****************************************************
287
/*****************************************************
205
 * Interrupt Service Routine for ADC
-
 
206
 * Runs at 312.5 kHz or 3.2 us. When all states are
288
 * Interrupt Service Routine for ADC
207
 * processed the interrupt is disabled and further
289
 * Runs at 312.5 kHz or 3.2 �s. When all states are
208
 * AD conversions are stopped.
290
 * processed further conversions are stopped.
209
 *****************************************************/
-
 
210
ISR(ADC_vect) {
-
 
211
        static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
-
 
212
        static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
-
 
213
        static uint16_t pressureAutorangingWait = 25;
-
 
214
        uint16_t rawAirPressure;
-
 
215
        uint8_t i, axis;
-
 
216
        int16_t newrange;
-
 
217
 
-
 
218
        // for various filters...
-
 
219
        int16_t tempOffsetGyro[2];
291
 *****************************************************/
220
 
-
 
221
        sensorInputs[ad_channel] += ADC;
-
 
222
 
-
 
223
        /*
-
 
224
         * Actually we don't need this "switch". We could do all the sampling into the
-
 
225
         * sensorInputs array first, and all the processing after the last sample.
-
 
226
         */
-
 
227
        switch (state++) {
292
ISR(ADC_vect) {
228
 
-
 
229
        case 8: // Z acc
-
 
230
                if (Z_ACC_REVERSED)
-
 
231
                        acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
-
 
232
                else
-
 
233
                        acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
-
 
234
 
-
 
235
                /*
-
 
236
        stronglyFilteredAcc[Z] =
293
  sensorInputs[adChannel] += ADC;
237
            (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
-
 
238
        */
-
 
239
 
-
 
240
                break;
-
 
241
 
294
  // set up for next state.
242
        case 11: // yaw gyro
-
 
243
                rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
295
  adState++;
244
                if (YAW_GYRO_REVERSED)
-
 
245
                  tempOffsetGyro[0] = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
-
 
246
                else
-
 
247
                  tempOffsetGyro[0] = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
-
 
248
                gyroD[YAW] = (gyroD[YAW] * (staticParams.DGyroFilter - 1) + (tempOffsetGyro[0] - yawGyro)) / staticParams.DGyroFilter;
-
 
249
                yawGyro = tempOffsetGyro[0];
-
 
250
                break;         
-
 
251
    case 13: // roll axis acc.
296
  if (adState < sizeof(channelsForStates)) {
252
 
-
 
253
            // We have no sensor installed...
-
 
254
            acc[PITCH] = acc[ROLL] = 0;
297
    adChannel = pgm_read_byte(&channelsForStates[adState]);
255
 
-
 
256
            for (axis=0; axis<2; axis++) {
-
 
257
        filteredAcc[axis] =
-
 
258
                    (filteredAcc[axis] * (staticParams.accFilter - 1) + acc[axis]) / staticParams.accFilter;
-
 
259
                measureNoise(acc[axis], &accNoisePeak[axis], 1);
-
 
260
            }
-
 
261
                break;
-
 
262
 
-
 
263
        case 14: // air pressure
-
 
264
                if (pressureAutorangingWait) {
-
 
265
                        //A range switch was done recently. Wait for steadying.
-
 
266
                        pressureAutorangingWait--;
-
 
267
                        DebugOut.Analog[27] = (uint16_t) OCR0A;
-
 
268
                        DebugOut.Analog[31] = simpleAirPressure;
-
 
269
                        break;
-
 
270
                }
-
 
271
 
-
 
272
                rawAirPressure = sensorInputs[AD_AIRPRESSURE];
-
 
273
                if (rawAirPressure < MIN_RAWPRESSURE) {
-
 
274
                        // value is too low, so decrease voltage on the op amp minus input, making the value higher.
-
 
275
                        newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
-
 
276
                        if (newrange > MIN_RANGES_EXTRAPOLATION) {
-
 
277
                                pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
-
 
278
                                OCR0A = newrange;
-
 
279
                        } else {
-
 
280
                                if (OCR0A) {
-
 
281
                                        OCR0A--;
-
 
282
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
283
                                }
-
 
284
                        }
-
 
285
                } else if (rawAirPressure > MAX_RAWPRESSURE) {
298
    // set adc muxer to next adChannel
286
                        // value is too high, so increase voltage on the op amp minus input, making the value lower.
-
 
287
                        // If near the end, make a limited increase
-
 
288
                        newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
-
 
289
                        if (newrange < MAX_RANGES_EXTRAPOLATION) {
-
 
290
                                pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
-
 
291
                                OCR0A = newrange;
-
 
292
                        } else {
299
    ADMUX = (ADMUX & 0xE0) | adChannel;
293
                                if (OCR0A < 254) {
-
 
294
                                        OCR0A++;
-
 
295
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
296
                                }
-
 
297
                        }
-
 
298
                }
-
 
299
 
-
 
300
                // Even if the sample is off-range, use it.
-
 
301
                simpleAirPressure = getSimplePressure(rawAirPressure);
-
 
302
                DebugOut.Analog[27] = (uint16_t) OCR0A;
-
 
303
                DebugOut.Analog[31] = simpleAirPressure;
-
 
304
 
-
 
305
                if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
-
 
306
                        // Danger: pressure near lower end of range. If the measurement saturates, the
-
 
307
                        // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
-
 
308
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
-
 
309
                        airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
-
 
310
                                        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
-
 
311
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
312
                } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
-
 
313
                        // Danger: pressure near upper end of range. If the measurement saturates, the
-
 
314
                        // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
-
 
315
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
-
 
316
                        airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
-
 
317
                                        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
300
    // after full cycle stop further interrupts
318
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
319
                } else {
-
 
320
                        // normal case.
-
 
321
                        // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
-
 
322
                        // The 2 cases above (end of range) are ignored for this.
-
 
323
                        DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
-
 
324
                        if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
-
 
325
                                airPressureSum += simpleAirPressure / 2;
-
 
326
                        else
-
 
327
                                airPressureSum += simpleAirPressure;
-
 
328
                }
-
 
329
 
-
 
330
                // 2 samples were added.
-
 
331
                pressureMeasurementCount += 2;
-
 
332
                if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
-
 
333
                        filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
-
 
334
                                        + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
-
 
335
                        pressureMeasurementCount = airPressureSum = 0;
-
 
336
                }
-
 
337
 
-
 
338
                break;
-
 
339
 
-
 
340
    case 16: // pitch and roll gyro.
-
 
341
            for (axis=0; axis<2; axis++) {
-
 
342
                tempOffsetGyro[axis] = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
-
 
343
                // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
-
 
344
                //    gyro with a wider range, and helps counter saturation at full control.
-
 
345
 
-
 
346
                if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
-
 
347
                  if (tempOffsetGyro[axis] < SENSOR_MIN_PITCHROLL) {
-
 
348
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
-
 
349
                                tempOffsetGyro[axis] = tempOffsetGyro[axis] * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
-
 
350
                        } else if (tempOffsetGyro[axis] > SENSOR_MAX_PITCHROLL) {
-
 
351
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
-
 
352
                                tempOffsetGyro[axis] = (tempOffsetGyro[axis] - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
-
 
353
                        } else {
-
 
354
                                DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
-
 
355
                        }
-
 
356
                }
-
 
357
 
-
 
358
                // 2) Apply sign and offset, scale before filtering.
-
 
359
                tempOffsetGyro[axis] = (tempOffsetGyro[axis] - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
360
            }
-
 
361
 
-
 
362
        // 2.1: Transform axis if configured to.
-
 
363
            transformPRGyro(tempOffsetGyro);
-
 
364
 
-
 
365
                // 3) Scale and filter.
-
 
366
            for (axis=0; axis<2; axis++) {
-
 
367
                tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.PIDGyroFilter - 1) + tempOffsetGyro[axis]) / staticParams.PIDGyroFilter;
-
 
368
 
-
 
369
                // 4) Measure noise.
-
 
370
                measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
-
 
371
 
-
 
372
                // 5) Differential measurement.
-
 
373
                gyroD[axis] = (gyroD[axis] * (staticParams.DGyroFilter - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.DGyroFilter;
-
 
374
 
-
 
375
                // 6) Done.
-
 
376
                gyro_PID[axis] = tempOffsetGyro[axis];
-
 
377
            }
-
 
378
 
-
 
379
                /*
-
 
380
                 * Now process the data for attitude angles.
-
 
381
                 */
-
 
382
            for (axis=0; axis<2; axis++) {
-
 
383
              tempOffsetGyro[axis] = (rawGyroSum[axis] - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
384
            }
-
 
385
 
-
 
386
            transformPRGyro(tempOffsetGyro);
-
 
387
           
-
 
388
            // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
-
 
389
            gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
-
 
390
            gyro_ATT[ROLL] = (gyro_ATT[ROLL] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL]) / staticParams.attitudeGyroFilter;
-
 
391
            break;
-
 
392
           
-
 
393
        case 17:
-
 
394
                // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
-
 
395
                // This is divided by 3 --> 10.34 counts per volt.
-
 
396
                UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
301
    startADC();
397
                DebugOut.Analog[20] = UBat;
-
 
398
                analogDataReady = 1; // mark
302
  } else {
399
                ADCycleCount++;
-
 
400
                // Stop the sampling. Cycle is over.
-
 
401
                state = 0;
-
 
402
                for (i = 0; i < 8; i++) {
303
    analogDataReady = 1;
403
                        sensorInputs[i] = 0;
-
 
404
                }
-
 
405
                break;
-
 
406
        default: {
304
    // do not restart ADC converter. 
Line 407... Line 305...
407
        } // do nothing.
305
  }
408
        }
306
}
409
 
-
 
410
        // set up for next state.
-
 
411
        ad_channel = pgm_read_byte(&channelsForStates[state]);
-
 
412
        // ad_channel = channelsForStates[state];
-
 
413
 
-
 
414
        // set adc muxer to next ad_channel
-
 
415
        ADMUX = (ADMUX & 0xE0) | ad_channel;
-
 
416
        // after full cycle stop further interrupts
307
 
Line -... Line 308...
-
 
308
void measureGyroActivity(int16_t newValue) {
417
        if (state)
309
  gyroActivity += (uint32_t)((int32_t)newValue * newValue);
418
                analog_start();
310
}
-
 
311
 
419
}
312
#define GADAMPING 6
-
 
313
void dampenGyroActivity(void) {
-
 
314
  static uint8_t cnt = 0;
-
 
315
  if (++cnt >= IMUConfig.gyroActivityDamping) {
-
 
316
    cnt = 0;
-
 
317
    gyroActivity *= (uint32_t)((1L<<GADAMPING)-1);
-
 
318
    gyroActivity >>= GADAMPING;
420
 
319
  }
-
 
320
}
-
 
321
/*
-
 
322
void dampenGyroActivity(void) {
-
 
323
  if (gyroActivity >= 2000) {
Line -... Line 324...
-
 
324
    gyroActivity -= 2000;
-
 
325
  }
-
 
326
}
-
 
327
*/
-
 
328
 
-
 
329
void analog_updateGyros(void) {
-
 
330
  // for various filters...
-
 
331
  int16_t tempOffsetGyro[2], tempGyro;
-
 
332
 
-
 
333
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
-
 
334
  for (uint8_t axis=0; axis<2; axis++) {
-
 
335
    tempGyro = rawGyroValue(axis);
-
 
336
    /*
-
 
337
     * Process the gyro data for the PID controller.
-
 
338
     */
-
 
339
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
-
 
340
    //    gyro with a wider range, and helps counter saturation at full control.
-
 
341
   
-
 
342
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
-
 
343
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
-
 
344
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
-
 
345
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
-
 
346
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
-
 
347
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
-
 
348
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
-
 
349
      }
-
 
350
    }
-
 
351
 
-
 
352
    // 2) Apply sign and offset, scale before filtering.
-
 
353
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
354
  }
-
 
355
 
-
 
356
  // 2.1: Transform axes.
-
 
357
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR);
-
 
358
 
-
 
359
  for (uint8_t axis=0; axis<2; axis++) {
-
 
360
        // 3) Filter.
-
 
361
    tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant;
-
 
362
 
-
 
363
    // 4) Measure noise.
-
 
364
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
-
 
365
 
-
 
366
    // 5) Differential measurement.
-
 
367
    // gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
-
 
368
    int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis];
-
 
369
    gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx];
-
 
370
    gyroD[axis] += diff;
-
 
371
    gyroDWindow[axis][gyroDWindowIdx] = diff;
-
 
372
 
-
 
373
    // 6) Done.
-
 
374
    gyro_PID[axis] = tempOffsetGyro[axis];
-
 
375
 
-
 
376
    // Prepare tempOffsetGyro for next calculation below...
-
 
377
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
378
  }
-
 
379
 
421
void analog_calibrate(void) {
380
  /*
-
 
381
   * Now process the data for attitude angles.
-
 
382
   */
-
 
383
   rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR);
-
 
384
 
-
 
385
   dampenGyroActivity();
-
 
386
   gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
-
 
387
   gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
-
 
388
 
-
 
389
   /*
-
 
390
   measureGyroActivity(tempOffsetGyro[PITCH]);
-
 
391
   measureGyroActivity(tempOffsetGyro[ROLL]);
-
 
392
   */
-
 
393
   measureGyroActivity(gyroD[PITCH]);
-
 
394
   measureGyroActivity(gyroD[ROLL]);
-
 
395
 
-
 
396
   // We measure activity of yaw by plain gyro value and not d/dt, because:
-
 
397
   // - There is no drift correction anyway
-
 
398
   // - Effect of steady circular flight would vanish (it should have effect).
-
 
399
   // int16_t diff = yawGyro;
-
 
400
   // Yaw gyro.
-
 
401
  if (IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
-
 
402
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
-
 
403
  else
-
 
404
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
-
 
405
 
-
 
406
  // diff -= yawGyro;
-
 
407
  // gyroD[YAW] -= gyroDWindow[YAW][gyroDWindowIdx];
-
 
408
  // gyroD[YAW] += diff;
-
 
409
  // gyroDWindow[YAW][gyroDWindowIdx] = diff;
-
 
410
 
-
 
411
  // gyroActivity += (uint32_t)(abs(yawGyro)* IMUConfig.yawRateFactor);
-
 
412
  measureGyroActivity(yawGyro);
Line 422... Line 413...
422
#define GYRO_OFFSET_CYCLES 32
413
 
423
        uint8_t i, axis;
414
  if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) {
424
        int32_t deltaOffsets[3] = { 0, 0, 0 };
415
      gyroDWindowIdx = 0;
-
 
416
  }
-
 
417
}
-
 
418
 
-
 
419
void analog_updateAccelerometers(void) {
425
 
420
  // Pitch and roll axis accelerations.
-
 
421
  for (uint8_t axis=0; axis<2; axis++) {
426
        gyro_calibrate();
422
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
427
 
423
  }
428
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
424
 
-
 
425
  rotate(acc, IMUConfig.accQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_ACC_XY);
-
 
426
  for(uint8_t axis=0; axis<3; axis++) {
-
 
427
    filteredAcc[axis] = (filteredAcc[axis] * (IMUConfig.accFilterConstant - 1) + acc[axis]) / IMUConfig.accFilterConstant;
-
 
428
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
-
 
429
  }
Line -... Line 430...
-
 
430
 
-
 
431
  // Z acc.
-
 
432
  if (IMUConfig.imuReversedFlags & 8)
-
 
433
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
-
 
434
  else
-
 
435
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
-
 
436
 
-
 
437
  // debugOut.analog[29] = acc[Z];
-
 
438
}
-
 
439
 
-
 
440
void analog_updateAirPressure(void) {
-
 
441
  static uint16_t pressureAutorangingWait = 25;
-
 
442
  uint16_t rawAirPressure;
429
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
443
  int16_t newrange;
-
 
444
  // air pressure
-
 
445
  if (pressureAutorangingWait) {
-
 
446
    //A range switch was done recently. Wait for steadying.
430
                delay_ms_Mess(20);
447
    pressureAutorangingWait--;
-
 
448
  } else {
-
 
449
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
-
 
450
    if (rawAirPressure < MIN_RAWPRESSURE) {
-
 
451
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
-
 
452
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
-
 
453
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
-
 
454
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
-
 
455
        OCR0A = newrange;
-
 
456
      } else {
-
 
457
        if (OCR0A) {
-
 
458
          OCR0A--;
-
 
459
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
460
        }
-
 
461
      }
-
 
462
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
-
 
463
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
-
 
464
      // If near the end, make a limited increase
431
                for (axis = PITCH; axis <= YAW; axis++) {
465
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
432
                        deltaOffsets[axis] += rawGyroSum[axis];
466
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
-
 
467
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
-
 
468
        OCR0A = newrange;
-
 
469
      } else {
-
 
470
        if (OCR0A < 254) {
-
 
471
          OCR0A++;
-
 
472
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
473
        }
-
 
474
      }
-
 
475
    }
-
 
476
   
-
 
477
    // Even if the sample is off-range, use it.
-
 
478
    simpleAirPressure = getSimplePressure(rawAirPressure);
-
 
479
    debugOut.analog[6] = rawAirPressure;
-
 
480
    debugOut.analog[7] = simpleAirPressure;
-
 
481
   
-
 
482
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
-
 
483
      // Danger: pressure near lower end of range. If the measurement saturates, the
-
 
484
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
-
 
485
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
-
 
486
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
-
 
487
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
-
 
488
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
489
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
-
 
490
      // Danger: pressure near upper end of range. If the measurement saturates, the
-
 
491
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
-
 
492
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
-
 
493
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
-
 
494
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
-
 
495
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
496
    } else {
-
 
497
      // normal case.
-
 
498
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
-
 
499
      // The 2 cases above (end of range) are ignored for this.
-
 
500
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
-
 
501
          airPressureSum += simpleAirPressure;
-
 
502
    }
-
 
503
   
-
 
504
    // 2 samples were added.
-
 
505
    pressureMeasurementCount += 2;
-
 
506
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
-
 
507
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
-
 
508
 
-
 
509
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
-
 
510
      airPressureSum += simpleAirPressure >> 2;
-
 
511
 
-
 
512
      uint32_t lastFilteredAirPressure = filteredAirPressure;
-
 
513
 
-
 
514
      if (!staticParams.airpressureWindowLength) {
-
 
515
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
-
 
516
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
-
 
517
      } else {
-
 
518
          // use windowed.
-
 
519
          windowedAirPressure += simpleAirPressure;
-
 
520
          windowedAirPressure -= airPressureWindow[windowPtr];
-
 
521
          airPressureWindow[windowPtr++] = simpleAirPressure;
-
 
522
          if (windowPtr >= staticParams.airpressureWindowLength) windowPtr = 0;
-
 
523
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
-
 
524
      }
-
 
525
 
-
 
526
      // positive diff of pressure
-
 
527
      int16_t diff = filteredAirPressure - lastFilteredAirPressure;
-
 
528
      // is a negative diff of height.
-
 
529
      dHeight -= diff;
-
 
530
      // remove old sample (fifo) from window.
Line -... Line 531...
-
 
531
      dHeight += dAirPressureWindow[dWindowPtr];
-
 
532
      dAirPressureWindow[dWindowPtr++] = diff;
433
                }
533
      if (dWindowPtr >= staticParams.airpressureDWindowLength) dWindowPtr = 0;
434
        }
534
      pressureMeasurementCount = airPressureSum = 0;
-
 
535
    }
Line 435... Line 536...
435
 
536
  }
436
        for (axis = PITCH; axis <= YAW; axis++) {
537
}
437
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
538
 
438
                // DebugOut.Analog[20 + axis] = gyroOffset[axis];
-
 
439
        }
539
void analog_updateBatteryVoltage(void) {
440
 
540
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
-
 
541
  // This is divided by 3 --> 10.34 counts per volt.
441
        // Noise is relativ to offset. So, reset noise measurements when changing offsets.
542
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
-
 
543
}
-
 
544
 
Line -... Line 545...
-
 
545
void analog_update(void) {
-
 
546
  analog_updateGyros();
-
 
547
  analog_updateAccelerometers();
-
 
548
  analog_updateAirPressure();
-
 
549
  analog_updateBatteryVoltage();
-
 
550
#ifdef USE_MK3MAG
-
 
551
  magneticHeading = volatileMagneticHeading;
-
 
552
#endif
-
 
553
}
-
 
554
 
-
 
555
void analog_setNeutral() {
-
 
556
  gyro_init();
-
 
557
 
-
 
558
  if (gyroOffset_readFromEEProm()) {
-
 
559
    printf("gyro offsets invalid%s",recal);
-
 
560
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
-
 
561
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
-
 
562
  }
-
 
563
 
-
 
564
  if (accOffset_readFromEEProm()) {
-
 
565
    printf("acc. meter offsets invalid%s",recal);
-
 
566
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
-
 
567
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
-
 
568
  }
-
 
569
 
-
 
570
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
442
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
571
  for (uint8_t i=PITCH; i<=ROLL; i++) {
-
 
572
          gyroNoisePeak[i] = 0;
-
 
573
          accNoisePeak[i] = 0;
-
 
574
          gyroD[i] = 0;
-
 
575
          for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) {
-
 
576
                  gyroDWindow[i][j] = 0;
-
 
577
          }
-
 
578
  }
-
 
579
  // Setting offset values has an influence in the analog.c ISR
-
 
580
  // Therefore run measurement for 100ms to achive stable readings
-
 
581
  delay_ms_with_adc_measurement(100, 0);
-
 
582
 
-
 
583
  gyroActivity = 0;
-
 
584
}
-
 
585
 
-
 
586
void analog_calibrateGyros(void) {
-
 
587
#define GYRO_OFFSET_CYCLES 32
-
 
588
  uint8_t i, axis;
-
 
589
  int32_t offsets[3] = { 0, 0, 0 };
-
 
590
  gyro_calibrate();
-
 
591
 
-
 
592
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
-
 
593
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
-
 
594
    delay_ms_with_adc_measurement(10, 1);
-
 
595
    for (axis = PITCH; axis <= YAW; axis++) {
-
 
596
      offsets[axis] += rawGyroValue(axis);
-
 
597
    }
-
 
598
  }
-
 
599
 
-
 
600
  for (axis = PITCH; axis <= YAW; axis++) {
443
 
601
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
Line 444... Line 602...
444
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
602
 
445
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
603
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
446
        accOffset[Z] = GetParamWord(PID_ACC_Z);
604
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
447
 
605
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
448
        // Rough estimate. Hmm no nothing happens at calibration anyway.
606
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
449
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
607
  }
450
        // pressureMeasurementCount = 0;
608
 
451
 
609
  gyroOffset_writeToEEProm();  
452
        delay_ms_Mess(100);
610
  startAnalogConversionCycle();
453
}
-
 
454
 
611
}
455
/*
612
 
456
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
-
 
457
 * Does not (!} update the local variables. This must be done with a
-
 
458
 * call to analog_calibrate() - this always (?) is done by the caller
613
/*
459
 * anyway. There would be nothing wrong with updating the variables
614
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
460
 * directly from here, though.
615
 * Does not (!} update the local variables. This must be done with a
461
 */
616
 * call to analog_calibrate() - this always (?) is done by the caller
462
void analog_calibrateAcc(void) {
617
 * anyway. There would be nothing wrong with updating the variables
-
 
618
 * directly from here, though.
463
#define ACC_OFFSET_CYCLES 10
619
 */
-
 
620
void analog_calibrateAcc(void) {
-
 
621
#define ACC_OFFSET_CYCLES 32
-
 
622
  uint8_t i, axis;
-
 
623
  int32_t offsets[3] = { 0, 0, 0 };
-
 
624
 
-
 
625
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
-
 
626
    delay_ms_with_adc_measurement(10, 1);
-
 
627
    for (axis = PITCH; axis <= YAW; axis++) {
-
 
628
      offsets[axis] += rawAccValue(axis);
-
 
629
    }
-
 
630
  }
-
 
631
 
-
 
632
  for (axis = PITCH; axis <= YAW; axis++) {
-
 
633
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
-
 
634
    int16_t min,max;
-
 
635
    if (axis==Z) {
-
 
636
        if (IMUConfig.imuReversedFlags & IMU_REVERSE_ACC_Z) {
-
 
637
        // TODO: This assumes a sensitivity of +/- 2g.
-
 
638
                min = (256-200) * ACC_OVERSAMPLING_Z;
-
 
639
                        max = (256+200) * ACC_OVERSAMPLING_Z;
-
 
640
        } else {
464
        /*
641
        // TODO: This assumes a sensitivity of +/- 2g.
Line 465... Line 642...
465
        uint8_t i, axis;
642
                min = (768-200) * ACC_OVERSAMPLING_Z;
466
        int32_t deltaOffset[3] = { 0, 0, 0 };
643
                        max = (768+200) * ACC_OVERSAMPLING_Z;
-
 
644
        }
-
 
645
    } else {
467
        int16_t filteredDelta;
646
        min = (512-200) * ACC_OVERSAMPLING_XY;
468
        // int16_t pressureDiff, savedRawAirPressure;
647
        max = (512+200) * ACC_OVERSAMPLING_XY;
469
 
648
    }
Line 470... Line 649...
470
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
649
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
471
                delay_ms_Mess(10);
-
 
472
                for (axis = PITCH; axis <= YAW; axis++) {
650
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
473
                        deltaOffset[axis] += acc[axis];
-
 
474
                }
651
    }
475
        }
-
 
476
 
-
 
477
        for (axis = PITCH; axis <= YAW; axis++) {
-
 
478
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
652
  }
479
                                / ACC_OFFSET_CYCLES;
-
 
480
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
-
 
481
        }
653
 
482
 
-
 
483
        // Save ACC neutral settings to eeprom
-
 
484
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
-
 
485
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
-
 
486
        SetParamWord(PID_ACC_Z, accOffset[Z]);
654
  accOffset_writeToEEProm();
487
 
-
 
488
        // Noise is relative to offset. So, reset noise measurements when
-
 
489
        // changing offsets.
-
 
490
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
655
  startAnalogConversionCycle();
491
 
-
 
492
        // Setting offset values has an influence in the analog.c ISR
-
 
493
        // Therefore run measurement for 100ms to achive stable readings
-
 
494
        delay_ms_Mess(100);
656
}
495
 
-
 
496
        */
-
 
497
        // Set the feedback so that air pressure ends up in the middle of the range.
-
 
498
        // (raw pressure high --> OCR0A also high...)
-
 
499
        /*
-
 
500
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
-
 
501
         delay_ms_Mess(1000);
-
 
502
 
-
 
503
         pressureDiff = 0;
-
 
504
         // DebugOut.Analog[16] = rawAirPressure;
657
 
505
 
658
void analog_setGround() {
506
         #define PRESSURE_CAL_CYCLE_COUNT 5
-
 
507
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
659
  groundPressure = filteredAirPressure;
508
         savedRawAirPressure = rawAirPressure;
660
}
509
         OCR0A+=2;
661
 
-
 
662
int32_t analog_getHeight(void) {
510
         delay_ms_Mess(500);
663
  return groundPressure - filteredAirPressure;