Subversion Repositories FlightCtrl

Rev

Rev 1963 | Rev 1965 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1963 Rev 1964
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
18
// + eindeutig als Ursprung verlinkt und genannt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
54
#include <avr/pgmspace.h>
55
 
55
 
56
#include "analog.h"
56
#include "analog.h"
57
#include "attitude.h"
57
#include "attitude.h"
58
#include "sensors.h"
58
#include "sensors.h"
-
 
59
#include "printf_P.h"
59
 
60
 
60
// for Delay functions
61
// for Delay functions
61
#include "timer0.h"
62
#include "timer0.h"
62
 
63
 
63
// For debugOut
64
// For debugOut
64
#include "uart0.h"
65
#include "uart0.h"
65
 
66
 
66
// For reading and writing acc. meter offsets.
67
// For reading and writing acc. meter offsets.
67
#include "eeprom.h"
68
#include "eeprom.h"
68
 
69
 
69
// For debugOut.digital
70
// For debugOut.digital
70
#include "output.h"
71
#include "output.h"
71
 
72
 
72
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
73
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
74
 
75
 
75
/*
76
/*
76
 * For each A/D conversion cycle, each analog channel is sampled a number of times
77
 * For each A/D conversion cycle, each analog channel is sampled a number of times
77
 * (see array channelsForStates), and the results for each channel are summed.
78
 * (see array channelsForStates), and the results for each channel are summed.
78
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
79
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
79
 * They are exported in the analog.h file - but please do not use them! The only
80
 * They are exported in the analog.h file - but please do not use them! The only
80
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
81
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
81
 * the offsets with the DAC.
82
 * the offsets with the DAC.
82
 */
83
 */
83
volatile uint16_t sensorInputs[8];
84
volatile uint16_t sensorInputs[8];
84
volatile int16_t rawGyroSum[3];
85
volatile int16_t rawGyroSum[3];
85
volatile int16_t acc[3];
86
volatile int16_t acc[3];
86
volatile int16_t filteredAcc[2] = { 0,0 };
87
volatile int16_t filteredAcc[2] = { 0,0 };
87
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
88
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
88
 
89
 
89
/*
90
/*
90
 * These 4 exported variables are zero-offset. The "PID" ones are used
91
 * These 4 exported variables are zero-offset. The "PID" ones are used
91
 * in the attitude control as rotation rates. The "ATT" ones are for
92
 * in the attitude control as rotation rates. The "ATT" ones are for
92
 * integration to angles.
93
 * integration to angles.
93
 */
94
 */
94
volatile int16_t gyro_PID[2];
95
volatile int16_t gyro_PID[2];
95
volatile int16_t gyro_ATT[2];
96
volatile int16_t gyro_ATT[2];
96
volatile int16_t gyroD[2];
97
volatile int16_t gyroD[2];
97
volatile int16_t yawGyro;
98
volatile int16_t yawGyro;
98
 
99
 
99
/*
100
/*
100
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
101
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
101
 * standing still. They are used for adjusting the gyro and acc. meter values
102
 * standing still. They are used for adjusting the gyro and acc. meter values
102
 * to be centered on zero.
103
 * to be centered on zero.
103
 */
104
 */
104
 
105
 
105
sensorOffset_t gyroOffset;
106
sensorOffset_t gyroOffset;
106
sensorOffset_t accOffset;
107
sensorOffset_t accOffset;
107
 
108
 
108
/*
109
/*
109
 * This allows some experimentation with the gyro filters.
110
 * This allows some experimentation with the gyro filters.
110
 * Should be replaced by #define's later on...
111
 * Should be replaced by #define's later on...
111
 */
112
 */
112
 
113
 
113
/*
114
/*
114
 * Air pressure
115
 * Air pressure
115
 */
116
 */
116
volatile uint8_t rangewidth = 106;
117
volatile uint8_t rangewidth = 106;
117
 
118
 
118
// Direct from sensor, irrespective of range.
119
// Direct from sensor, irrespective of range.
119
// volatile uint16_t rawAirPressure;
120
// volatile uint16_t rawAirPressure;
120
 
121
 
121
// Value of 2 samples, with range.
122
// Value of 2 samples, with range.
122
volatile uint16_t simpleAirPressure;
123
volatile uint16_t simpleAirPressure;
123
 
124
 
124
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
125
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
125
volatile int32_t filteredAirPressure;
126
volatile int32_t filteredAirPressure;
126
 
127
 
127
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
128
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
128
volatile int32_t airPressureSum;
129
volatile int32_t airPressureSum;
129
 
130
 
130
// The number of samples summed into airPressureSum so far.
131
// The number of samples summed into airPressureSum so far.
131
volatile uint8_t pressureMeasurementCount;
132
volatile uint8_t pressureMeasurementCount;
132
 
133
 
133
/*
134
/*
134
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
135
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
135
 * That is divided by 3 below, for a final 10.34 per volt.
136
 * That is divided by 3 below, for a final 10.34 per volt.
136
 * So the initial value of 100 is for 9.7 volts.
137
 * So the initial value of 100 is for 9.7 volts.
137
 */
138
 */
138
volatile int16_t UBat = 100;
139
volatile int16_t UBat = 100;
139
 
140
 
140
/*
141
/*
141
 * Control and status.
142
 * Control and status.
142
 */
143
 */
143
volatile uint16_t ADCycleCount = 0;
144
volatile uint16_t ADCycleCount = 0;
144
volatile uint8_t analogDataReady = 1;
145
volatile uint8_t analogDataReady = 1;
145
 
146
 
146
/*
147
/*
147
 * Experiment: Measuring vibration-induced sensor noise.
148
 * Experiment: Measuring vibration-induced sensor noise.
148
 */
149
 */
149
volatile uint16_t gyroNoisePeak[2];
150
volatile uint16_t gyroNoisePeak[2];
150
volatile uint16_t accNoisePeak[2];
151
volatile uint16_t accNoisePeak[2];
151
 
152
 
152
// ADC channels
153
// ADC channels
153
#define AD_GYRO_YAW       0
154
#define AD_GYRO_YAW       0
154
#define AD_GYRO_ROLL      1
155
#define AD_GYRO_ROLL      1
155
#define AD_GYRO_PITCH     2
156
#define AD_GYRO_PITCH     2
156
#define AD_AIRPRESSURE    3
157
#define AD_AIRPRESSURE    3
157
#define AD_UBAT           4
158
#define AD_UBAT           4
158
#define AD_ACC_Z          5
159
#define AD_ACC_Z          5
159
#define AD_ACC_ROLL       6
160
#define AD_ACC_ROLL       6
160
#define AD_ACC_PITCH      7
161
#define AD_ACC_PITCH      7
161
 
162
 
162
/*
163
/*
163
 * Table of AD converter inputs for each state.
164
 * Table of AD converter inputs for each state.
164
 * The number of samples summed for each channel is equal to
165
 * The number of samples summed for each channel is equal to
165
 * the number of times the channel appears in the array.
166
 * the number of times the channel appears in the array.
166
 * The max. number of samples that can be taken in 2 ms is:
167
 * The max. number of samples that can be taken in 2 ms is:
167
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
168
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
168
 * loop needs a little time between reading AD values and
169
 * loop needs a little time between reading AD values and
169
 * re-enabling ADC, the real limit is (how much?) lower.
170
 * re-enabling ADC, the real limit is (how much?) lower.
170
 * The acc. sensor is sampled even if not used - or installed
171
 * The acc. sensor is sampled even if not used - or installed
171
 * at all. The cost is not significant.
172
 * at all. The cost is not significant.
172
 */
173
 */
173
 
174
 
174
const uint8_t channelsForStates[] PROGMEM = {
175
const uint8_t channelsForStates[] PROGMEM = {
175
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
176
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
176
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
177
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
177
 
178
 
178
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
180
 
181
 
181
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
182
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
182
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
183
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
183
  AD_AIRPRESSURE, // at 14, finish air pressure.
184
  AD_AIRPRESSURE, // at 14, finish air pressure.
184
 
185
 
185
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
186
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
186
  AD_GYRO_ROLL,   // at 16, finish roll gyro
187
  AD_GYRO_ROLL,   // at 16, finish roll gyro
187
  AD_UBAT         // at 17, measure battery.
188
  AD_UBAT         // at 17, measure battery.
188
};
189
};
189
 
190
 
190
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
191
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
192
 
193
 
193
void analog_init(void) {
194
void analog_init(void) {
194
        uint8_t sreg = SREG;
195
        uint8_t sreg = SREG;
195
        // disable all interrupts before reconfiguration
196
        // disable all interrupts before reconfiguration
196
        cli();
197
        cli();
197
 
198
 
198
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
199
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
199
        DDRA = 0x00;
200
        DDRA = 0x00;
200
        PORTA = 0x00;
201
        PORTA = 0x00;
201
        // Digital Input Disable Register 0
202
        // Digital Input Disable Register 0
202
        // Disable digital input buffer for analog adc_channel pins
203
        // Disable digital input buffer for analog adc_channel pins
203
        DIDR0 = 0xFF;
204
        DIDR0 = 0xFF;
204
        // external reference, adjust data to the right
205
        // external reference, adjust data to the right
205
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
206
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
206
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
207
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
207
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
208
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
208
        //Set ADC Control and Status Register A
209
        //Set ADC Control and Status Register A
209
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
210
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
210
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
211
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
211
        //Set ADC Control and Status Register B
212
        //Set ADC Control and Status Register B
212
        //Trigger Source to Free Running Mode
213
        //Trigger Source to Free Running Mode
213
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
214
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
214
 
215
 
215
        startAnalogConversionCycle();
216
        startAnalogConversionCycle();
216
 
217
 
217
        // restore global interrupt flags
218
        // restore global interrupt flags
218
        SREG = sreg;
219
        SREG = sreg;
219
}
220
}
220
 
221
 
221
void measureNoise(const int16_t sensor,
222
void measureNoise(const int16_t sensor,
222
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
223
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
223
        if (sensor > (int16_t) (*noiseMeasurement)) {
224
        if (sensor > (int16_t) (*noiseMeasurement)) {
224
                *noiseMeasurement = sensor;
225
                *noiseMeasurement = sensor;
225
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
226
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
226
                *noiseMeasurement = -sensor;
227
                *noiseMeasurement = -sensor;
227
        } else if (*noiseMeasurement > damping) {
228
        } else if (*noiseMeasurement > damping) {
228
                *noiseMeasurement -= damping;
229
                *noiseMeasurement -= damping;
229
        } else {
230
        } else {
230
                *noiseMeasurement = 0;
231
                *noiseMeasurement = 0;
231
        }
232
        }
232
}
233
}
233
 
234
 
234
/*
235
/*
235
 * Min.: 0
236
 * Min.: 0
236
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
237
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
237
 */
238
 */
238
uint16_t getSimplePressure(int advalue) {
239
uint16_t getSimplePressure(int advalue) {
239
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
240
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
240
}
241
}
241
 
242
 
242
void startAnalogConversionCycle(void) {
243
void startAnalogConversionCycle(void) {
243
  analogDataReady = 0;
244
  analogDataReady = 0;
244
  // Stop the sampling. Cycle is over.
245
  // Stop the sampling. Cycle is over.
245
  for (uint8_t i = 0; i < 8; i++) {
246
  for (uint8_t i = 0; i < 8; i++) {
246
    sensorInputs[i] = 0;
247
    sensorInputs[i] = 0;
247
  }
248
  }
248
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
249
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
249
  startADC();
250
  startADC();
250
}
251
}
251
 
252
 
252
/*****************************************************
253
/*****************************************************
253
 * Interrupt Service Routine for ADC
254
 * Interrupt Service Routine for ADC
254
 * Runs at 312.5 kHz or 3.2 �s. When all states are
255
 * Runs at 312.5 kHz or 3.2 �s. When all states are
255
 * processed further conversions are stopped.
256
 * processed further conversions are stopped.
256
 *****************************************************/
257
 *****************************************************/
257
ISR(ADC_vect) {
258
ISR(ADC_vect) {
258
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
259
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
259
  sensorInputs[ad_channel] += ADC;
260
  sensorInputs[ad_channel] += ADC;
260
  // set up for next state.
261
  // set up for next state.
261
  state++;
262
  state++;
262
  if (state < 18) {
263
  if (state < 18) {
263
    ad_channel = pgm_read_byte(&channelsForStates[state]);
264
    ad_channel = pgm_read_byte(&channelsForStates[state]);
264
    // set adc muxer to next ad_channel
265
    // set adc muxer to next ad_channel
265
    ADMUX = (ADMUX & 0xE0) | ad_channel;
266
    ADMUX = (ADMUX & 0xE0) | ad_channel;
266
    // after full cycle stop further interrupts
267
    // after full cycle stop further interrupts
267
    startADC();
268
    startADC();
268
  } else {
269
  } else {
269
    state = 0;
270
    state = 0;
270
    ADCycleCount++;
271
    ADCycleCount++;
271
    analogDataReady = 1;
272
    analogDataReady = 1;
272
    // do not restart ADC converter. 
273
    // do not restart ADC converter. 
273
  }
274
  }
274
}
275
}
275
 
276
 
276
void analog_updateGyros(void) {
277
void analog_updateGyros(void) {
277
  // for various filters...
278
  // for various filters...
278
  int16_t tempOffsetGyro, tempGyro;
279
  int16_t tempOffsetGyro, tempGyro;
279
 
280
 
280
  for (uint8_t axis=0; axis<2; axis++) {
281
  for (uint8_t axis=0; axis<2; axis++) {
281
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
282
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
282
    /*
283
    /*
283
     * Process the gyro data for the PID controller.
284
     * Process the gyro data for the PID controller.
284
     */
285
     */
285
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
286
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
286
    //    gyro with a wider range, and helps counter saturation at full control.
287
    //    gyro with a wider range, and helps counter saturation at full control.
287
   
288
   
288
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
289
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
289
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
290
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
290
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
291
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
291
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
292
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
292
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
293
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
293
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
294
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
294
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
295
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
295
          + SENSOR_MAX_PITCHROLL;
296
          + SENSOR_MAX_PITCHROLL;
296
      } else {
297
      } else {
297
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
298
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
298
      }
299
      }
299
    }
300
    }
300
   
301
   
301
    // 2) Apply sign and offset, scale before filtering.
302
    // 2) Apply sign and offset, scale before filtering.
302
    if (GYRO_REVERSED[axis]) {
303
    if (GYRO_REVERSED[axis]) {
303
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
304
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
304
    } else {
305
    } else {
305
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
306
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
306
    }
307
    }
307
   
308
   
308
    // 3) Scale and filter.
309
    // 3) Scale and filter.
309
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
310
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
310
   
311
   
311
    // 4) Measure noise.
312
    // 4) Measure noise.
312
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
313
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
313
   
314
   
314
    // 5) Differential measurement.
315
    // 5) Differential measurement.
315
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
316
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
316
   
317
   
317
    // 6) Done.
318
    // 6) Done.
318
    gyro_PID[axis] = tempOffsetGyro;
319
    gyro_PID[axis] = tempOffsetGyro;
319
   
320
   
320
    /*
321
    /*
321
     * Now process the data for attitude angles.
322
     * Now process the data for attitude angles.
322
     */
323
     */
323
    tempGyro = rawGyroSum[axis];
324
    tempGyro = rawGyroSum[axis];
324
   
325
   
325
    // 1) Apply sign and offset, scale before filtering.
326
    // 1) Apply sign and offset, scale before filtering.
326
    if (GYRO_REVERSED[axis]) {
327
    if (GYRO_REVERSED[axis]) {
327
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
328
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
328
    } else {
329
    } else {
329
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
330
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
330
    }
331
    }
331
   
332
   
332
    // 2) Filter.
333
    // 2) Filter.
333
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
334
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
334
  }
335
  }
335
 
336
 
336
  // Yaw gyro.
337
  // Yaw gyro.
337
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
338
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
338
  if (GYRO_REVERSED[YAW])
339
  if (GYRO_REVERSED[YAW])
339
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
340
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
340
  else
341
  else
341
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
342
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
342
 
343
 
343
  debugOut.analog[3] = gyro_ATT[PITCH];
344
  debugOut.analog[3] = gyro_ATT[PITCH];
344
  debugOut.analog[4] = gyro_ATT[ROLL];
345
  debugOut.analog[4] = gyro_ATT[ROLL];
345
  debugOut.analog[5] = yawGyro;
346
  debugOut.analog[5] = yawGyro;
346
}
347
}
347
 
348
 
348
void analog_updateAccelerometers(void) {
349
void analog_updateAccelerometers(void) {
349
  // Pitch and roll axis accelerations.
350
  // Pitch and roll axis accelerations.
350
  for (uint8_t axis=0; axis<2; axis++) {
351
  for (uint8_t axis=0; axis<2; axis++) {
351
    if (ACC_REVERSED[axis])
352
    if (ACC_REVERSED[axis])
352
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
353
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
353
    else
354
    else
354
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
355
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
355
   
356
   
356
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
357
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
357
   
358
   
358
    /*
359
    /*
359
      stronglyFilteredAcc[PITCH] =
360
      stronglyFilteredAcc[PITCH] =
360
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
361
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
361
    */
362
    */
362
   
363
   
363
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
364
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
364
  }
365
  }
365
 
366
 
366
  // Z acc.
367
  // Z acc.
367
  if (ACC_REVERSED[Z])
368
  if (ACC_REVERSED[Z])
368
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
369
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
369
  else
370
  else
370
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
371
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
371
 
372
 
372
  /*
373
  /*
373
    stronglyFilteredAcc[Z] =
374
    stronglyFilteredAcc[Z] =
374
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
375
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
375
  */
376
  */
376
}
377
}
377
 
378
 
378
void analog_updateAirPressure(void) {
379
void analog_updateAirPressure(void) {
379
  static uint16_t pressureAutorangingWait = 25;
380
  static uint16_t pressureAutorangingWait = 25;
380
  uint16_t rawAirPressure;
381
  uint16_t rawAirPressure;
381
  int16_t newrange;
382
  int16_t newrange;
382
  // air pressure
383
  // air pressure
383
  if (pressureAutorangingWait) {
384
  if (pressureAutorangingWait) {
384
    //A range switch was done recently. Wait for steadying.
385
    //A range switch was done recently. Wait for steadying.
385
    pressureAutorangingWait--;
386
    pressureAutorangingWait--;
386
    debugOut.analog[27] = (uint16_t) OCR0A;
387
    debugOut.analog[27] = (uint16_t) OCR0A;
387
    debugOut.analog[31] = simpleAirPressure;
388
    debugOut.analog[31] = simpleAirPressure;
388
  } else {
389
  } else {
389
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
390
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
390
    if (rawAirPressure < MIN_RAWPRESSURE) {
391
    if (rawAirPressure < MIN_RAWPRESSURE) {
391
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
392
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
392
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
393
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
393
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
394
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
394
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
395
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
395
        OCR0A = newrange;
396
        OCR0A = newrange;
396
      } else {
397
      } else {
397
        if (OCR0A) {
398
        if (OCR0A) {
398
          OCR0A--;
399
          OCR0A--;
399
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
400
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
400
        }
401
        }
401
      }
402
      }
402
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
403
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
403
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
404
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
404
      // If near the end, make a limited increase
405
      // If near the end, make a limited increase
405
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
406
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
406
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
407
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
407
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
408
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
408
        OCR0A = newrange;
409
        OCR0A = newrange;
409
      } else {
410
      } else {
410
        if (OCR0A < 254) {
411
        if (OCR0A < 254) {
411
          OCR0A++;
412
          OCR0A++;
412
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
413
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
413
        }
414
        }
414
      }
415
      }
415
    }
416
    }
416
   
417
   
417
    // Even if the sample is off-range, use it.
418
    // Even if the sample is off-range, use it.
418
    simpleAirPressure = getSimplePressure(rawAirPressure);
419
    simpleAirPressure = getSimplePressure(rawAirPressure);
419
    debugOut.analog[27] = (uint16_t) OCR0A;
420
    debugOut.analog[27] = (uint16_t) OCR0A;
420
    debugOut.analog[31] = simpleAirPressure;
421
    debugOut.analog[31] = simpleAirPressure;
421
   
422
   
422
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
423
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
423
      // Danger: pressure near lower end of range. If the measurement saturates, the
424
      // Danger: pressure near lower end of range. If the measurement saturates, the
424
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
425
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
425
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
426
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
426
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
427
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
427
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
428
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
428
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
429
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
430
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
430
      // Danger: pressure near upper end of range. If the measurement saturates, the
431
      // Danger: pressure near upper end of range. If the measurement saturates, the
431
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
432
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
432
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
433
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
433
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
434
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
434
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
435
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
435
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
436
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
436
    } else {
437
    } else {
437
      // normal case.
438
      // normal case.
438
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
439
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
439
      // The 2 cases above (end of range) are ignored for this.
440
      // The 2 cases above (end of range) are ignored for this.
440
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
441
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
441
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
442
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
442
        airPressureSum += simpleAirPressure / 2;
443
        airPressureSum += simpleAirPressure / 2;
443
      else
444
      else
444
        airPressureSum += simpleAirPressure;
445
        airPressureSum += simpleAirPressure;
445
    }
446
    }
446
   
447
   
447
    // 2 samples were added.
448
    // 2 samples were added.
448
    pressureMeasurementCount += 2;
449
    pressureMeasurementCount += 2;
449
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
450
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
450
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
451
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
451
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
452
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
452
      pressureMeasurementCount = airPressureSum = 0;
453
      pressureMeasurementCount = airPressureSum = 0;
453
    }
454
    }
454
  }
455
  }
455
}
456
}
456
 
457
 
457
void analog_updateBatteryVoltage(void) {
458
void analog_updateBatteryVoltage(void) {
458
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
459
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
459
  // This is divided by 3 --> 10.34 counts per volt.
460
  // This is divided by 3 --> 10.34 counts per volt.
460
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
461
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
461
  debugOut.analog[11] = UBat;
462
  debugOut.analog[11] = UBat;
462
}
463
}
463
 
464
 
464
void analog_update(void) {
465
void analog_update(void) {
465
  analog_updateGyros();
466
  analog_updateGyros();
466
  analog_updateAccelerometers();
467
  analog_updateAccelerometers();
467
  analog_updateAirPressure();
468
  analog_updateAirPressure();
468
  analog_updateBatteryVoltage();
469
  analog_updateBatteryVoltage();
469
}
470
}
470
 
471
 
471
void analog_setNeutral() {
472
void analog_setNeutral() {
472
  if (gyroOffset_readFromEEProm()) {
473
  if (gyroOffset_readFromEEProm()) {
-
 
474
    printf("gyro offsets invalid, you must recalibrate.");
473
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
475
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
474
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
476
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
475
  }
477
  }
-
 
478
 
-
 
479
  debugOut.analog[6] = gyroOffset.offsets[PITCH];
-
 
480
  debugOut.analog[7] = gyroOffset.offsets[ROLL];
476
 
481
 
-
 
482
  if (accOffset_readFromEEProm()) {
477
  if (accOffset_readFromEEProm()) {
483
    printf("acc. meter offsets invalid, you must recalibrate.");
478
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
484
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
479
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
485
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
480
  }
486
  }
481
 
487
 
482
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
488
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
483
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
489
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
484
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
490
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
485
 
491
 
486
  // Setting offset values has an influence in the analog.c ISR
492
  // Setting offset values has an influence in the analog.c ISR
487
  // Therefore run measurement for 100ms to achive stable readings
493
  // Therefore run measurement for 100ms to achive stable readings
488
  delay_ms_Mess(100);
494
  delay_ms_Mess(100);
489
 
495
 
490
  // Rough estimate. Hmm no nothing happens at calibration anyway.
496
  // Rough estimate. Hmm no nothing happens at calibration anyway.
491
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
497
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
492
  // pressureMeasurementCount = 0;
498
  // pressureMeasurementCount = 0;
493
}
499
}
494
 
500
 
495
void analog_calibrateGyros(void) {
501
void analog_calibrateGyros(void) {
496
#define GYRO_OFFSET_CYCLES 32
502
#define GYRO_OFFSET_CYCLES 32
497
  uint8_t i, axis;
503
  uint8_t i, axis;
498
  int32_t offsets[3] = { 0, 0, 0 };
504
  int32_t offsets[3] = { 0, 0, 0 };
499
  gyro_calibrate();
505
  gyro_calibrate();
500
 
506
 
501
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
507
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
502
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
508
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
503
    delay_ms_Mess(20);
509
    delay_ms_Mess(20);
504
    for (axis = PITCH; axis <= YAW; axis++) {
510
    for (axis = PITCH; axis <= YAW; axis++) {
505
      offsets[axis] += rawGyroSum[axis];
511
      offsets[axis] += rawGyroSum[axis];
506
    }
512
    }
507
  }
513
  }
508
 
514
 
509
  for (axis = PITCH; axis <= YAW; axis++) {
515
  for (axis = PITCH; axis <= YAW; axis++) {
510
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
516
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
511
  }
517
  }
512
 
518
 
513
  gyroOffset_writeToEEProm();  
519
  gyroOffset_writeToEEProm();  
514
}
520
}
515
 
521
 
516
/*
522
/*
517
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
523
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
518
 * Does not (!} update the local variables. This must be done with a
524
 * Does not (!} update the local variables. This must be done with a
519
 * call to analog_calibrate() - this always (?) is done by the caller
525
 * call to analog_calibrate() - this always (?) is done by the caller
520
 * anyway. There would be nothing wrong with updating the variables
526
 * anyway. There would be nothing wrong with updating the variables
521
 * directly from here, though.
527
 * directly from here, though.
522
 */
528
 */
523
void analog_calibrateAcc(void) {
529
void analog_calibrateAcc(void) {
524
#define ACC_OFFSET_CYCLES 10
530
#define ACC_OFFSET_CYCLES 10
525
  uint8_t i, axis;
531
  uint8_t i, axis;
526
  int32_t deltaOffset[3] = { 0, 0, 0 };
532
  int32_t deltaOffset[3] = { 0, 0, 0 };
527
  int16_t filteredDelta;
533
  int16_t filteredDelta;
528
 
534
 
529
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
535
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
530
    delay_ms_Mess(10);
536
    delay_ms_Mess(10);
531
    for (axis = PITCH; axis <= YAW; axis++) {
537
    for (axis = PITCH; axis <= YAW; axis++) {
532
      deltaOffset[axis] += acc[axis];
538
      deltaOffset[axis] += acc[axis];
533
    }
539
    }
534
  }
540
  }
535
 
541
 
536
  for (axis = PITCH; axis <= YAW; axis++) {
542
  for (axis = PITCH; axis <= YAW; axis++) {
537
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
543
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
538
      / ACC_OFFSET_CYCLES;
544
      / ACC_OFFSET_CYCLES;
539
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
545
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
540
  }
546
  }
541
 
547
 
542
  accOffset_writeToEEProm();  
548
  accOffset_writeToEEProm();  
543
}
549
}
544
 
550