Subversion Repositories Projects

Compare Revisions

Ignore whitespace Rev 549 → Rev 550

/MissionCockpit/tags/V0.2.5/perl/site/lib/Geo/Ellipsoid.pm
0,0 → 1,950
# Geo::Ellipsoid
#
# This package implements an Ellipsoid class to perform latitude
# and longitude calculations on the surface of an ellipsoid.
#
# This is a Perl conversion of existing Fortran code (see
# ACKNOWLEDGEMENTS) and the author of this class makes no
# claims of originality. Nor can he even vouch for the
# results of the calculations, although they do seem to
# work for him and have been tested against other methods.
 
package Geo::Ellipsoid;
 
use warnings;
use strict;
use 5.006_00;
 
use Scalar::Util 'looks_like_number';
use Math::Trig;
use Carp;
 
=head1 NAME
 
Geo::Ellipsoid - Longitude and latitude calculations using an ellipsoid model.
 
=head1 VERSION
 
Version 1.12, released July 4, 2008.
 
=cut
 
our $VERSION = '1.12';
our $DEBUG = 0;
 
=head1 SYNOPSIS
 
use Geo::Ellipsoid;
$geo = Geo::Ellipsoid->new(ellipsoid=>'NAD27', units=>'degrees');
@origin = ( 37.619002, -122.374843 ); # SFO
@dest = ( 33.942536, -118.408074 ); # LAX
( $range, $bearing ) = $geo->to( @origin, @dest );
($lat,$lon) = $geo->at( @origin, 2000, 45.0 );
( $x, $y ) = $geo->displacement( @origin, $lat, $lon );
@pos = $geo->location( $lat, $lon, $x, $y );
 
=head1 DESCRIPTION
 
Geo::Ellipsoid performs geometrical calculations on the surface of
an ellipsoid. An ellipsoid is a three-dimension object formed from
the rotation of an ellipse about one of its axes. The approximate
shape of the earth is an ellipsoid, so Geo::Ellipsoid can accurately
calculate distance and bearing between two widely-separated locations
on the earth's surface.
 
The shape of an ellipsoid is defined by the lengths of its
semi-major and semi-minor axes. The shape may also be specifed by
the flattening ratio C<f> as:
 
f = ( semi-major - semi-minor ) / semi-major
which, since f is a small number, is normally given as the reciprocal
of the flattening C<1/f>.
 
The shape of the earth has been surveyed and estimated differently
at different times over the years. The two most common sets of values
used to describe the size and shape of the earth in the United States
are 'NAD27', dating from 1927, and 'WGS84', from 1984. United States
Geological Survey topographical maps, for example, use one or the
other of these values, and commonly-available Global Positioning
System (GPS) units can be set to use one or the other.
See L<"DEFINED ELLIPSOIDS"> below for the ellipsoid survey values
that may be selected for use by Geo::Ellipsoid.
 
=cut
 
# class data and constants
our $degrees_per_radian = 180/pi;
our $eps = 1.0e-23;
our $max_loop_count = 20;
our $twopi = 2 * pi;
our $halfpi = pi/2;
our %defaults = (
ellipsoid => 'WGS84',
units => 'radians',
distance_units => 'meter',
longitude => 0,
latitude => 1, # allows use of _normalize_output
bearing => 0,
);
our %distance = (
'foot' => 0.3048,
'kilometer' => 1_000,
'meter' => 1.0,
'mile' => 1_609.344,
'nm' => 1_852,
);
 
# set of ellipsoids that can be used.
# values are
# 1) a = semi-major (equatorial) radius of Ellipsoid
# 2) 1/f = reciprocal of flattening (f), the ratio of the semi-minor
# (polar) radius to the semi-major (equatorial) axis, or
# polar radius = equatorial radius * ( 1 - f )
 
our %ellipsoids = (
'AIRY' => [ 6377563.396, 299.3249646 ],
'AIRY-MODIFIED' => [ 6377340.189, 299.3249646 ],
'AUSTRALIAN' => [ 6378160.0, 298.25 ],
'BESSEL-1841' => [ 6377397.155, 299.1528128 ],
'CLARKE-1880' => [ 6378249.145, 293.465 ],
'EVEREST-1830' => [ 6377276.345, 300.8017 ],
'EVEREST-MODIFIED' => [ 6377304.063, 300.8017 ],
'FISHER-1960' => [ 6378166.0, 298.3 ],
'FISHER-1968' => [ 6378150.0, 298.3 ],
'GRS80' => [ 6378137.0, 298.25722210088 ],
'HOUGH-1956' => [ 6378270.0, 297.0 ],
'HAYFORD' => [ 6378388.0, 297.0 ],
'IAU76' => [ 6378140.0, 298.257 ],
'KRASSOVSKY-1938' => [ 6378245.0, 298.3 ],
'NAD27' => [ 6378206.4, 294.9786982138 ],
'NWL-9D' => [ 6378145.0, 298.25 ],
'SOUTHAMERICAN-1969' => [ 6378160.0, 298.25 ],
'SOVIET-1985' => [ 6378136.0, 298.257 ],
'WGS72' => [ 6378135.0, 298.26 ],
'WGS84' => [ 6378137.0, 298.257223563 ],
);
 
=head1 CONSTRUCTOR
 
=head2 new
 
The new() constructor may be called with a hash list to set the value of the
ellipsoid to be used, the value of the units to be used for angles and
distances, and whether or not the output range of longitudes and bearing
angles should be symmetric around zero or always greater than zero.
The initial default constructor is equivalent to the following:
 
my $geo = Geo::Ellipsoid->new(
ellipsoid => 'WGS84',
units => 'radians' ,
distance_units => 'meter',
longitude => 0,
bearing => 0,
);
The constructor arguments may be of any case and, with the exception of
the ellipsoid value, abbreviated to their first three characters.
Thus, ( UNI => 'DEG', DIS => 'FEE', Lon => 1, ell => 'NAD27', bEA => 0 )
is valid.
 
=cut
 
sub new
{
my( $class, %args ) = @_;
my $self = {%defaults};
print "new: @_\n" if $DEBUG;
foreach my $key ( keys %args ) {
my $val = $args{$key};
if( $key =~ /^ell/i ) {
$self->{ellipsoid} = uc $args{$key};
}elsif( $key =~ /^uni/i ) {
$self->{units} = $args{$key};
}elsif( $key =~ /^dis/i ) {
$self->{distance_units} = $args{$key};
}elsif( $key =~ /^lon/i ) {
$self->{longitude} = $args{$key};
}elsif( $key =~ /^bea/i ) {
$self->{bearing} = $args{$key};
}else{
carp("Unknown argument: $key => $args{$key}");
}
}
set_units($self,$self->{units});
set_ellipsoid($self,$self->{ellipsoid});
set_distance_unit($self,$self->{distance_units});
set_longitude_symmetric($self,$self->{longitude});
set_bearing_symmetric($self,$self->{bearing});
print
"Ellipsoid(units=>$self->{units},distance_units=>" .
"$self->{distance_units},ellipsoid=>$self->{ellipsoid}," .
"longitude=>$self->{longitude},bearing=>$self->{bearing})\n" if $DEBUG;
bless $self,$class;
return $self;
}
 
=head1 METHODS
 
=head2 set_units
 
Set the angle units used by the Geo::Ellipsoid object. The units may
also be set in the constructor of the object. The allowable values are
'degrees' or 'radians'. The default is 'radians'. The units value is
not case sensitive and may be abbreviated to 3 letters. The units of
angle apply to both input and output latitude, longitude, and bearing
values.
 
$geo->set_units('degrees');
 
=cut
 
sub set_units
{
my $self = shift;
my $units = shift;
if( $units =~ /deg/i ) {
$units = 'degrees';
}elsif( $units =~ /rad/i ) {
$units = 'radians';
}else{
croak("Invalid units specifier '$units' - please use either " .
"degrees or radians (the default)") unless $units =~ /rad/i;
}
$self->{units} = $units;
}
 
=head2 set_distance_unit
 
Set the distance unit used by the Geo::Ellipsoid object. The unit of
distance may also be set in the constructor of the object. The recognized
values are 'meter', 'kilometer', 'mile', 'nm' (nautical mile), or 'foot'.
The default is 'meter'. The value is not case sensitive and may be
abbreviated to 3 letters.
 
$geo->set_distance_unit('kilometer');
 
For any other unit of distance not recogized by this method, pass a
numerical argument representing the length of the distance unit in
meters. For example, to use units of furlongs, call
 
$geo->set_distance_unit(201.168);
 
The distance conversion factors used by this module are as follows:
 
Unit Units per meter
-------- ---------------
foot 0.3048
kilometer 1000.0
mile 1609.344
nm 1852.0
 
=cut
 
sub set_distance_unit
{
my $self = shift;
my $unit = shift;
print "distance unit = $unit\n" if $DEBUG;
 
my $conversion = 0;
 
if( defined $unit ) {
my( $key, $val );
while( ($key,$val) = each %distance ) {
my $re = substr($key,0,3);
print "trying ($key,$re,$val)\n" if $DEBUG;
if( $unit =~ /^$re/i ) {
$self->{distance_units} = $unit;
$conversion = $val;
 
# finish iterating to reset 'each' function call
while( each %distance ) {}
last;
}
}
 
if( $conversion == 0 ) {
if( looks_like_number($unit) ) {
$conversion = $unit;
}else{
carp("Unknown argument to set_distance_unit: $unit\nAssuming meters");
$conversion = 1.0;
}
}
}else{
carp("Missing or undefined argument to set_distance_unit: ".
"$unit\nAssuming meters");
$conversion = 1.0;
}
$self->{conversion} = $conversion;
}
 
=head2 set_ellipsoid
 
Set the ellipsoid to be used by the Geo::Ellipsoid object. See
L<"DEFINED ELLIPSOIDS"> below for the allowable values. The value
may also be set by the constructor. The default value is 'WGS84'.
 
$geo->set_ellipsoid('NAD27');
 
=cut
 
sub set_ellipsoid
{
my $self = shift;
my $ellipsoid = uc shift || $defaults{ellipsoid};
print " set ellipsoid to $ellipsoid\n" if $DEBUG;
unless( exists $ellipsoids{$ellipsoid} ) {
croak("Ellipsoid $ellipsoid does not exist - please use " .
"set_custom_ellipsoid to use an ellipsoid not in valid set");
}
$self->{ellipsoid} = $ellipsoid;
my( $major, $recip ) = @{$ellipsoids{$ellipsoid}};
$self->{equatorial} = $major;
if( $recip == 0 ) {
carp("Infinite flattening specified by ellipsoid -- assuming a sphere");
$self->{polar} = $self->{equatorial};
$self->{flattening} = 0;
$self->{eccentricity} = 0;
}else{
$self->{flattening} = ( 1.0 / $ellipsoids{$ellipsoid}[1]);
$self->{polar} = $self->{equatorial} * ( 1.0 - $self->{flattening} );
$self->{eccentricity} = sqrt( 2.0 * $self->{flattening} -
( $self->{flattening} * $self->{flattening} ) );
}
}
 
=head2 set_custom_ellipsoid
 
Sets the ellipsoid parameters to the specified ( major semiaxis and
reciprocal flattening. A zero value for the reciprocal flattening
will result in a sphere for the ellipsoid, and a warning message
will be issued.
 
$geo->set_custom_ellipsoid( 'sphere', 6378137, 0 );
=cut
 
sub set_custom_ellipsoid
{
my $self = shift;
my( $name, $major, $recip ) = @_;
$name = uc $name;
$recip = 0 unless defined $recip;
if( $major ) {
$ellipsoids{$name} = [ $major, $recip ];
}else{
croak("set_custom_ellipsoid called without semi-major radius parameter");
}
set_ellipsoid($self,$name);
}
 
=head2 set_longitude_symmetric
 
If called with no argument or a true argument, sets the range of output
values for longitude to be in the range [-pi,+pi) radians. If called with
a false or undefined argument, sets the output angle range to be
[0,2*pi) radians.
 
$geo->set_longitude_symmetric(1);
 
=cut
 
sub set_longitude_symmetric
{
my( $self, $sym ) = @_;
# see if argument passed
if( $#_ > 0 ) {
# yes -- use value passed
$self->{longitude} = $sym;
}else{
# no -- set to true
$self->{longitude} = 1;
}
}
 
=head2 set_bearing_symmetric
 
If called with no argument or a true argument, sets the range of output
values for bearing to be in the range [-pi,+pi) radians. If called with
a false or undefined argument, sets the output angle range to be
[0,2*pi) radians.
 
$geo->set_bearing_symmetric(1);
 
=cut
 
sub set_bearing_symmetric
{
my( $self, $sym ) = @_;
# see if argument passed
if( $#_ > 0 ) {
# yes -- use value passed
$self->{bearing} = $sym;
}else{
# no -- set to true
$self->{bearing} = 1;
}
}
 
=head2 set_defaults
 
Sets the defaults for the new method. Call with key, value pairs similar to
new.
 
$Geo::Ellipsoid->set_defaults(
units => 'degrees',
ellipsoid => 'GRS80',
distance_units => 'kilometer',
longitude => 1,
bearing => 0
);
 
Keys and string values (except for the ellipsoid identifier) may be shortened
to their first three letters and are case-insensitive:
 
$Geo::Ellipsoid->set_defaults(
uni => 'deg',
ell => 'GRS80',
dis => 'kil',
lon => 1,
bea => 0
);
 
=cut
 
sub set_defaults
{
my $self = shift;
my %args = @_;
foreach my $key ( keys %args ) {
if( $key =~ /^ell/i ) {
$defaults{ellipsoid} = uc $args{$key};
}elsif( $key =~ /^uni/i ) {
$defaults{units} = $args{$key};
}elsif( $key =~ /^dis/i ) {
$defaults{distance_units} = $args{$key};
}elsif( $key =~ /^lon/i ) {
$defaults{longitude} = $args{$key};
}elsif( $key =~ /^bea/i ) {
$defaults{bearing} = $args{$key};
}else{
croak("Geo::Ellipsoid::set_defaults called with invalid key: $key");
}
}
print "Defaults set to ($defaults{ellipsoid},$defaults{units}\n"
if $DEBUG;
}
 
=head2 scales
 
Returns a list consisting of the distance unit per angle of latitude
and longitude (degrees or radians) at the specified latitude.
These values may be used for fast approximations of distance
calculations in the vicinity of some location.
 
( $lat_scale, $lon_scale ) = $geo->scales($lat0);
$x = $lon_scale * ($lon - $lon0);
$y = $lat_scale * ($lat - $lat0);
 
=cut
 
sub scales
{
my $self = shift;
my $units = $self->{units};
my $lat = $_[0];
if( defined $lat ) {
$lat /= $degrees_per_radian if( $units eq 'degrees' );
}else{
carp("scales() method requires latitude argument; assuming 0");
$lat = 0;
}
my $aa = $self->{equatorial};
my $bb = $self->{polar};
my $a2 = $aa*$aa;
my $b2 = $bb*$bb;
my $d1 = $aa * cos($lat);
my $d2 = $bb * sin($lat);
my $d3 = $d1*$d1 + $d2*$d2;
my $d4 = sqrt($d3);
my $n1 = $aa * $bb;
my $latscl = ( $n1 * $n1 ) / ( $d3 * $d4 * $self->{conversion} );
my $lonscl = ( $aa * $d1 ) / ( $d4 * $self->{conversion} );
if( $DEBUG ) {
print "lat=$lat, aa=$aa, bb=$bb\nd1=$d1, d2=$d2, d3=$d3, d4=$d4\n";
print "latscl=$latscl, lonscl=$lonscl\n";
}
 
if( $self->{units} eq 'degrees' ) {
$latscl /= $degrees_per_radian;
$lonscl /= $degrees_per_radian;
}
return ( $latscl, $lonscl );
}
 
=head2 range
 
Returns the range in distance units between two specified locations given
as latitude, longitude pairs.
 
my $dist = $geo->range( $lat1, $lon1, $lat2, $lon2 );
my $dist = $geo->range( @origin, @destination );
 
=cut
sub range
{
my $self = shift;
my @args = _normalize_input($self->{units},@_);
my($range,$bearing) = _inverse($self,@args);
print "inverse(@_[1..4]) returns($range,$bearing)\n" if $DEBUG;
return $range;
}
 
=head2 bearing
 
Returns the bearing in degrees or radians from the first location to
the second. Zero bearing is true north.
 
my $bearing = $geo->bearing( $lat1, $lon1, $lat2, $lon2 );
 
=cut
 
sub bearing
{
my $self = shift;
my $units = $self->{units};
my @args = _normalize_input($units,@_);
my($range,$bearing) = _inverse($self,@args);
print "inverse(@args) returns($range,$bearing)\n" if $DEBUG;
my $t = $bearing;
$self->_normalize_output('bearing',$bearing);
print "_normalize_output($t) returns($bearing)\n" if $DEBUG;
return $bearing;
}
 
 
=head2 at
 
Returns the list (latitude,longitude) in degrees or radians that is a
specified range and bearing from a given location.
 
my( $lat2, $lon2 ) = $geo->at( $lat1, $lon1, $range, $bearing );
 
=cut
 
sub at
{
my $self = shift;
my $units = $self->{units};
my( $lat, $lon, $az ) = _normalize_input($units,@_[0,1,3]);
my $r = $_[2];
print "at($lat,$lon,$r,$az)\n" if $DEBUG;
my( $lat2, $lon2 ) = _forward($self,$lat,$lon,$r,$az);
print "_forward returns ($lat2,$lon2)\n" if $DEBUG;
$self->_normalize_output('longitude',$lon2);
$self->_normalize_output('latitude',$lat2);
return ( $lat2, $lon2 );
}
 
=head2 to
 
In list context, returns (range, bearing) between two specified locations.
In scalar context, returns just the range.
 
my( $dist, $theta ) = $geo->to( $lat1, $lon1, $lat2, $lon2 );
my $dist = $geo->to( $lat1, $lon1, $lat2, $lon2 );
 
=cut
 
sub to
{
my $self = shift;
my $units = $self->{units};
my @args = _normalize_input($units,@_);
print "to($units,@args)\n" if $DEBUG;
my($range,$bearing) = _inverse($self,@args);
print "to: inverse(@args) returns($range,$bearing)\n" if $DEBUG;
#$bearing *= $degrees_per_radian if $units eq 'degrees';
$self->_normalize_output('bearing',$bearing);
if( wantarray() ) {
return ( $range, $bearing );
}else{
return $range;
}
}
 
=head2 displacement
 
Returns the (x,y) displacement in distance units between the two specified
locations.
 
my( $x, $y ) = $geo->displacement( $lat1, $lon1, $lat2, $lon2 );
NOTE: The x and y displacements are only approximations and only valid
between two locations that are fairly near to each other. Beyond 10 kilometers
or more, the concept of X and Y on a curved surface loses its meaning.
 
=cut
 
sub displacement
{
my $self = shift;
print "displacement(",join(',',@_),"\n" if $DEBUG;
my @args = _normalize_input($self->{units},@_);
print "call _inverse(@args)\n" if $DEBUG;
my( $range, $bearing ) = _inverse($self,@args);
print "disp: _inverse(@args) returns ($range,$bearing)\n" if $DEBUG;
my $x = $range * sin($bearing);
my $y = $range * cos($bearing);
return ($x,$y);
}
 
=head2 location
 
Returns the list (latitude,longitude) of a location at a given (x,y)
displacement from a given location.
 
my @loc = $geo->location( $lat, $lon, $x, $y );
 
=cut
 
sub location
{
my $self = shift;
my $units = $self->{units};
my($lat,$lon,$x,$y) = @_;
my $range = sqrt( $x*$x+ $y*$y );
my $bearing = atan2($x,$y);
$bearing *= $degrees_per_radian if $units eq 'degrees';
print "location($lat,$lon,$x,$y,$range,$bearing)\n" if $DEBUG;
return $self->at($lat,$lon,$range,$bearing);
}
 
########################################################################
#
# internal functions
#
# inverse
#
# Calculate the displacement from origin to destination.
# The input to this subroutine is
# ( latitude-1, longitude-1, latitude-2, longitude-2 ) in radians.
#
# Return the results as the list (range,bearing) with range in the
# current specified distance unit and bearing in radians.
 
sub _inverse()
{
my $self = shift;
my( $lat1, $lon1, $lat2, $lon2 ) = (@_);
print "_inverse($lat1,$lon1,$lat2,$lon2)\n" if $DEBUG;
my $a = $self->{equatorial};
my $f = $self->{flattening};
my $r = 1.0 - $f;
my $tu1 = $r * sin($lat1) / cos($lat1);
my $tu2 = $r * sin($lat2) / cos($lat2);
my $cu1 = 1.0 / ( sqrt(($tu1*$tu1) + 1.0) );
my $su1 = $cu1 * $tu1;
my $cu2 = 1.0 / ( sqrt( ($tu2*$tu2) + 1.0 ));
my $s = $cu1 * $cu2;
my $baz = $s * $tu2;
my $faz = $baz * $tu1;
my $dlon = $lon2 - $lon1;
if( $DEBUG ) {
printf "lat1=%.8f, lon1=%.8f\n", $lat1, $lon1;
printf "lat2=%.8f, lon2=%.8f\n", $lat2, $lon2;
printf "r=%.8f, tu1=%.8f, tu2=%.8f\n", $r, $tu1, $tu2;
printf "faz=%.8f, dlon=%.8f\n", $faz, $dlon;
}
my $x = $dlon;
my $cnt = 0;
print "enter loop:\n" if $DEBUG;
my( $c2a, $c, $cx, $cy, $cz, $d, $del, $e, $sx, $sy, $y );
do {
printf " x=%.8f\n", $x if $DEBUG;
$sx = sin($x);
$cx = cos($x);
$tu1 = $cu2*$sx;
$tu2 = $baz - ($su1*$cu2*$cx);
printf " sx=%.8f, cx=%.8f, tu1=%.8f, tu2=%.8f\n",
$sx, $cx, $tu1, $tu2 if $DEBUG;
$sy = sqrt( $tu1*$tu1 + $tu2*$tu2 );
$cy = $s*$cx + $faz;
$y = atan2($sy,$cy);
my $sa;
if( $sy == 0.0 ) {
$sa = 1.0;
}else{
$sa = ($s*$sx) / $sy;
}
printf " sy=%.8f, cy=%.8f, y=%.8f, sa=%.8f\n", $sy, $cy, $y, $sa
if $DEBUG;
$c2a = 1.0 - ($sa*$sa);
$cz = $faz + $faz;
if( $c2a > 0.0 ) {
$cz = ((-$cz)/$c2a) + $cy;
}
$e = ( 2.0 * $cz * $cz ) - 1.0;
$c = ( ((( (-3.0 * $c2a) + 4.0)*$f) + 4.0) * $c2a * $f )/16.0;
$d = $x;
$x = ( ($e * $cy * $c + $cz) * $sy * $c + $y) * $sa;
$x = ( 1.0 - $c ) * $x * $f + $dlon;
$del = $d - $x;
if( $DEBUG ) {
printf " c2a=%.8f, cz=%.8f\n", $c2a, $cz;
printf " e=%.8f, d=%.8f\n", $e, $d;
printf " (d-x)=%.8g\n", $del;
}
}while( (abs($del) > $eps) && ( ++$cnt <= $max_loop_count ) );
$faz = atan2($tu1,$tu2);
$baz = atan2($cu1*$sx,($baz*$cx - $su1*$cu2)) + pi;
$x = sqrt( ((1.0/($r*$r)) -1.0 ) * $c2a+1.0 ) + 1.0;
$x = ($x-2.0)/$x;
$c = 1.0 - $x;
$c = (($x*$x)/4.0 + 1.0)/$c;
$d = ((0.375*$x*$x) - 1.0)*$x;
$x = $e*$cy;
if( $DEBUG ) {
printf "e=%.8f, cy=%.8f, x=%.8f\n", $e, $cy, $x;
printf "sy=%.8f, c=%.8f, d=%.8f\n", $sy, $c, $d;
printf "cz=%.8f, a=%.8f, r=%.8f\n", $cz, $a, $r;
}
$s = 1.0 - $e - $e;
$s = (((((((( $sy * $sy * 4.0 ) - 3.0) * $s * $cz * $d/6.0) - $x) *
$d /4.0) + $cz) * $sy * $d) + $y ) * $c * $a * $r;
printf "s=%.8f\n", $s if $DEBUG;
# adjust azimuth to (0,360) or (-180,180) as specified
if( $self->{symmetric} ) {
$faz += $twopi if $faz < -(pi);
$faz -= $twopi if $faz >= pi;
}else{
$faz += $twopi if $faz < 0;
$faz -= $twopi if $faz >= $twopi;
}
 
# return result
my @disp = ( ($s/$self->{conversion}), $faz );
print "disp = (@disp)\n" if $DEBUG;
return @disp;
}
 
# _forward
#
# Calculate the location (latitue,longitude) of a point
# given a starting point and a displacement from that
# point as (range,bearing)
#
sub _forward
{
my $self = shift;
my( $lat1, $lon1, $range, $bearing ) = @_;
 
if( $DEBUG ) {
printf "_forward(lat1=%.8f,lon1=%.8f,range=%.8f,bearing=%.8f)\n",
$lat1, $lon1, $range, $bearing;
}
 
my $eps = 0.5e-13;
 
my $a = $self->{equatorial};
my $f = $self->{flattening};
my $r = 1.0 - $f;
 
my $tu = $r * sin($lat1) / cos($lat1);
my $faz = $bearing;
my $s = $self->{conversion} * $range;
my $sf = sin($faz);
my $cf = cos($faz);
 
my $baz = 0.0;
$baz = 2.0 * atan2($tu,$cf) if( $cf != 0.0 );
my $cu = 1.0 / sqrt(1.0 + $tu*$tu);
my $su = $tu * $cu;
my $sa = $cu * $sf;
my $c2a = 1.0 - ($sa*$sa);
my $x = 1.0 + sqrt( (((1.0/($r*$r)) - 1.0 )*$c2a) +1.0);
$x = ($x-2.0)/$x;
my $c = 1.0 - $x;
$c = ((($x*$x)/4.0) + 1.0)/$c;
my $d = $x * ((0.375*$x*$x)-1.0);
$tu = (($s/$r)/$a)/$c;
my $y = $tu;
 
if( $DEBUG ) {
printf "r=%.8f, tu=%.8f, faz=%.8f\n", $r, $tu, $faz;
printf "baz=%.8f, sf=%.8f, cf=%.8f\n", $baz, $sf, $cf;
printf "cu=%.8f, su=%.8f, sa=%.8f\n", $cu, $su, $sa;
printf "x=%.8f, c=%.8f, y=%.8f\n", $x, $c, $y;
}
 
my( $cy, $cz, $e, $sy );
do {
$sy = sin($y);
$cy = cos($y);
$cz = cos($baz+$y);
$e = (2.0*$cz*$cz)-1.0;
$c = $y;
$x = $e * $cy;
$y = (2.0 * $e) - 1.0;
$y = ((((((((($sy*$sy*4.0)-3.0)*$y*$cz*$d)/6.0)+$x)*$d)/4.0)-$cz)*$sy*$d) +
$tu;
} while( abs($y-$c) > $eps );
 
$baz = ($cu*$cy*$cf) - ($su*$sy);
$c = $r*sqrt(($sa*$sa) + ($baz*$baz));
$d = $su*$cy + $cu*$sy*$cf;
my $lat2 = atan2($d,$c);
$c = $cu*$cy - $su*$sy*$cf;
$x = atan2($sy*$sf,$c);
$c = (((((-3.0*$c2a)+4.0)*$f)+4.0)*$c2a*$f)/16.0;
$d = (((($e*$cy*$c) + $cz)*$sy*$c)+$y)*$sa;
my $lon2 = $lon1 + $x - (1.0-$c)*$d*$f;
#$baz = atan2($sa,$baz) + pi;
 
# return result
return ($lat2,$lon2);
 
}
 
# _normalize_input
#
# Normalize a set of input angle values by converting to
# radians if given in degrees and by converting to the
# range [0,2pi), i.e. greater than or equal to zero and
# less than two pi.
#
sub _normalize_input
{
my $units = shift;
my @args = @_;
return map {
$_ = deg2rad($_) if $units eq 'degrees';
while( $_ < 0 ) { $_ += $twopi }
while( $_ >= $twopi ) { $_ -= $twopi }
$_
} @args;
}
 
# _normalize_output
#
# Normalize a set of output angle values by converting to
# degrees if needed and by converting to the range [-pi,+pi) or
# [0,2pi) as needed.
#
sub _normalize_output
{
my $self = shift;
my $elem = shift; # 'bearing' or 'longitude'
# adjust remaining input values by reference
for ( @_ ) {
if( $self->{$elem} ) {
# normalize to range [-pi,pi)
while( $_ < -(pi) ) { $_ += $twopi }
while( $_ >= pi ) { $_ -= $twopi }
}else{
# normalize to range [0,2*pi)
while( $_ < 0 ) { $_ += $twopi }
while( $_ >= $twopi ) { $_ -= $twopi }
}
$_ = rad2deg($_) if $self->{units} eq 'degrees';
}
}
 
=head1 DEFINED ELLIPSOIDS
 
The following ellipsoids are defined in Geo::Ellipsoid, with the
semi-major axis in meters and the reciprocal flattening as shown.
The default ellipsoid is WGS84.
 
Ellipsoid Semi-Major Axis (m.) 1/Flattening
--------- ------------------- ---------------
AIRY 6377563.396 299.3249646
AIRY-MODIFIED 6377340.189 299.3249646
AUSTRALIAN 6378160.0 298.25
BESSEL-1841 6377397.155 299.1528128
CLARKE-1880 6378249.145 293.465
EVEREST-1830 6377276.345 290.8017
EVEREST-MODIFIED 6377304.063 290.8017
FISHER-1960 6378166.0 298.3
FISHER-1968 6378150.0 298.3
GRS80 6378137.0 298.25722210088
HOUGH-1956 6378270.0 297.0
HAYFORD 6378388.0 297.0
IAU76 6378140.0 298.257
KRASSOVSKY-1938 6378245.0 298.3
NAD27 6378206.4 294.9786982138
NWL-9D 6378145.0 298.25
SOUTHAMERICAN-1969 6378160.0 298.25
SOVIET-1985 6378136.0 298.257
WGS72 6378135.0 298.26
WGS84 6378137.0 298.257223563
 
=head1 LIMITATIONS
 
The methods should not be used on points which are too near the poles
(above or below 89 degrees), and should not be used on points which
are antipodal, i.e., exactly on opposite sides of the ellipsoid. The
methods will not return valid results in these cases.
 
=head1 ACKNOWLEDGEMENTS
 
The conversion algorithms used here are Perl translations of Fortran
routines written by LCDR S<L. Pfeifer> NGS Rockville MD that implement
S<T. Vincenty's> Modified Rainsford's method with Helmert's elliptical
terms as published in "Direct and Inverse Solutions of Ellipsoid on
the Ellipsoid with Application of Nested Equations", S<T. Vincenty,>
Survey Review, April 1975.
 
The Fortran source code files inverse.for and forward.for
may be obtained from
 
ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/
 
=head1 AUTHOR
 
Jim Gibson, C<< <Jim@Gibson.org> >>
 
=head1 BUGS
 
See LIMITATIONS, above.
 
Please report any bugs or feature requests to
C<bug-geo-ellipsoid@rt.cpan.org>, or through the web interface at
L<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Geo-Ellipsoid>.
 
=head1 COPYRIGHT & LICENSE
 
Copyright 2005-2008 Jim Gibson, all rights reserved.
 
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
 
=head1 SEE ALSO
 
Geo::Distance, Geo::Ellipsoids
 
=cut
 
1; # End of Geo::Ellipsoid
/MissionCockpit/tags/V0.2.5/perl/site/lib/Time/HiRes.pm
0,0 → 1,591
package Time::HiRes;
 
use strict;
use vars qw($VERSION $XS_VERSION @ISA @EXPORT @EXPORT_OK $AUTOLOAD);
 
require Exporter;
require DynaLoader;
 
@ISA = qw(Exporter DynaLoader);
 
@EXPORT = qw( );
@EXPORT_OK = qw (usleep sleep ualarm alarm gettimeofday time tv_interval
getitimer setitimer nanosleep clock_gettime clock_getres
clock clock_nanosleep
CLOCK_HIGHRES CLOCK_MONOTONIC CLOCK_PROCESS_CPUTIME_ID
CLOCK_REALTIME CLOCK_SOFTTIME CLOCK_THREAD_CPUTIME_ID
CLOCK_TIMEOFDAY CLOCKS_PER_SEC
ITIMER_REAL ITIMER_VIRTUAL ITIMER_PROF ITIMER_REALPROF
TIMER_ABSTIME
d_usleep d_ualarm d_gettimeofday d_getitimer d_setitimer
d_nanosleep d_clock_gettime d_clock_getres
d_clock d_clock_nanosleep
stat
);
 
$VERSION = '1.9719';
$XS_VERSION = $VERSION;
$VERSION = eval $VERSION;
 
sub AUTOLOAD {
my $constname;
($constname = $AUTOLOAD) =~ s/.*:://;
# print "AUTOLOAD: constname = $constname ($AUTOLOAD)\n";
die "&Time::HiRes::constant not defined" if $constname eq 'constant';
my ($error, $val) = constant($constname);
# print "AUTOLOAD: error = $error, val = $val\n";
if ($error) {
my (undef,$file,$line) = caller;
die "$error at $file line $line.\n";
}
{
no strict 'refs';
*$AUTOLOAD = sub { $val };
}
goto &$AUTOLOAD;
}
 
sub import {
my $this = shift;
for my $i (@_) {
if (($i eq 'clock_getres' && !&d_clock_getres) ||
($i eq 'clock_gettime' && !&d_clock_gettime) ||
($i eq 'clock_nanosleep' && !&d_clock_nanosleep) ||
($i eq 'clock' && !&d_clock) ||
($i eq 'nanosleep' && !&d_nanosleep) ||
($i eq 'usleep' && !&d_usleep) ||
($i eq 'ualarm' && !&d_ualarm)) {
require Carp;
Carp::croak("Time::HiRes::$i(): unimplemented in this platform");
}
}
Time::HiRes->export_to_level(1, $this, @_);
}
 
bootstrap Time::HiRes;
 
# Preloaded methods go here.
 
sub tv_interval {
# probably could have been done in C
my ($a, $b) = @_;
$b = [gettimeofday()] unless defined($b);
(${$b}[0] - ${$a}[0]) + ((${$b}[1] - ${$a}[1]) / 1_000_000);
}
 
# Autoload methods go after =cut, and are processed by the autosplit program.
 
1;
__END__
 
=head1 NAME
 
Time::HiRes - High resolution alarm, sleep, gettimeofday, interval timers
 
=head1 SYNOPSIS
 
use Time::HiRes qw( usleep ualarm gettimeofday tv_interval nanosleep
clock_gettime clock_getres clock_nanosleep clock
stat );
 
usleep ($microseconds);
nanosleep ($nanoseconds);
 
ualarm ($microseconds);
ualarm ($microseconds, $interval_microseconds);
 
$t0 = [gettimeofday];
($seconds, $microseconds) = gettimeofday;
 
$elapsed = tv_interval ( $t0, [$seconds, $microseconds]);
$elapsed = tv_interval ( $t0, [gettimeofday]);
$elapsed = tv_interval ( $t0 );
 
use Time::HiRes qw ( time alarm sleep );
 
$now_fractions = time;
sleep ($floating_seconds);
alarm ($floating_seconds);
alarm ($floating_seconds, $floating_interval);
 
use Time::HiRes qw( setitimer getitimer );
 
setitimer ($which, $floating_seconds, $floating_interval );
getitimer ($which);
 
use Time::HiRes qw( clock_gettime clock_getres clock_nanosleep
ITIMER_REAL ITIMER_VIRTUAL ITIMER_PROF ITIMER_REALPROF );
 
$realtime = clock_gettime(CLOCK_REALTIME);
$resolution = clock_getres(CLOCK_REALTIME);
 
clock_nanosleep(CLOCK_REALTIME, 1.5e9);
clock_nanosleep(CLOCK_REALTIME, time()*1e9 + 10e9, TIMER_ABSTIME);
 
my $ticktock = clock();
 
use Time::HiRes qw( stat );
 
my @stat = stat("file");
my @stat = stat(FH);
 
=head1 DESCRIPTION
 
The C<Time::HiRes> module implements a Perl interface to the
C<usleep>, C<nanosleep>, C<ualarm>, C<gettimeofday>, and
C<setitimer>/C<getitimer> system calls, in other words, high
resolution time and timers. See the L</EXAMPLES> section below and the
test scripts for usage; see your system documentation for the
description of the underlying C<nanosleep> or C<usleep>, C<ualarm>,
C<gettimeofday>, and C<setitimer>/C<getitimer> calls.
 
If your system lacks C<gettimeofday()> or an emulation of it you don't
get C<gettimeofday()> or the one-argument form of C<tv_interval()>.
If your system lacks all of C<nanosleep()>, C<usleep()>,
C<select()>, and C<poll>, you don't get C<Time::HiRes::usleep()>,
C<Time::HiRes::nanosleep()>, or C<Time::HiRes::sleep()>.
If your system lacks both C<ualarm()> and C<setitimer()> you don't get
C<Time::HiRes::ualarm()> or C<Time::HiRes::alarm()>.
 
If you try to import an unimplemented function in the C<use> statement
it will fail at compile time.
 
If your subsecond sleeping is implemented with C<nanosleep()> instead
of C<usleep()>, you can mix subsecond sleeping with signals since
C<nanosleep()> does not use signals. This, however, is not portable,
and you should first check for the truth value of
C<&Time::HiRes::d_nanosleep> to see whether you have nanosleep, and
then carefully read your C<nanosleep()> C API documentation for any
peculiarities.
 
If you are using C<nanosleep> for something else than mixing sleeping
with signals, give some thought to whether Perl is the tool you should
be using for work requiring nanosecond accuracies.
 
Remember that unless you are working on a I<hard realtime> system,
any clocks and timers will be imprecise, especially so if you are working
in a pre-emptive multiuser system. Understand the difference between
I<wallclock time> and process time (in UNIX-like systems the sum of
I<user> and I<system> times). Any attempt to sleep for X seconds will
most probably end up sleeping B<more> than that, but don't be surpised
if you end up sleeping slightly B<less>.
 
The following functions can be imported from this module.
No functions are exported by default.
 
=over 4
 
=item gettimeofday ()
 
In array context returns a two-element array with the seconds and
microseconds since the epoch. In scalar context returns floating
seconds like C<Time::HiRes::time()> (see below).
 
=item usleep ( $useconds )
 
Sleeps for the number of microseconds (millionths of a second)
specified. Returns the number of microseconds actually slept.
Can sleep for more than one second, unlike the C<usleep> system call.
Can also sleep for zero seconds, which often works like a I<thread yield>.
See also C<Time::HiRes::usleep()>, C<Time::HiRes::sleep()>, and
C<Time::HiRes::clock_nanosleep()>.
 
Do not expect usleep() to be exact down to one microsecond.
 
=item nanosleep ( $nanoseconds )
 
Sleeps for the number of nanoseconds (1e9ths of a second) specified.
Returns the number of nanoseconds actually slept (accurate only to
microseconds, the nearest thousand of them). Can sleep for more than
one second. Can also sleep for zero seconds, which often works like
a I<thread yield>. See also C<Time::HiRes::sleep()>,
C<Time::HiRes::usleep()>, and C<Time::HiRes::clock_nanosleep()>.
 
Do not expect nanosleep() to be exact down to one nanosecond.
Getting even accuracy of one thousand nanoseconds is good.
 
=item ualarm ( $useconds [, $interval_useconds ] )
 
Issues a C<ualarm> call; the C<$interval_useconds> is optional and
will be zero if unspecified, resulting in C<alarm>-like behaviour.
 
Returns the remaining time in the alarm in microseconds, or C<undef>
if an error occurred.
 
ualarm(0) will cancel an outstanding ualarm().
 
Note that the interaction between alarms and sleeps is unspecified.
 
=item tv_interval
 
tv_interval ( $ref_to_gettimeofday [, $ref_to_later_gettimeofday] )
 
Returns the floating seconds between the two times, which should have
been returned by C<gettimeofday()>. If the second argument is omitted,
then the current time is used.
 
=item time ()
 
Returns a floating seconds since the epoch. This function can be
imported, resulting in a nice drop-in replacement for the C<time>
provided with core Perl; see the L</EXAMPLES> below.
 
B<NOTE 1>: This higher resolution timer can return values either less
or more than the core C<time()>, depending on whether your platform
rounds the higher resolution timer values up, down, or to the nearest second
to get the core C<time()>, but naturally the difference should be never
more than half a second. See also L</clock_getres>, if available
in your system.
 
B<NOTE 2>: Since Sunday, September 9th, 2001 at 01:46:40 AM GMT, when
the C<time()> seconds since epoch rolled over to 1_000_000_000, the
default floating point format of Perl and the seconds since epoch have
conspired to produce an apparent bug: if you print the value of
C<Time::HiRes::time()> you seem to be getting only five decimals, not
six as promised (microseconds). Not to worry, the microseconds are
there (assuming your platform supports such granularity in the first
place). What is going on is that the default floating point format of
Perl only outputs 15 digits. In this case that means ten digits
before the decimal separator and five after. To see the microseconds
you can use either C<printf>/C<sprintf> with C<"%.6f">, or the
C<gettimeofday()> function in list context, which will give you the
seconds and microseconds as two separate values.
 
=item sleep ( $floating_seconds )
 
Sleeps for the specified amount of seconds. Returns the number of
seconds actually slept (a floating point value). This function can
be imported, resulting in a nice drop-in replacement for the C<sleep>
provided with perl, see the L</EXAMPLES> below.
 
Note that the interaction between alarms and sleeps is unspecified.
 
=item alarm ( $floating_seconds [, $interval_floating_seconds ] )
 
The C<SIGALRM> signal is sent after the specified number of seconds.
Implemented using C<setitimer()> if available, C<ualarm()> if not.
The C<$interval_floating_seconds> argument is optional and will be
zero if unspecified, resulting in C<alarm()>-like behaviour. This
function can be imported, resulting in a nice drop-in replacement for
the C<alarm> provided with perl, see the L</EXAMPLES> below.
 
Returns the remaining time in the alarm in seconds, or C<undef>
if an error occurred.
 
B<NOTE 1>: With some combinations of operating systems and Perl
releases C<SIGALRM> restarts C<select()>, instead of interrupting it.
This means that an C<alarm()> followed by a C<select()> may together
take the sum of the times specified for the the C<alarm()> and the
C<select()>, not just the time of the C<alarm()>.
 
Note that the interaction between alarms and sleeps is unspecified.
 
=item setitimer ( $which, $floating_seconds [, $interval_floating_seconds ] )
 
Start up an interval timer: after a certain time, a signal ($which) arrives,
and more signals may keep arriving at certain intervals. To disable
an "itimer", use C<$floating_seconds> of zero. If the
C<$interval_floating_seconds> is set to zero (or unspecified), the
timer is disabled B<after> the next delivered signal.
 
Use of interval timers may interfere with C<alarm()>, C<sleep()>,
and C<usleep()>. In standard-speak the "interaction is unspecified",
which means that I<anything> may happen: it may work, it may not.
 
In scalar context, the remaining time in the timer is returned.
 
In list context, both the remaining time and the interval are returned.
 
There are usually three or four interval timers (signals) available: the
C<$which> can be C<ITIMER_REAL>, C<ITIMER_VIRTUAL>, C<ITIMER_PROF>, or
C<ITIMER_REALPROF>. Note that which ones are available depends: true
UNIX platforms usually have the first three, but only Solaris seems to
have C<ITIMER_REALPROF> (which is used to profile multithreaded programs).
Win32 unfortunately does not haveinterval timers.
 
C<ITIMER_REAL> results in C<alarm()>-like behaviour. Time is counted in
I<real time>; that is, wallclock time. C<SIGALRM> is delivered when
the timer expires.
 
C<ITIMER_VIRTUAL> counts time in (process) I<virtual time>; that is,
only when the process is running. In multiprocessor/user/CPU systems
this may be more or less than real or wallclock time. (This time is
also known as the I<user time>.) C<SIGVTALRM> is delivered when the
timer expires.
 
C<ITIMER_PROF> counts time when either the process virtual time or when
the operating system is running on behalf of the process (such as I/O).
(This time is also known as the I<system time>.) (The sum of user
time and system time is known as the I<CPU time>.) C<SIGPROF> is
delivered when the timer expires. C<SIGPROF> can interrupt system calls.
 
The semantics of interval timers for multithreaded programs are
system-specific, and some systems may support additional interval
timers. For example, it is unspecified which thread gets the signals.
See your C<setitimer()> documentation.
 
=item getitimer ( $which )
 
Return the remaining time in the interval timer specified by C<$which>.
 
In scalar context, the remaining time is returned.
 
In list context, both the remaining time and the interval are returned.
The interval is always what you put in using C<setitimer()>.
 
=item clock_gettime ( $which )
 
Return as seconds the current value of the POSIX high resolution timer
specified by C<$which>. All implementations that support POSIX high
resolution timers are supposed to support at least the C<$which> value
of C<CLOCK_REALTIME>, which is supposed to return results close to the
results of C<gettimeofday>, or the number of seconds since 00:00:00:00
January 1, 1970 Greenwich Mean Time (GMT). Do not assume that
CLOCK_REALTIME is zero, it might be one, or something else.
Another potentially useful (but not available everywhere) value is
C<CLOCK_MONOTONIC>, which guarantees a monotonically increasing time
value (unlike time() or gettimeofday(), which can be adjusted).
See your system documentation for other possibly supported values.
 
=item clock_getres ( $which )
 
Return as seconds the resolution of the POSIX high resolution timer
specified by C<$which>. All implementations that support POSIX high
resolution timers are supposed to support at least the C<$which> value
of C<CLOCK_REALTIME>, see L</clock_gettime>.
 
=item clock_nanosleep ( $which, $nanoseconds, $flags = 0)
 
Sleeps for the number of nanoseconds (1e9ths of a second) specified.
Returns the number of nanoseconds actually slept. The $which is the
"clock id", as with clock_gettime() and clock_getres(). The flags
default to zero but C<TIMER_ABSTIME> can specified (must be exported
explicitly) which means that C<$nanoseconds> is not a time interval
(as is the default) but instead an absolute time. Can sleep for more
than one second. Can also sleep for zero seconds, which often works
like a I<thread yield>. See also C<Time::HiRes::sleep()>,
C<Time::HiRes::usleep()>, and C<Time::HiRes::nanosleep()>.
 
Do not expect clock_nanosleep() to be exact down to one nanosecond.
Getting even accuracy of one thousand nanoseconds is good.
 
=item clock()
 
Return as seconds the I<process time> (user + system time) spent by
the process since the first call to clock() (the definition is B<not>
"since the start of the process", though if you are lucky these times
may be quite close to each other, depending on the system). What this
means is that you probably need to store the result of your first call
to clock(), and subtract that value from the following results of clock().
 
The time returned also includes the process times of the terminated
child processes for which wait() has been executed. This value is
somewhat like the second value returned by the times() of core Perl,
but not necessarily identical. Note that due to backward
compatibility limitations the returned value may wrap around at about
2147 seconds or at about 36 minutes.
 
=item stat
 
=item stat FH
 
=item stat EXPR
 
As L<perlfunc/stat> but with the access/modify/change file timestamps
in subsecond resolution, if the operating system and the filesystem
both support such timestamps. To override the standard stat():
 
use Time::HiRes qw(stat);
 
Test for the value of &Time::HiRes::d_hires_stat to find out whether
the operating system supports subsecond file timestamps: a value
larger than zero means yes. There are unfortunately no easy
ways to find out whether the filesystem supports such timestamps.
UNIX filesystems often do; NTFS does; FAT doesn't (FAT timestamp
granularity is B<two> seconds).
 
A zero return value of &Time::HiRes::d_hires_stat means that
Time::HiRes::stat is a no-op passthrough for CORE::stat(),
and therefore the timestamps will stay integers. The same
thing will happen if the filesystem does not do subsecond timestamps,
even if the &Time::HiRes::d_hires_stat is non-zero.
 
In any case do not expect nanosecond resolution, or even a microsecond
resolution. Also note that the modify/access timestamps might have
different resolutions, and that they need not be synchronized, e.g.
if the operations are
 
write
stat # t1
read
stat # t2
 
the access time stamp from t2 need not be greater-than the modify
time stamp from t1: it may be equal or I<less>.
 
=back
 
=head1 EXAMPLES
 
use Time::HiRes qw(usleep ualarm gettimeofday tv_interval);
 
$microseconds = 750_000;
usleep($microseconds);
 
# signal alarm in 2.5s & every .1s thereafter
ualarm(2_500_000, 100_000);
# cancel that ualarm
ualarm(0);
 
# get seconds and microseconds since the epoch
($s, $usec) = gettimeofday();
 
# measure elapsed time
# (could also do by subtracting 2 gettimeofday return values)
$t0 = [gettimeofday];
# do bunch of stuff here
$t1 = [gettimeofday];
# do more stuff here
$t0_t1 = tv_interval $t0, $t1;
 
$elapsed = tv_interval ($t0, [gettimeofday]);
$elapsed = tv_interval ($t0); # equivalent code
 
#
# replacements for time, alarm and sleep that know about
# floating seconds
#
use Time::HiRes;
$now_fractions = Time::HiRes::time;
Time::HiRes::sleep (2.5);
Time::HiRes::alarm (10.6666666);
 
use Time::HiRes qw ( time alarm sleep );
$now_fractions = time;
sleep (2.5);
alarm (10.6666666);
 
# Arm an interval timer to go off first at 10 seconds and
# after that every 2.5 seconds, in process virtual time
 
use Time::HiRes qw ( setitimer ITIMER_VIRTUAL time );
 
$SIG{VTALRM} = sub { print time, "\n" };
setitimer(ITIMER_VIRTUAL, 10, 2.5);
 
use Time::HiRes qw( clock_gettime clock_getres CLOCK_REALTIME );
# Read the POSIX high resolution timer.
my $high = clock_getres(CLOCK_REALTIME);
# But how accurate we can be, really?
my $reso = clock_getres(CLOCK_REALTIME);
 
use Time::HiRes qw( clock_nanosleep TIMER_ABSTIME );
clock_nanosleep(CLOCK_REALTIME, 1e6);
clock_nanosleep(CLOCK_REALTIME, 2e9, TIMER_ABSTIME);
 
use Time::HiRes qw( clock );
my $clock0 = clock();
... # Do something.
my $clock1 = clock();
my $clockd = $clock1 - $clock0;
 
use Time::HiRes qw( stat );
my ($atime, $mtime, $ctime) = (stat("istics"))[8, 9, 10];
 
=head1 C API
 
In addition to the perl API described above, a C API is available for
extension writers. The following C functions are available in the
modglobal hash:
 
name C prototype
--------------- ----------------------
Time::NVtime double (*)()
Time::U2time void (*)(pTHX_ UV ret[2])
 
Both functions return equivalent information (like C<gettimeofday>)
but with different representations. The names C<NVtime> and C<U2time>
were selected mainly because they are operating system independent.
(C<gettimeofday> is Unix-centric, though some platforms like Win32 and
VMS have emulations for it.)
 
Here is an example of using C<NVtime> from C:
 
double (*myNVtime)(); /* Returns -1 on failure. */
SV **svp = hv_fetch(PL_modglobal, "Time::NVtime", 12, 0);
if (!svp) croak("Time::HiRes is required");
if (!SvIOK(*svp)) croak("Time::NVtime isn't a function pointer");
myNVtime = INT2PTR(double(*)(), SvIV(*svp));
printf("The current time is: %f\n", (*myNVtime)());
 
=head1 DIAGNOSTICS
 
=head2 useconds or interval more than ...
 
In ualarm() you tried to use number of microseconds or interval (also
in microseconds) more than 1_000_000 and setitimer() is not available
in your system to emulate that case.
 
=head2 negative time not invented yet
 
You tried to use a negative time argument.
 
=head2 internal error: useconds < 0 (unsigned ... signed ...)
 
Something went horribly wrong-- the number of microseconds that cannot
become negative just became negative. Maybe your compiler is broken?
 
=head2 useconds or uinterval equal to or more than 1000000
 
In some platforms it is not possible to get an alarm with subsecond
resolution and later than one second.
 
=head2 unimplemented in this platform
 
Some calls simply aren't available, real or emulated, on every platform.
 
=head1 CAVEATS
 
Notice that the core C<time()> maybe rounding rather than truncating.
What this means is that the core C<time()> may be reporting the time
as one second later than C<gettimeofday()> and C<Time::HiRes::time()>.
 
Adjusting the system clock (either manually or by services like ntp)
may cause problems, especially for long running programs that assume
a monotonously increasing time (note that all platforms do not adjust
time as gracefully as UNIX ntp does). For example in Win32 (and derived
platforms like Cygwin and MinGW) the Time::HiRes::time() may temporarily
drift off from the system clock (and the original time()) by up to 0.5
seconds. Time::HiRes will notice this eventually and recalibrate.
Note that since Time::HiRes 1.77 the clock_gettime(CLOCK_MONOTONIC)
might help in this (in case your system supports CLOCK_MONOTONIC).
 
Some systems have APIs but not implementations: for example QNX and Haiku
have the interval timer APIs but not the functionality.
 
=head1 SEE ALSO
 
Perl modules L<BSD::Resource>, L<Time::TAI64>.
 
Your system documentation for C<clock>, C<clock_gettime>,
C<clock_getres>, C<clock_nanosleep>, C<clock_settime>, C<getitimer>,
C<gettimeofday>, C<setitimer>, C<sleep>, C<stat>, C<ualarm>.
 
=head1 AUTHORS
 
D. Wegscheid <wegscd@whirlpool.com>
R. Schertler <roderick@argon.org>
J. Hietaniemi <jhi@iki.fi>
G. Aas <gisle@aas.no>
 
=head1 COPYRIGHT AND LICENSE
 
Copyright (c) 1996-2002 Douglas E. Wegscheid. All rights reserved.
 
Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Jarkko Hietaniemi.
All rights reserved.
 
This program is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
 
=cut
/MissionCockpit/tags/V0.2.5/perl/site/lib/Win32/Locale.pm
0,0 → 1,371
 
package Win32::Locale;
# Time-stamp: "2004-01-11 18:56:06 AST"
use strict;
use vars qw($VERSION %MSLocale2LangTag);
$VERSION = '0.04';
%MSLocale2LangTag = (
 
0x0436 => 'af' , # <AFK> <Afrikaans> <Afrikaans>
0x041c => 'sq' , # <SQI> <Albanian> <Albanian>
 
0x0401 => 'ar-sa', # <ARA> <Arabic> <Arabic (Saudi Arabia)>
0x0801 => 'ar-iq', # <ARI> <Arabic> <Arabic (Iraq)>
0x0C01 => 'ar-eg', # <ARE> <Arabic> <Arabic (Egypt)>
0x1001 => 'ar-ly', # <ARL> <Arabic> <Arabic (Libya)>
0x1401 => 'ar-dz', # <ARG> <Arabic> <Arabic (Algeria)>
0x1801 => 'ar-ma', # <ARM> <Arabic> <Arabic (Morocco)>
0x1C01 => 'ar-tn', # <ART> <Arabic> <Arabic (Tunisia)>
0x2001 => 'ar-om', # <ARO> <Arabic> <Arabic (Oman)>
0x2401 => 'ar-ye', # <ARY> <Arabic> <Arabic (Yemen)>
0x2801 => 'ar-sy', # <ARS> <Arabic> <Arabic (Syria)>
0x2C01 => 'ar-jo', # <ARJ> <Arabic> <Arabic (Jordan)>
0x3001 => 'ar-lb', # <ARB> <Arabic> <Arabic (Lebanon)>
0x3401 => 'ar-kw', # <ARK> <Arabic> <Arabic (Kuwait)>
0x3801 => 'ar-ae', # <ARU> <Arabic> <Arabic (U.A.E.)>
0x3C01 => 'ar-bh', # <ARH> <Arabic> <Arabic (Bahrain)>
0x4001 => 'ar-qa', # <ARQ> <Arabic> <Arabic (Qatar)>
 
0x042b => 'hy' , # <HYE> <Armenian> <Armenian>
0x044d => 'as' , # <ASM> <Assamese> <Assamese>
0x042c => 'az-latn', # <AZE> <Azeri> <Azeri (Latin)>
0x082c => 'az-cyrl', # <AZC> <Azeri> <Azeri (Cyrillic)>
0x042D => 'eu' , # <EUQ> <Basque> <Basque>
0x0423 => 'be' , # <BEL> <Belarussian> <Belarussian>
0x0445 => 'bn' , # <BEN> <Bengali> <Bengali>
0x0402 => 'bg' , # <BGR> <Bulgarian> <Bulgarian>
0x0403 => 'ca' , # <CAT> <Catalan> <Catalan>
 
# Chinese is zh, not cn!
0x0404 => 'zh-tw', # <CHT> <Chinese> <Chinese (Taiwan)>
0x0804 => 'zh-cn', # <CHS> <Chinese> <Chinese (PRC)>
0x0C04 => 'zh-hk', # <ZHH> <Chinese> <Chinese (Hong Kong)>
0x1004 => 'zh-sg', # <ZHI> <Chinese> <Chinese (Singapore)>
0x1404 => 'zh-mo', # <ZHM> <Chinese> <Chinese (Macau SAR)>
 
0x041a => 'hr' , # <HRV> <Croatian> <Croatian>
0x0405 => 'cs' , # <CSY> <Czech> <Czech>
0x0406 => 'da' , # <DAN> <Danish> <Danish>
0x0413 => 'nl-nl', # <NLD> <Dutch> <Dutch (Netherlands)>
0x0813 => 'nl-be', # <NLB> <Dutch> <Dutch (Belgium)>
0x0409 => 'en-us', # <ENU> <English> <English (United States)>
0x0809 => 'en-gb', # <ENG> <English> <English (United Kingdom)>
0x0c09 => 'en-au', # <ENA> <English> <English (Australia)>
0x1009 => 'en-ca', # <ENC> <English> <English (Canada)>
0x1409 => 'en-nz', # <ENZ> <English> <English (New Zealand)>
0x1809 => 'en-ie', # <ENI> <English> <English (Ireland)>
0x1c09 => 'en-za', # <ENS> <English> <English (South Africa)>
0x2009 => 'en-jm', # <ENJ> <English> <English (Jamaica)>
0x2409 => 'en-jm', # <ENB> <English> <English (Caribbean)> # a hack
0x2809 => 'en-bz', # <ENL> <English> <English (Belize)>
0x2c09 => 'en-tt', # <ENT> <English> <English (Trinidad)>
0x3009 => 'en-zw', # <ENW> <English> <English (Zimbabwe)>
0x3409 => 'en-ph', # <ENP> <English> <English (Philippines)>
0x0425 => 'et' , # <ETI> <Estonian> <Estonian>
0x0438 => 'fo' , # <FOS> <Faeroese> <Faeroese>
0x0429 => 'pa' , # <FAR> <Farsi> <Farsi> # =Persian
0x040b => 'fi' , # <FIN> <Finnish> <Finnish>
0x040c => 'fr-fr', # <FRA> <French> <French (France)>
0x080c => 'fr-be', # <FRB> <French> <French (Belgium)>
0x0c0c => 'fr-ca', # <FRC> <French> <French (Canada)>
0x100c => 'fr-ch', # <FRS> <French> <French (Switzerland)>
0x140c => 'fr-lu', # <FRL> <French> <French (Luxembourg)>
0x180c => 'fr-mc', # <FRM> <French> <French (Monaco)>
0x0437 => 'ka' , # <KAT> <Georgian> <Georgian>
0x0407 => 'de-de', # <DEU> <German> <German (Germany)>
0x0807 => 'de-ch', # <DES> <German> <German (Switzerland)>
0x0c07 => 'de-at', # <DEA> <German> <German (Austria)>
0x1007 => 'de-lu', # <DEL> <German> <German (Luxembourg)>
0x1407 => 'de-li', # <DEC> <German> <German (Liechtenstein)>
0x0408 => 'el' , # <ELL> <Greek> <Greek>
0x0447 => 'gu' , # <GUJ> <Gujarati> <Gujarati>
0x040D => 'he' , # <HEB> <Hebrew> <Hebrew> # formerly 'iw'
0x0439 => 'hi' , # <HIN> <Hindi> <Hindi>
0x040e => 'hu' , # <HUN> <Hungarian> <Hungarian>
0x040F => 'is' , # <ISL> <Icelandic> <Icelandic>
0x0421 => 'id' , # <IND> <Indonesian> <Indonesian> # formerly 'in'
0x0410 => 'it-it', # <ITA> <Italian> <Italian (Italy)>
0x0810 => 'it-ch', # <ITS> <Italian> <Italian (Switzerland)>
0x0411 => 'ja' , # <JPN> <Japanese> <Japanese> # not "jp"!
0x044b => 'kn' , # <KAN> <Kannada> <Kannada>
0x0860 => 'ks' , # <KAI> <Kashmiri> <Kashmiri (India)>
0x043f => 'kk' , # <KAZ> <Kazakh> <Kazakh>
0x0457 => 'kok' , # <KOK> <Konkani> <Konkani> 3-letters!
0x0412 => 'ko' , # <KOR> <Korean> <Korean>
0x0812 => 'ko' , # <KOJ> <Korean> <Korean (Johab)> ?
0x0426 => 'lv' , # <LVI> <Latvian> <Latvian> # = lettish
0x0427 => 'lt' , # <LTH> <Lithuanian> <Lithuanian>
0x0827 => 'lt' , # <LTH> <Lithuanian> <Lithuanian (Classic)> ?
0x042f => 'mk' , # <MKD> <FYOR Macedonian> <FYOR Macedonian>
0x043e => 'ms' , # <MSL> <Malay> <Malaysian>
0x083e => 'ms-bn', # <MSB> <Malay> <Malay Brunei Darussalam>
0x044c => 'ml' , # <MAL> <Malayalam> <Malayalam>
0x044e => 'mr' , # <MAR> <Marathi> <Marathi>
0x0461 => 'ne-np', # <NEP> <Nepali> <Nepali (Nepal)>
0x0861 => 'ne-in', # <NEI> <Nepali> <Nepali (India)>
0x0414 => 'nb' , # <NOR> <Norwegian> <Norwegian (Bokmal)> #was no-bok
0x0814 => 'nn' , # <NON> <Norwegian> <Norwegian (Nynorsk)> #was no-nyn
# note that this leaves nothing using "no" ("Norwegian")
0x0448 => 'or' , # <ORI> <Oriya> <Oriya>
0x0415 => 'pl' , # <PLK> <Polish> <Polish>
0x0416 => 'pt-br', # <PTB> <Portuguese> <Portuguese (Brazil)>
0x0816 => 'pt-pt', # <PTG> <Portuguese> <Portuguese (Portugal)>
0x0446 => 'pa' , # <PAN> <Punjabi> <Punjabi>
0x0417 => 'rm' , # <RMS> <Rhaeto-Romanic> <Rhaeto-Romanic>
0x0418 => 'ro' , # <ROM> <Romanian> <Romanian>
0x0818 => 'ro-md', # <ROV> <Romanian> <Romanian (Moldova)>
0x0419 => 'ru' , # <RUS> <Russian> <Russian>
0x0819 => 'ru-md', # <RUM> <Russian> <Russian (Moldova)>
0x043b => 'se' , # <SZI> <Sami> <Sami (Lappish)> assuming == "Northern Sami"
0x044f => 'sa' , # <SAN> <Sanskrit> <Sanskrit>
0x0c1a => 'sr-cyrl', # <SRB> <Serbian> <Serbian (Cyrillic)>
0x081a => 'sr-latn', # <SRL> <Serbian> <Serbian (Latin)>
0x0459 => 'sd' , # <SND> <Sindhi> <Sindhi>
0x041b => 'sk' , # <SKY> <Slovak> <Slovak>
0x0424 => 'sl' , # <SLV> <Slovenian> <Slovenian>
0x042e => 'wen' , # <SBN> <Sorbian> <Sorbian> # !!! 3 letters
0x040a => 'es-es', # <ESP> <Spanish> <Spanish (Spain - Traditional Sort)>
0x080a => 'es-mx', # <ESM> <Spanish> <Spanish (Mexico)>
0x0c0a => 'es-es', # <ESN> <Spanish> <Spanish (Spain - Modern Sort)>
0x100a => 'es-gt', # <ESG> <Spanish> <Spanish (Guatemala)>
0x140a => 'es-cr', # <ESC> <Spanish> <Spanish (Costa Rica)>
0x180a => 'es-pa', # <ESA> <Spanish> <Spanish (Panama)>
0x1c0a => 'es-do', # <ESD> <Spanish> <Spanish (Dominican Republic)>
0x200a => 'es-ve', # <ESV> <Spanish> <Spanish (Venezuela)>
0x240a => 'es-co', # <ESO> <Spanish> <Spanish (Colombia)>
0x280a => 'es-pe', # <ESR> <Spanish> <Spanish (Peru)>
0x2c0a => 'es-ar', # <ESS> <Spanish> <Spanish (Argentina)>
0x300a => 'es-ec', # <ESF> <Spanish> <Spanish (Ecuador)>
0x340a => 'es-cl', # <ESL> <Spanish> <Spanish (Chile)>
0x380a => 'es-uy', # <ESY> <Spanish> <Spanish (Uruguay)>
0x3c0a => 'es-py', # <ESZ> <Spanish> <Spanish (Paraguay)>
0x400a => 'es-bo', # <ESB> <Spanish> <Spanish (Bolivia)>
0x440a => 'es-sv', # <ESE> <Spanish> <Spanish (El Salvador)>
0x480a => 'es-hn', # <ESH> <Spanish> <Spanish (Honduras)>
0x4c0a => 'es-ni', # <ESI> <Spanish> <Spanish (Nicaragua)>
0x500a => 'es-pr', # <ESU> <Spanish> <Spanish (Puerto Rico)>
0x0430 => 'st' , # <SXT> <Sutu> <Sutu> == soto, sesotho
0x0441 => 'sw-ke', # <SWK> <Swahili> <Swahili (Kenya)>
0x041D => 'sv' , # <SVE> <Swedish> <Swedish>
0x081d => 'sv-fi', # <SVF> <Swedish> <Swedish (Finland)>
0x0449 => 'ta' , # <TAM> <Tamil> <Tamil>
0x0444 => 'tt' , # <TAT> <Tatar> <Tatar (Tatarstan)>
0x044a => 'te' , # <TEL> <Telugu> <Telugu>
0x041E => 'th' , # <THA> <Thai> <Thai>
0x0431 => 'ts' , # <TSG> <Tsonga> <Tsonga> (not Tonga!)
0x0432 => 'tn' , # <TNA> <Tswana> <Tswana> == Setswana
0x041f => 'tr' , # <TRK> <Turkish> <Turkish>
0x0422 => 'uk' , # <UKR> <Ukrainian> <Ukrainian>
0x0420 => 'ur-pk', # <URD> <Urdu> <Urdu (Pakistan)>
0x0820 => 'ur-in', # <URI> <Urdu> <Urdu (India)>
0x0443 => 'uz-latn', # <UZB> <Uzbek> <Uzbek (Latin)>
0x0843 => 'uz-cyrl', # <UZC> <Uzbek> <Uzbek (Cyrillic)>
0x0433 => 'ven' , # <VEN> <Venda> <Venda>
0x042a => 'vi' , # <VIT> <Vietnamese> <Vietnamese>
0x0434 => 'xh' , # <XHS> <Xhosa> <Xhosa>
0x043d => 'yi' , # <JII> <Yiddish> <Yiddish> # formetly ji
0x0435 => 'zu' , # <ZUL> <Zulu> <Zulu>
);
#-----------------------------------------------------------------------------
 
sub get_ms_locale {
my $locale;
return unless defined do {
# see if there's a W32 registry on this machine, and if so, look in it
local $SIG{"__DIE__"} = "";
eval '
use Win32::TieRegistry ();
my $i18n = Win32::TieRegistry->new(
"HKEY_CURRENT_USER/Control Panel/International",
{ Delimiter => "/" }
);
#print "no key!" unless $i18n;
$locale = $i18n->GetValue("Locale") if $i18n;
undef $i18n;
';
#print "<$@>\n" if $@;
$locale;
};
return unless $locale =~ m/^[0-9a-fA-F]+$/s;
return hex($locale);
}
 
sub get_language {
my $lang = $MSLocale2LangTag{ $_[0] || get_ms_locale() || '' };
return unless $lang;
return $lang;
}
 
sub get_locale {
# I guess this is right.
my $lang = get_language(@_);
return unless $lang and $lang =~ m/^[a-z]{2}(?:-[a-z]{2})?$/s;
# should we try to turn "fi" into "fi_FI"?
$lang =~ tr/-/_/;
return $lang;
}
#-----------------------------------------------------------------------------
 
# If we're just executed...
unless(caller) {
my $locale = get_ms_locale();
if($locale) {
printf "Locale 0x%08x (%s => %s) => Lang %s\n",
$locale, $locale,
get_locale($locale) || '?',
get_language($locale) || '?',
} else {
print "Can't get ms-locale\n";
}
}
 
#-----------------------------------------------------------------------------
1;
 
__END__
 
=head1 NAME
 
Win32::Locale - get the current MSWin locale or language
 
=head1 SYNOPSIS
 
use Win32::Locale;
my $language = Win32::Locale::get_language();
if($language eq 'en-us') {
print "Wasaaap homeslice!\n";
} else {
print "You $language people ain't FROM around here, are ya?\n";
}
 
=head1 DESCRIPTION
 
This library provides some simple functions allowing Perl under MSWin
to ask what the current locale/language setting is. (Yes, MSWin
conflates locales and languages, it seems; and the way it's
conflated is even stranger after MSWin98.)
 
Note that you should be able to safely use this module under any
OS; the functions just won't be able to access any current
locale value.
 
=head1 FUNCTIONS
 
Note that these functions are not exported,
nor are they exportable:
 
=over
 
=item Win32::Locale::get_language()
 
Returns the (all-lowercase) RFC3066 language tag corresponding
to the currently currently selected MS locale.
 
Returns nothing if the MS locale value isn't accessible
(notably, if you're not running under MSWin!), or if it
corresponds to no known language tag. Example: "en-us".
 
In list context, this may in the future be made to return
multiple values.
 
=item Win32::Locale::get_locale()
 
Returns the (all-lowercase) Unixish locale tag corresponding
to the currently currently selected MS locale. Example: "en_us".
 
Returns nothing if the MS locale value isn't accessible
(notably, if you're not running under MSWin!), or if it
corresponds to no locale.
 
In list context, this may in the future be made to return
multiple values.
 
Note that this function is B<experimental>, and I greatly welcome
suggestions.
 
=item Win32::Locale::get_ms_locale()
 
Returns the MS locale ID code for the currently selected MSWindows
locale. For example, returns the number 1033 for "US
English". (You may know the number 1033 better as 0x00000409,
as these numbers are usually given in hex in MS documents).
 
Returns nothing if the value isn't accessible (notably, if you're
not running under MSWin!).
 
=item Win32::Locale::get_language($msid)
 
Returns the (all-lowercase) RFC3066 language tag corresponding
to the given MS locale code, or nothing if none.
 
In list context, this may in the future be made to return
multiple values.
 
=item Win32::Locale::get_locale($msid)
 
Returns the (all-lowercase) Unixish locale tag corresponding
to the given MS locale code, or nothing if none.
 
In list context, this may in the future be made to return
multiple values.
 
=back
 
("Nothing", above, means "in scalar context, undef; in list
context, empty-list".)
 
=head1 AND MORE
 
This module provides an (unexported) public hash,
%Win32::Locale::MSLocale2LangTag, that maps
from the MS locale ID code to my idea of the single best corresponding
RFC3066 language tag.
 
The hash's contents are relatively certain for well-known
languages (US English is "en-us"), but are still experimental
in its finer details (like Konkani being "kok").
 
=head1 SEE ALSO
 
L<I18N::LangTags|I18N::LangTags>,
L<I18N::LangTags::List|I18N::LangTags::List>,
L<Locale::Maketext|Locale::Maketext>.
 
=head1 COPYRIGHT AND DISCLAIMER
 
Copyright (c) 2001,2003 Sean M. Burke. All rights reserved.
 
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
 
This program is distributed in the hope that it will be useful, but
without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose.
 
I am not affiliated with the Microsoft corporation, nor the ActiveState
corporation.
 
Product and company names mentioned in this document may be the
trademarks or service marks of their respective owners. Trademarks
and service marks might not be identified as such, although
this must not be construed as anyone's expression of validity
or invalidity of each trademark or service mark.
 
=head1 AUTHOR
 
Sean M. Burke C<sburke@cpan.org>
 
=cut
 
# No big whoop.
 
/MissionCockpit/tags/V0.2.5/perl/site/lib/Win32/SerialPort.pm
0,0 → 1,2969
package Win32::SerialPort;
 
use Win32;
use Win32API::CommPort qw( :STAT :PARAM 0.17 );
 
use Carp;
use strict;
 
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
$VERSION = '0.19';
 
require Exporter;
## require AutoLoader;
 
@ISA = qw( Exporter Win32API::CommPort );
# Items to export into callers namespace by default. Note: do not export
# names by default without a very good reason. Use EXPORT_OK instead.
# Do not simply export all your public functions/methods/constants.
 
@EXPORT= qw();
@EXPORT_OK= @Win32API::CommPort::EXPORT_OK;
%EXPORT_TAGS = %Win32API::CommPort::EXPORT_TAGS;
 
# parameters that must be included in a "save" and "checking subs"
 
my %validate = (
ALIAS => "alias",
BAUD => "baudrate",
BINARY => "binary",
DATA => "databits",
E_MSG => "error_msg",
EOFCHAR => "eof_char",
ERRCHAR => "error_char",
EVTCHAR => "event_char",
HSHAKE => "handshake",
PARITY => "parity",
PARITY_EN => "parity_enable",
RCONST => "read_const_time",
READBUF => "set_read_buf",
RINT => "read_interval",
RTOT => "read_char_time",
STOP => "stopbits",
U_MSG => "user_msg",
WCONST => "write_const_time",
WRITEBUF => "set_write_buf",
WTOT => "write_char_time",
XOFFCHAR => "xoff_char",
XOFFLIM => "xoff_limit",
XONCHAR => "xon_char",
XONLIM => "xon_limit",
intr => "is_stty_intr",
quit => "is_stty_quit",
s_eof => "is_stty_eof",
eol => "is_stty_eol",
erase => "is_stty_erase",
s_kill => "is_stty_kill",
bsdel => "stty_bsdel",
clear => "is_stty_clear",
echo => "stty_echo",
echoe => "stty_echoe",
echok => "stty_echok",
echonl => "stty_echonl",
echoke => "stty_echoke",
echoctl => "stty_echoctl",
istrip => "stty_istrip",
icrnl => "stty_icrnl",
ocrnl => "stty_ocrnl",
opost => "stty_opost",
igncr => "stty_igncr",
inlcr => "stty_inlcr",
onlcr => "stty_onlcr",
isig => "stty_isig",
icanon => "stty_icanon",
DVTYPE => "devicetype",
HNAME => "hostname",
HADDR => "hostaddr",
DATYPE => "datatype",
CFG_1 => "cfg_param_1",
CFG_2 => "cfg_param_2",
CFG_3 => "cfg_param_3",
);
 
# parameters supported by the stty method
 
my %opts = ( "intr" => "is_stty_intr:argv_char",
"quit" => "is_stty_quit:argv_char",
"eof" => "is_stty_eof:argv_char",
"eol" => "is_stty_eol:argv_char",
"erase" => "is_stty_erase:argv_char",
"kill" => "is_stty_kill:argv_char",
"echo" => "stty_echo:1",
"-echo" => "stty_echo:0",
"echoe" => "stty_echoe:1",
"-echoe" => "stty_echoe:0",
"echok" => "stty_echok:1",
"-echok" => "stty_echok:0",
"echonl" => "stty_echonl:1",
"-echonl" => "stty_echonl:0",
"echoke" => "stty_echoke:1",
"-echoke" => "stty_echoke:0",
"echoctl" => "stty_echoctl:1",
"-echoctl" => "stty_echoctl:0",
"istrip" => "stty_istrip:1",
"-istrip" => "stty_istrip:0",
"icrnl" => "stty_icrnl:1",
"-icrnl" => "stty_icrnl:0",
"ocrnl" => "stty_ocrnl:1",
"-ocrnl" => "stty_ocrnl:0",
"igncr" => "stty_igncr:1",
"-igncr" => "stty_igncr:0",
"inlcr" => "stty_inlcr:1",
"-inlcr" => "stty_inlcr:0",
"onlcr" => "stty_onlcr:1",
"-onlcr" => "stty_onlcr:0",
"opost" => "stty_opost:1",
"-opost" => "stty_opost:0",
"isig" => "stty_isig:1",
"-isig" => "stty_isig:0",
"icanon" => "stty_icanon:1",
"-icanon" => "stty_icanon:0",
"parenb" => "parity_enable:1",
"-parenb" => "parity_enable:0",
"inpck" => "parity_enable:1",
"-inpck" => "parity:none",
"cs5" => "databits:5",
"cs6" => "databits:6",
"cs7" => "databits:7",
"cs8" => "databits:8",
"cstopb" => "stopbits:2",
"-cstopb" => "stopbits:1",
"parodd" => "parity:odd",
"-parodd" => "parity:even",
"clocal" => "handshake:none",
"-clocal" => "handshake:dtr",
"crtscts" => "handshake:rts",
"-crtscts" => "handshake:none",
"ixon" => "handshake:xoff",
"-ixon" => "handshake:none",
"ixoff" => "handshake:xoff",
"-ixoff" => "handshake:none",
"start" => "xon_char:argv_char",
"stop" => "xoff_char:argv_char",
);
 
#### Package variable declarations ####
 
my @binary_opt = (0, 1);
my @byte_opt = (0, 255);
 
my $cfg_file_sig="Win32::SerialPort_Configuration_File -- DO NOT EDIT --\n";
 
my $Verbose = 0;
 
# test*.t only - suppresses default messages
sub set_test_mode_active {
return unless (@_ == 2);
Win32API::CommPort->set_no_messages($_[1]);
# object not defined but :: upsets strict
return (keys %validate);
}
 
sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $device = shift;
my @new_cmd = ($device);
my $quiet = shift;
if ($quiet) {
push @new_cmd, 1;
}
my $self = $class->SUPER::new(@new_cmd);
 
unless ($self) {
return 0 if ($quiet);
return;
}
 
# "private" data
$self->{"_DEBUG"} = 0;
$self->{U_MSG} = 0;
$self->{E_MSG} = 0;
$self->{OFS} = "";
$self->{ORS} = "";
$self->{"_T_INPUT"} = "";
$self->{"_LOOK"} = "";
$self->{"_LASTLOOK"} = "";
$self->{"_LASTLINE"} = "";
$self->{"_CLASTLINE"} = "";
$self->{"_SIZE"} = 1;
$self->{"_LMATCH"} = "";
$self->{"_LPATT"} = "";
$self->{"_PROMPT"} = "";
$self->{"_MATCH"} = [];
$self->{"_CMATCH"} = [];
@{ $self->{"_MATCH"} } = "\n";
@{ $self->{"_CMATCH"} } = "\n";
$self->{DVTYPE} = "none";
$self->{HNAME} = "localhost";
$self->{HADDR} = 0;
$self->{DATYPE} = "raw";
$self->{CFG_1} = "none";
$self->{CFG_2} = "none";
$self->{CFG_3} = "none";
 
# user settable options for lookfor (the "stty" collection)
# defaults like RedHat linux unless indicated
# char to abort nextline subroutine
$self->{intr} = "\cC"; # MUST be single char
 
# char to abort perl
$self->{quit} = "\cD"; # MUST be single char
 
# end_of_file char (linux typ: "\cD")
$self->{s_eof} = "\cZ"; # MUST be single char
 
# end_of_line char
$self->{eol} = "\cJ"; # MUST be single char
 
# delete one character from buffer (backspace)
$self->{erase} = "\cH"; # MUST be single char
 
# clear line buffer
$self->{s_kill} = "\cU"; # MUST be single char
 
# written after erase character
$self->{bsdel} = "\cH \cH";
 
# written after kill character
my $space76 = " "x76;
$self->{clear} = "\r$space76\r"; # 76 spaces
 
# echo every character
$self->{echo} = 0;
 
# echo erase character with bsdel string
$self->{echoe} = 1;
 
# echo \n after kill character
$self->{echok} = 1;
 
# echo \n
$self->{echonl} = 0;
 
# echo clear string after kill character
$self->{echoke} = 1; # linux console yes, serial no
 
# echo "^Char" for control chars
$self->{echoctl} = 0; # linux console yes, serial no
 
# strip input to 7-bits
$self->{istrip} = 0;
 
# map \r to \n on input
$self->{icrnl} = 0;
 
# map \r to \n on output
$self->{ocrnl} = 0;
 
# ignore \r on input
$self->{igncr} = 0;
 
# map \n to \r on input
$self->{inlcr} = 0;
 
# map \n to \r\n on output
$self->{onlcr} = 1;
 
# enable output mapping
$self->{opost} = 0;
 
# enable quit and intr characters
$self->{isig} = 0; # linux actually SUPPORTS signals
 
# enable erase and kill characters
$self->{icanon} = 0;
 
my $token;
my @bauds = $self->are_baudrate;
foreach $token (@bauds) { $opts{$token} = "baudrate:$token"; }
 
# initialize (in CommPort) and write_settings need these defined
$self->{"_N_U_MSG"} = 0;
$self->{"_N_E_MSG"} = 0;
$self->{"_N_ALIAS"} = 0;
$self->{"_N_intr"} = 0;
$self->{"_N_quit"} = 0;
$self->{"_N_s_eof"} = 0;
$self->{"_N_eol"} = 0;
$self->{"_N_erase"} = 0;
$self->{"_N_s_kill"} = 0;
$self->{"_N_bsdel"} = 0;
$self->{"_N_clear"} = 0;
$self->{"_N_echo"} = 0;
$self->{"_N_echoe"} = 0;
$self->{"_N_echok"} = 0;
$self->{"_N_echonl"} = 0;
$self->{"_N_echoke"} = 0;
$self->{"_N_echoctl"} = 0;
$self->{"_N_istrip"} = 0;
$self->{"_N_icrnl"} = 0;
$self->{"_N_ocrnl"} = 0;
$self->{"_N_opost"} = 0;
$self->{"_N_igncr"} = 0;
$self->{"_N_inlcr"} = 0;
$self->{"_N_onlcr"} = 0;
$self->{"_N_isig"} = 0;
$self->{"_N_icanon"} = 0;
$self->{"_N_DVTYPE"} = 0;
$self->{"_N_HNAME"} = 0;
$self->{"_N_HADDR"} = 0;
$self->{"_N_DATYPE"} = 0;
$self->{"_N_CFG_1"} = 0;
$self->{"_N_CFG_2"} = 0;
$self->{"_N_CFG_3"} = 0;
 
$self->{ALIAS} = $device; # so "\\.\+++" can be changed
$self->{DEVICE} = $device; # clone so NAME stays in CommPort
 
($self->{MAX_RXB}, $self->{MAX_TXB}) = $self->buffer_max;
 
bless ($self, $class);
return $self;
}
 
 
sub stty_intr {
my $self = shift;
if (@_ == 1) { $self->{intr} = shift; }
return if (@_);
return $self->{intr};
}
 
sub stty_quit {
my $self = shift;
if (@_ == 1) { $self->{quit} = shift; }
return if (@_);
return $self->{quit};
}
 
sub is_stty_eof {
my $self = shift;
if (@_ == 1) { $self->{s_eof} = chr(shift); }
return if (@_);
return ord($self->{s_eof});
}
 
sub is_stty_eol {
my $self = shift;
if (@_ == 1) { $self->{eol} = chr(shift); }
return if (@_);
return ord($self->{eol});
}
 
sub is_stty_quit {
my $self = shift;
if (@_ == 1) { $self->{quit} = chr(shift); }
return if (@_);
return ord($self->{quit});
}
 
sub is_stty_intr {
my $self = shift;
if (@_ == 1) { $self->{intr} = chr(shift); }
return if (@_);
return ord($self->{intr});
}
 
sub is_stty_erase {
my $self = shift;
if (@_ == 1) { $self->{erase} = chr(shift); }
return if (@_);
return ord($self->{erase});
}
 
sub is_stty_kill {
my $self = shift;
if (@_ == 1) { $self->{s_kill} = chr(shift); }
return if (@_);
return ord($self->{s_kill});
}
 
sub is_stty_clear {
my $self = shift;
my @chars;
if (@_ == 1) {
@chars = split (//, shift);
for (@chars) {
$_ = chr ( ord($_) - 32 );
}
$self->{clear} = join("", @chars);
return $self->{clear};
}
return if (@_);
@chars = split (//, $self->{clear});
for (@chars) {
$_ = chr ( ord($_) + 32 );
}
my $permute = join("", @chars);
return $permute;
}
 
sub stty_eof {
my $self = shift;
if (@_ == 1) { $self->{s_eof} = shift; }
return if (@_);
return $self->{s_eof};
}
 
sub stty_eol {
my $self = shift;
if (@_ == 1) { $self->{eol} = shift; }
return if (@_);
return $self->{eol};
}
 
sub stty_erase {
my $self = shift;
if (@_ == 1) {
my $tmp = shift;
return unless (length($tmp) == 1);
$self->{erase} = $tmp;
}
return if (@_);
return $self->{erase};
}
 
sub stty_kill {
my $self = shift;
if (@_ == 1) {
my $tmp = shift;
return unless (length($tmp) == 1);
$self->{s_kill} = $tmp;
}
return if (@_);
return $self->{s_kill};
}
 
sub stty_bsdel {
my $self = shift;
if (@_ == 1) { $self->{bsdel} = shift; }
return if (@_);
return $self->{bsdel};
}
 
sub stty_clear {
my $self = shift;
if (@_ == 1) { $self->{clear} = shift; }
return if (@_);
return $self->{clear};
}
 
sub stty_echo {
my $self = shift;
if (@_ == 1) { $self->{echo} = yes_true ( shift ) }
return if (@_);
return $self->{echo};
}
 
sub stty_echoe {
my $self = shift;
if (@_ == 1) { $self->{echoe} = yes_true ( shift ) }
return if (@_);
return $self->{echoe};
}
 
sub stty_echok {
my $self = shift;
if (@_ == 1) { $self->{echok} = yes_true ( shift ) }
return if (@_);
return $self->{echok};
}
 
sub stty_echonl {
my $self = shift;
if (@_ == 1) { $self->{echonl} = yes_true ( shift ) }
return if (@_);
return $self->{echonl};
}
 
sub stty_echoke {
my $self = shift;
if (@_ == 1) { $self->{echoke} = yes_true ( shift ) }
return if (@_);
return $self->{echoke};
}
 
sub stty_echoctl {
my $self = shift;
if (@_ == 1) { $self->{echoctl} = yes_true ( shift ) }
return if (@_);
return $self->{echoctl};
}
 
sub stty_istrip {
my $self = shift;
if (@_ == 1) { $self->{istrip} = yes_true ( shift ) }
return if (@_);
return $self->{istrip};
}
 
sub stty_icrnl {
my $self = shift;
if (@_ == 1) { $self->{icrnl} = yes_true ( shift ) }
return if (@_);
return $self->{icrnl};
}
 
sub stty_ocrnl {
my $self = shift;
if (@_ == 1) { $self->{ocrnl} = yes_true ( shift ) }
return if (@_);
return $self->{ocrnl};
}
 
sub stty_opost {
my $self = shift;
if (@_ == 1) { $self->{opost} = yes_true ( shift ) }
return if (@_);
return $self->{opost};
}
 
sub stty_igncr {
my $self = shift;
if (@_ == 1) { $self->{igncr} = yes_true ( shift ) }
return if (@_);
return $self->{igncr};
}
 
sub stty_inlcr {
my $self = shift;
if (@_ == 1) { $self->{inlcr} = yes_true ( shift ) }
return if (@_);
return $self->{inlcr};
}
 
sub stty_onlcr {
my $self = shift;
if (@_ == 1) { $self->{onlcr} = yes_true ( shift ) }
return if (@_);
return $self->{onlcr};
}
 
sub stty_isig {
my $self = shift;
if (@_ == 1) { $self->{isig} = yes_true ( shift ) }
return if (@_);
return $self->{isig};
}
 
sub stty_icanon {
my $self = shift;
if (@_ == 1) { $self->{icanon} = yes_true ( shift ) }
return if (@_);
return $self->{icanon};
}
 
sub is_prompt {
my $self = shift;
if (@_ == 1) { $self->{"_PROMPT"} = shift; }
return if (@_);
return $self->{"_PROMPT"};
}
 
sub are_match {
my $self = shift;
my $pat;
my $patno = 0;
my $reno = 0;
my $re_next = 0;
if (@_) {
@{ $self->{"_MATCH"} } = @_;
if ($] >= 5.005) {
@{ $self->{"_CMATCH"} } = ();
while ($pat = shift) {
if ($re_next) {
$re_next = 0;
eval 'push (@{ $self->{"_CMATCH"} }, qr/$pat/)';
} else {
push (@{ $self->{"_CMATCH"} }, $pat);
}
if ($pat eq "-re") {
$re_next++;
}
}
} else {
@{ $self->{"_CMATCH"} } = @_;
}
}
return @{ $self->{"_MATCH"} };
}
 
 
# parse values for start/restart
sub get_start_values {
return unless (@_ == 2);
my $self = shift;
my $filename = shift;
 
unless ( open CF, "<$filename" ) {
carp "can't open file: $filename";
return;
}
my ($signature, $name, @values) = <CF>;
close CF;
unless ( $cfg_file_sig eq $signature ) {
carp "Invalid signature in $filename: $signature";
return;
}
chomp $name;
unless ( $self->{DEVICE} eq $name ) {
carp "Invalid Port DEVICE=$self->{DEVICE} in $filename: $name";
return;
}
if ($Verbose or not $self) {
print "signature = $signature";
print "name = $name\n";
if ($Verbose) {
print "values:\n";
foreach (@values) { print " $_"; }
}
}
my $item;
my $key;
my $value;
my $gosub;
my $fault = 0;
no strict 'refs'; # for $gosub
foreach $item (@values) {
chomp $item;
($key, $value) = split (/,/, $item);
if ($value eq "") { $fault++ }
else {
$gosub = $validate{$key};
unless (defined &$gosub ($self, $value)) {
carp "Invalid parameter for $key=$value ";
return;
}
}
}
use strict 'refs';
if ($fault) {
carp "Invalid value in $filename";
undef $self;
return;
}
1;
}
 
sub restart {
return unless (@_ == 2);
my $self = shift;
my $filename = shift;
 
unless ( $self->init_done ) {
carp "Can't restart before Port has been initialized";
return;
}
get_start_values($self, $filename);
write_settings($self);
}
 
sub start {
my $proto = shift;
my $class = ref($proto) || $proto;
 
return unless (@_);
my $filename = shift;
 
unless ( open CF, "<$filename" ) {
carp "can't open file: $filename";
return;
}
my ($signature, $name, @values) = <CF>;
close CF;
unless ( $cfg_file_sig eq $signature ) {
carp "Invalid signature in $filename: $signature";
return;
}
chomp $name;
my $self = new ($class, $name);
if ($Verbose or not $self) {
print "signature = $signature";
print "class = $class\n";
print "name = $name\n";
if ($Verbose) {
print "values:\n";
foreach (@values) { print " $_"; }
}
}
if ($self) {
if ( get_start_values($self, $filename) ) {
write_settings ($self);
}
else {
carp "Invalid value in $filename";
undef $self;
return;
}
}
return $self;
}
 
sub write_settings {
my $self = shift;
my @items = keys %validate;
 
# initialize returns number of faults
if ( $self->initialize(@items) ) {
unless (nocarp) {
carp "write_settings failed, closing port";
$self->close;
}
return;
}
 
$self->update_DCB;
if ($Verbose) {
print "writing settings to $self->{ALIAS}\n";
}
1;
}
 
sub save {
my $self = shift;
my $item;
my $getsub;
my $value;
 
return unless (@_);
unless ($self->init_done) {
carp "can't save until init_done";
return;
}
 
my $filename = shift;
unless ( open CF, ">$filename" ) {
carp "can't open file: $filename";
return;
}
print CF "$cfg_file_sig";
print CF "$self->{DEVICE}\n";
# used to "reopen" so must be DEVICE=NAME
no strict 'refs'; # for $gosub
while (($item, $getsub) = each %validate) {
chomp $getsub;
$value = scalar &$getsub($self);
print CF "$item,$value\n";
}
use strict 'refs';
close CF;
if ($Verbose) {
print "wrote file $filename for $self->{ALIAS}\n";
}
1;
}
 
##### tied FileHandle support
sub TIEHANDLE {
my $proto = shift;
my $class = ref($proto) || $proto;
 
return unless (@_);
 
my $self = start($class, shift);
return $self;
}
# WRITE this, LIST
# This method will be called when the handle is written to via the
# syswrite function.
 
sub WRITE {
return if (@_ < 3);
my $self = shift;
my $buf = shift;
my $len = shift;
my $offset = 0;
if (@_) { $offset = shift; }
my $out2 = substr($buf, $offset, $len);
return unless ($self->post_print($out2));
return length($out2);
}
 
# PRINT this, LIST
# This method will be triggered every time the tied handle is printed to
# with the print() function. Beyond its self reference it also expects
# the list that was passed to the print function.
sub PRINT {
my $self = shift;
return unless (@_);
my $ofs = $, ? $, : "";
if ($self->{OFS}) { $ofs = $self->{OFS}; }
my $ors = $\ ? $\ : "";
if ($self->{ORS}) { $ors = $self->{ORS}; }
my $output = join($ofs,@_);
$output .= $ors;
return $self->post_print($output);
}
 
sub output_field_separator {
my $self = shift;
my $prev = $self->{OFS};
if (@_) { $self->{OFS} = shift; }
return $prev;
}
 
sub output_record_separator {
my $self = shift;
my $prev = $self->{ORS};
if (@_) { $self->{ORS} = shift; }
return $prev;
}
 
sub post_print {
my $self = shift;
return unless (@_);
my $output = shift;
if ($self->stty_opost) {
if ($self->stty_ocrnl) { $output =~ s/\r/\n/osg; }
if ($self->stty_onlcr) { $output =~ s/\n/\r\n/osg; }
}
my $to_do = length($output);
my $done = 0;
my $written = 0;
while ($done < $to_do) {
my $out2 = substr($output, $done);
$written = $self->write($out2);
if (! defined $written) {
$^E = 1121; # ERROR_COUNTER_TIMEOUT
return;
}
return 0 unless ($written);
$done += $written;
}
$^E = 0;
1;
}
# PRINTF this, LIST
# This method will be triggered every time the tied handle is printed to
# with the printf() function. Beyond its self reference it also expects
# the format and list that was passed to the printf function.
sub PRINTF {
my $self = shift;
my $fmt = shift;
return unless ($fmt);
return unless (@_);
my $output = sprintf($fmt, @_);
$self->PRINT($output);
}
# READ this, LIST
# This method will be called when the handle is read from via the read
# or sysread functions.
 
sub READ {
return if (@_ < 3);
my $buf = \$_[1];
my ($self, $junk, $len, $offset) = @_;
unless (defined $offset) { $offset = 0; }
my $done = 0;
my $count_in = 0;
my $string_in = "";
my $in2 = "";
my $bufsize = $self->internal_buffer;
 
while ($done < $len) {
my $size = $len - $done;
if ($size > $bufsize) { $size = $bufsize; }
($count_in, $string_in) = $self->read($size);
if ($count_in) {
$in2 .= $string_in;
$done += $count_in;
$^E = 0;
}
elsif ($done) {
$^E = 0;
last;
}
else {
$^E = 1121; # ERROR_COUNTER_TIMEOUT
last;
}
}
my $tail = substr($$buf, $offset + $done);
my $head = substr($$buf, 0, $offset);
if ($self->{icrnl}) { $in2 =~ tr/\r/\n/; }
if ($self->{inlcr}) { $in2 =~ tr/\n/\r/; }
if ($self->{igncr}) { $in2 =~ s/\r//gos; }
$$buf = $head.$in2.$tail;
return $done if ($done);
return;
}
 
# READLINE this
# This method will be called when the handle is read from via <HANDLE>.
# The method should return undef when there is no more data.
sub READLINE {
my $self = shift;
return if (@_);
my $gotit = "";
my $match = "";
my $was;
 
if (wantarray) {
my @lines;
for (;;) {
$was = $self->reset_error;
if ($was) {
$^E = 1117; # ERROR_IO_DEVICE
return @lines if (@lines);
return;
}
if (! defined ($gotit = $self->streamline($self->{"_SIZE"}))) {
$^E = 1121; # ERROR_COUNTER_TIMEOUT
return @lines if (@lines);
return;
}
$match = $self->matchclear;
if ( ($gotit ne "") || ($match ne "") ) {
$^E = 0;
$gotit .= $match;
push (@lines, $gotit);
return @lines if ($gotit =~ /$self->{"_CLASTLINE"}/s);
}
}
}
else {
for (;;) {
$was = $self->reset_error;
if ($was) {
$^E = 1117; # ERROR_IO_DEVICE
return;
}
if (! defined ($gotit = $self->lookfor($self->{"_SIZE"}))) {
$^E = 1121; # ERROR_COUNTER_TIMEOUT
return;
}
$match = $self->matchclear;
if ( ($gotit ne "") || ($match ne "") ) {
$^E = 0;
return $gotit.$match; # traditional <HANDLE> behavior
}
}
}
}
# GETC this
# This method will be called when the getc function is called.
sub GETC {
my $self = shift;
my ($count, $in) = $self->read(1);
if ($count == 1) {
$^E = 0;
return $in;
}
else {
$^E = 1121; # ERROR_COUNTER_TIMEOUT
return;
}
}
# CLOSE this
# This method will be called when the handle is closed via the close
# function.
sub CLOSE {
my $self = shift;
my $success = $self->close;
if ($Verbose) { printf "CLOSE result:%d\n", $success; }
return $success;
}
# DESTROY this
# As with the other types of ties, this method will be called when the
# tied handle is about to be destroyed. This is useful for debugging and
# possibly cleaning up.
sub DESTROY {
my $self = shift;
if ($Verbose) { print "SerialPort::DESTROY called.\n"; }
$self->SUPER::DESTROY();
}
###############
 
sub alias {
my $self = shift;
if (@_) { $self->{ALIAS} = shift; } # should return true for legal names
return $self->{ALIAS};
}
 
sub user_msg {
my $self = shift;
if (@_) { $self->{U_MSG} = yes_true ( shift ) }
return wantarray ? @binary_opt : $self->{U_MSG};
}
 
sub error_msg {
my $self = shift;
if (@_) { $self->{E_MSG} = yes_true ( shift ) }
return wantarray ? @binary_opt : $self->{E_MSG};
}
 
sub devicetype {
my $self = shift;
if (@_) { $self->{DVTYPE} = shift; } # return true for legal names
return $self->{DVTYPE};
}
 
sub hostname {
my $self = shift;
if (@_) { $self->{HNAME} = shift; } # return true for legal names
return $self->{HNAME};
}
 
sub hostaddr {
my $self = shift;
if (@_) { $self->{HADDR} = shift; } # return true for assigned port
return $self->{HADDR};
}
 
sub datatype {
my $self = shift;
if (@_) { $self->{DATYPE} = shift; } # return true for legal types
return $self->{DATYPE};
}
 
sub cfg_param_1 {
my $self = shift;
if (@_) { $self->{CFG_1} = shift; } # return true for legal param
return $self->{CFG_1};
}
 
sub cfg_param_2 {
my $self = shift;
if (@_) { $self->{CFG_2} = shift; } # return true for legal param
return $self->{CFG_2};
}
 
sub cfg_param_3 {
my $self = shift;
if (@_) { $self->{CFG_3} = shift; } # return true for legal param
return $self->{CFG_3};
}
 
sub baudrate {
my $self = shift;
if (@_) {
unless ( defined $self->is_baudrate( shift ) ) {
if ($self->{U_MSG} or $Verbose) {
carp "Could not set baudrate on $self->{ALIAS}";
}
return;
}
}
return wantarray ? $self->are_baudrate : $self->is_baudrate;
}
 
sub status {
my $self = shift;
my $ok = 0;
my $fmask = 0;
my $v1 = $Verbose | $self->{"_DEBUG"};
my $v2 = $v1 | $self->{U_MSG};
my $v3 = $v1 | $self->{E_MSG};
 
my @stat = $self->is_status;
return unless (scalar @stat);
$fmask=$stat[ST_BLOCK];
if ($v1) { printf "BlockingFlags= %lx\n", $fmask; }
if ($v2 && $fmask) {
printf "Waiting for CTS\n" if ($fmask & BM_fCtsHold);
printf "Waiting for DSR\n" if ($fmask & BM_fDsrHold);
printf "Waiting for RLSD\n" if ($fmask & BM_fRlsdHold);
printf "Waiting for XON\n" if ($fmask & BM_fXoffHold);
printf "Waiting, XOFF was sent\n" if ($fmask & BM_fXoffSent);
printf "End_of_File received\n" if ($fmask & BM_fEof);
printf "Character waiting to TX\n" if ($fmask & BM_fTxim);
}
$fmask=$stat[ST_ERROR];
if ($v1) { printf "Error_BitMask= %lx\n", $fmask; }
if ($v3 && $fmask) {
# only prints if error is new (API resets each call)
printf "Invalid MODE or bad HANDLE\n" if ($fmask & CE_MODE);
printf "Receive Overrun detected\n" if ($fmask & CE_RXOVER);
printf "Buffer Overrun detected\n" if ($fmask & CE_OVERRUN);
printf "Parity Error detected\n" if ($fmask & CE_RXPARITY);
printf "Framing Error detected\n" if ($fmask & CE_FRAME);
printf "Break Signal detected\n" if ($fmask & CE_BREAK);
printf "Transmit Buffer is full\n" if ($fmask & CE_TXFULL);
}
return @stat;
}
 
sub handshake {
my $self = shift;
if (@_) {
unless ( $self->is_handshake(shift) ) {
if ($self->{U_MSG} or $Verbose) {
carp "Could not set handshake on $self->{ALIAS}";
}
return;
}
}
return wantarray ? $self->are_handshake : $self->is_handshake;
}
 
sub parity {
my $self = shift;
if (@_) {
unless ( $self->is_parity(shift) ) {
if ($self->{U_MSG} or $Verbose) {
carp "Could not set parity on $self->{ALIAS}";
}
return;
}
}
return wantarray ? $self->are_parity : $self->is_parity;
}
 
sub databits {
my $self = shift;
if (@_) {
unless ( $self->is_databits(shift) ) {
if ($self->{U_MSG} or $Verbose) {
carp "Could not set databits on $self->{ALIAS}";
}
return;
}
}
return wantarray ? $self->are_databits : $self->is_databits;
}
 
sub stopbits {
my $self = shift;
if (@_) {
unless ( $self->is_stopbits(shift) ) {
if ($self->{U_MSG} or $Verbose) {
carp "Could not set stopbits on $self->{ALIAS}";
}
return;
}
}
return wantarray ? $self->are_stopbits : $self->is_stopbits;
}
 
# single value for save/start
sub set_read_buf {
my $self = shift;
if (@_) {
return unless (@_ == 1);
my $rbuf = int shift;
return unless (($rbuf > 0) and ($rbuf <= $self->{MAX_RXB}));
$self->is_read_buf($rbuf);
}
return $self->is_read_buf;
}
 
# single value for save/start
sub set_write_buf {
my $self = shift;
if (@_) {
return unless (@_ == 1);
my $wbuf = int shift;
return unless (($wbuf >= 0) and ($wbuf <= $self->{MAX_TXB}));
$self->is_write_buf($wbuf);
}
return $self->is_write_buf;
}
 
sub buffers {
my $self = shift;
 
if (@_ == 2) {
my $rbuf = shift;
my $wbuf = shift;
unless (defined set_read_buf ($self, $rbuf)) {
if ($self->{U_MSG} or $Verbose) {
carp "Can't set read buffer on $self->{ALIAS}";
}
return;
}
unless (defined set_write_buf ($self, $wbuf)) {
if ($self->{U_MSG} or $Verbose) {
carp "Can't set write buffer on $self->{ALIAS}";
}
return;
}
$self->is_buffers($rbuf, $wbuf) || return;
}
elsif (@_) { return; }
return wantarray ? $self->are_buffers : 1;
}
 
sub read {
return unless (@_ == 2);
my $self = shift;
my $wanted = shift;
my $ok = 0;
my $result = "";
return unless ($wanted > 0);
 
my $got = $self->read_bg ($wanted);
 
if ($got != $wanted) {
($ok, $got, $result) = $self->read_done(1); # block until done
}
else { ($ok, $got, $result) = $self->read_done(0); }
print "read=$got\n" if ($Verbose);
return ($got, $result);
}
 
sub lookclear {
my $self = shift;
if (nocarp && (@_ == 1)) {
$self->{"_T_INPUT"} = shift;
}
$self->{"_LOOK"} = "";
$self->{"_LASTLOOK"} = "";
$self->{"_LMATCH"} = "";
$self->{"_LPATT"} = "";
return if (@_);
1;
}
 
sub linesize {
my $self = shift;
if (@_) {
my $val = int shift;
return if ($val < 0);
$self->{"_SIZE"} = $val;
}
return $self->{"_SIZE"};
}
 
sub lastline {
my $self = shift;
if (@_) {
$self->{"_LASTLINE"} = shift;
if ($] >= 5.005) {
eval '$self->{"_CLASTLINE"} = qr/$self->{"_LASTLINE"}/';
} else {
$self->{"_CLASTLINE"} = $self->{"_LASTLINE"};
}
}
return $self->{"_LASTLINE"};
}
 
sub matchclear {
my $self = shift;
my $found = $self->{"_LMATCH"};
$self->{"_LMATCH"} = "";
return if (@_);
return $found;
}
 
sub lastlook {
my $self = shift;
return if (@_);
return ( $self->{"_LMATCH"}, $self->{"_LASTLOOK"},
$self->{"_LPATT"}, $self->{"_LOOK"} );
}
 
sub lookfor {
my $self = shift;
my $size = 0;
if (@_) { $size = shift; }
my $loc = "";
my $count_in = 0;
my $string_in = "";
$self->{"_LMATCH"} = "";
$self->{"_LPATT"} = "";
 
if ( ! $self->{"_LOOK"} ) {
$loc = $self->{"_LASTLOOK"};
}
 
if ($size) {
my ($bbb, $iii, $ooo, $eee) = status($self);
if ($iii > $size) { $size = $iii; }
($count_in, $string_in) = $self->read($size);
return unless ($count_in);
$loc .= $string_in;
}
else {
$loc .= $self->input;
}
 
if ($loc ne "") {
if ($self->{icrnl}) { $loc =~ tr/\r/\n/; }
my $n_char;
my $mpos;
my $erase_is_bsdel = 0;
my $nl_after_kill = "";
my $clear_after_kill = 0;
my $echo_ctl = 0;
my $lookbuf;
my $re_next = 0;
my $got_match = 0;
my $pat;
my $lf_erase = "";
my $lf_kill = "";
my $lf_eof = "";
my $lf_quit = "";
my $lf_intr = "";
my $nl_2_crnl = 0;
my $cr_2_nl = 0;
 
if ($self->{opost}) {
$nl_2_crnl = $self->{onlcr};
$cr_2_nl = $self->{ocrnl};
}
 
if ($self->{echo}) {
$erase_is_bsdel = $self->{echoe};
if ($self->{echok}) {
$nl_after_kill = $self->{onlcr} ? "\r\n" : "\n";
}
$clear_after_kill = $self->{echoke};
$echo_ctl = $self->{echoctl};
}
 
if ($self->{icanon}) {
$lf_erase = $self->{erase};
$lf_kill = $self->{s_kill};
$lf_eof = $self->{s_eof};
}
 
if ($self->{isig}) {
$lf_quit = $self->{quit};
$lf_intr = $self->{intr};
}
my @loc_char = split (//, $loc);
while (defined ($n_char = shift @loc_char)) {
## printf STDERR "0x%x ", ord($n_char);
if ($n_char eq $lf_erase) {
if ($erase_is_bsdel && (length $self->{"_LOOK"}) ) {
$mpos = chop $self->{"_LOOK"};
$self->write($self->{bsdel});
if ($echo_ctl && (($mpos lt "@")|($mpos eq chr(127)))) {
$self->write($self->{bsdel});
}
}
}
elsif ($n_char eq $lf_kill) {
$self->{"_LOOK"} = "";
$self->write($self->{clear}) if ($clear_after_kill);
$self->write($nl_after_kill);
$self->write($self->{"_PROMPT"});
}
elsif ($n_char eq $lf_intr) {
$self->{"_LOOK"} = "";
$self->{"_LASTLOOK"} = "";
return;
}
elsif ($n_char eq $lf_quit) {
exit;
}
else {
$mpos = ord $n_char;
if ($self->{istrip}) {
if ($mpos > 127) { $n_char = chr($mpos - 128); }
}
$self->{"_LOOK"} .= $n_char;
## print $n_char;
if ($cr_2_nl) { $n_char =~ s/\r/\n/os; }
if ($nl_2_crnl) { $n_char =~ s/\n/\r\n/os; }
if (($mpos < 32) && $echo_ctl &&
($mpos != is_stty_eol($self))) {
$n_char = chr($mpos + 64);
$self->write("^$n_char");
}
elsif (($mpos == 127) && $echo_ctl) {
$self->write("^.");
}
elsif ($self->{echonl} && ($n_char =~ "\n")) {
# also writes "\r\n" for onlcr
$self->write($n_char);
}
elsif ($self->{echo}) {
# also writes "\r\n" for onlcr
$self->write($n_char);
}
$lookbuf = $self->{"_LOOK"};
if (($lf_eof ne "") and ($lookbuf =~ /$lf_eof$/)) {
$self->{"_LOOK"} = "";
$self->{"_LASTLOOK"} = "";
return $lookbuf;
}
$count_in = 0;
foreach $pat ( @{ $self->{"_CMATCH"} } ) {
if ($pat eq "-re") {
$re_next++;
$count_in++;
next;
}
if ($re_next) {
$re_next = 0;
# always at $lookbuf end when processing single char
if ( $lookbuf =~ s/$pat//s ) {
$self->{"_LMATCH"} = $&;
$got_match++;
}
}
elsif (($mpos = index($lookbuf, $pat)) > -1) {
$got_match++;
$lookbuf = substr ($lookbuf, 0, $mpos);
$self->{"_LMATCH"} = $pat;
}
if ($got_match) {
$self->{"_LPATT"} = $self->{"_MATCH"}[$count_in];
if (scalar @loc_char) {
$self->{"_LASTLOOK"} = join("", @loc_char);
## print ".$self->{\"_LASTLOOK\"}.";
}
else {
$self->{"_LASTLOOK"} = "";
}
$self->{"_LOOK"} = "";
return $lookbuf;
}
$count_in++;
}
}
}
}
return "";
}
 
sub streamline {
my $self = shift;
my $size = 0;
if (@_) { $size = shift; }
my $loc = "";
my $mpos;
my $count_in = 0;
my $string_in = "";
my $re_next = 0;
my $got_match = 0;
my $best_pos = 0;
my $pat;
my $match = "";
my $before = "";
my $after = "";
my $best_match = "";
my $best_before = "";
my $best_after = "";
my $best_pat = "";
$self->{"_LMATCH"} = "";
$self->{"_LPATT"} = "";
 
if ( ! $self->{"_LOOK"} ) {
$loc = $self->{"_LASTLOOK"};
}
 
if ($size) {
my ($bbb, $iii, $ooo, $eee) = status($self);
if ($iii > $size) { $size = $iii; }
($count_in, $string_in) = $self->read($size);
return unless ($count_in);
$loc .= $string_in;
}
else {
$loc .= $self->input;
}
 
if ($loc ne "") {
$self->{"_LOOK"} .= $loc;
$count_in = 0;
foreach $pat ( @{ $self->{"_CMATCH"} } ) {
if ($pat eq "-re") {
$re_next++;
$count_in++;
next;
}
if ($re_next) {
$re_next = 0;
if ( $self->{"_LOOK"} =~ /$pat/s ) {
( $match, $before, $after ) = ( $&, $`, $' );
$got_match++;
$mpos = length($before);
if ($mpos) {
next if ($best_pos && ($mpos > $best_pos));
$best_pos = $mpos;
$best_pat = $self->{"_MATCH"}[$count_in];
$best_match = $match;
$best_before = $before;
$best_after = $after;
} else {
$self->{"_LPATT"} = $self->{"_MATCH"}[$count_in];
$self->{"_LMATCH"} = $match;
$self->{"_LASTLOOK"} = $after;
$self->{"_LOOK"} = "";
return $before;
# pattern at start will be best
}
}
}
elsif (($mpos = index($self->{"_LOOK"}, $pat)) > -1) {
$got_match++;
$before = substr ($self->{"_LOOK"}, 0, $mpos);
if ($mpos) {
next if ($best_pos && ($mpos > $best_pos));
$best_pos = $mpos;
$best_pat = $pat;
$best_match = $pat;
$best_before = $before;
$mpos += length($pat);
$best_after = substr ($self->{"_LOOK"}, $mpos);
} else {
$self->{"_LPATT"} = $pat;
$self->{"_LMATCH"} = $pat;
$before = substr ($self->{"_LOOK"}, 0, $mpos);
$mpos += length($pat);
$self->{"_LASTLOOK"} = substr ($self->{"_LOOK"}, $mpos);
$self->{"_LOOK"} = "";
return $before;
# match at start will be best
}
}
$count_in++;
}
if ($got_match) {
$self->{"_LPATT"} = $best_pat;
$self->{"_LMATCH"} = $best_match;
$self->{"_LASTLOOK"} = $best_after;
$self->{"_LOOK"} = "";
return $best_before;
}
}
return "";
}
 
sub input {
return unless (@_ == 1);
my $self = shift;
my $result = "";
if (nocarp && $self->{"_T_INPUT"}) {
$result = $self->{"_T_INPUT"};
$self->{"_T_INPUT"} = "";
return $result;
}
my $ok = 0;
my $got_p = " "x4;
my ($bbb, $wanted, $ooo, $eee) = status($self);
return "" if ($eee);
return "" unless $wanted;
 
my $got = $self->read_bg ($wanted);
 
if ($got != $wanted) {
# block if unexpected happens
($ok, $got, $result) = $self->read_done(1); # block until done
}
else { ($ok, $got, $result) = $self->read_done(0); }
### print "input: got= $got result=$result\n";
return $got ? $result : "";
}
 
sub write {
return unless (@_ == 2);
my $self = shift;
my $wbuf = shift;
my $ok = 1;
 
return 0 if ($wbuf eq "");
my $lbuf = length ($wbuf);
 
my $written = $self->write_bg ($wbuf);
 
if ($written != $lbuf) {
($ok, $written) = $self->write_done(1); # block until done
}
if ($Verbose) {
print "wbuf=$wbuf\n";
print "lbuf=$lbuf\n";
print "written=$written\n";
}
return unless ($ok);
return $written;
}
 
sub transmit_char {
my $self = shift;
return unless (@_ == 1);
my $v = int shift;
return if (($v < 0) or ($v > 255));
return unless $self->xmit_imm_char ($v);
return wantarray ? @byte_opt : 1;
}
 
sub xon_char {
my $self = shift;
if (@_ == 1) {
my $v = int shift;
return if (($v < 0) or ($v > 255));
$self->is_xon_char($v);
}
return wantarray ? @byte_opt : $self->is_xon_char;
}
 
sub xoff_char {
my $self = shift;
if (@_ == 1) {
my $v = int shift;
return if (($v < 0) or ($v > 255));
$self->is_xoff_char($v);
}
return wantarray ? @byte_opt : $self->is_xoff_char;
}
 
sub eof_char {
my $self = shift;
if (@_ == 1) {
my $v = int shift;
return if (($v < 0) or ($v > 255));
$self->is_eof_char($v);
}
return wantarray ? @byte_opt : $self->is_eof_char;
}
 
sub event_char {
my $self = shift;
if (@_ == 1) {
my $v = int shift;
return if (($v < 0) or ($v > 255));
$self->is_event_char($v);
}
return wantarray ? @byte_opt : $self->is_event_char;
}
 
sub error_char {
my $self = shift;
if (@_ == 1) {
my $v = int shift;
return if (($v < 0) or ($v > 255));
$self->is_error_char($v);
}
return wantarray ? @byte_opt : $self->is_error_char;
}
 
sub xon_limit {
my $self = shift;
if (@_ == 1) {
my $v = int shift;
return if (($v < 0) or ($v > SHORTsize));
$self->is_xon_limit($v);
}
return wantarray ? (0, SHORTsize) : $self->is_xon_limit;
}
 
sub xoff_limit {
my $self = shift;
if (@_ == 1) {
my $v = int shift;
return if (($v < 0) or ($v > SHORTsize));
$self->is_xoff_limit($v);
}
return wantarray ? (0, SHORTsize) : $self->is_xoff_limit;
}
 
sub read_interval {
my $self = shift;
if (@_) {
return unless defined $self->is_read_interval( shift );
}
return wantarray ? (0, LONGsize) : $self->is_read_interval;
}
 
sub read_char_time {
my $self = shift;
if (@_) {
return unless defined $self->is_read_char_time( shift );
}
return wantarray ? (0, LONGsize) : $self->is_read_char_time;
}
 
sub read_const_time {
my $self = shift;
if (@_) {
return unless defined $self->is_read_const_time( shift );
}
return wantarray ? (0, LONGsize) : $self->is_read_const_time;
}
 
sub write_const_time {
my $self = shift;
if (@_) {
return unless defined $self->is_write_const_time( shift );
}
return wantarray ? (0, LONGsize) : $self->is_write_const_time;
}
 
sub write_char_time {
my $self = shift;
if (@_) {
return unless defined $self->is_write_char_time( shift );
}
return wantarray ? (0, LONGsize) : $self->is_write_char_time;
}
 
 
# true/false parameters
 
sub binary {
my $self = shift;
if (@_) {
return unless defined $self->is_binary( shift );
}
return $self->is_binary;
}
 
sub parity_enable {
my $self = shift;
if (@_) {
if ( $self->can_parity_enable ) {
$self->is_parity_enable( shift );
}
elsif ($self->{U_MSG}) {
carp "Can't set parity enable on $self->{ALIAS}";
}
}
return $self->is_parity_enable;
}
 
sub modemlines {
return unless (@_ == 1);
my $self = shift;
my $result = $self->is_modemlines;
if ($Verbose) {
print "CTS is ON\n" if ($result & MS_CTS_ON);
print "DSR is ON\n" if ($result & MS_DSR_ON);
print "RING is ON\n" if ($result & MS_RING_ON);
print "RLSD is ON\n" if ($result & MS_RLSD_ON);
}
return $result;
}
 
sub stty {
my $ob = shift;
my $token;
if (@_) {
my $ok = 1;
no strict 'refs'; # for $gosub
while ($token = shift) {
if (exists $opts{$token}) {
## print " $opts{$token}\n";
my ($gosub, $value) = split (':', $opts{$token});
if ($value eq "argv_char") { $value = &argv_char(shift); }
if (defined $value) {
&$gosub($ob, $value);
} else {
nocarp or carp "bad value for parameter $token\n";
$ok = 0;
}
}
else {
nocarp or carp "parameter $token not found\n";
$ok = 0;
}
}
use strict 'refs';
return $ok;
}
else {
my @settings; # array returned by ()
my $current = $ob->baudrate;
push @settings, "$current";
 
push @settings, "intr";
push @settings, cntl_char($ob->stty_intr);
push @settings, "quit";
push @settings, cntl_char($ob->stty_quit);
push @settings, "erase";
push @settings, cntl_char($ob->stty_erase);
push @settings, "kill";
push @settings, cntl_char($ob->stty_kill);
push @settings, "eof";
push @settings, cntl_char($ob->stty_eof);
push @settings, "eol";
push @settings, cntl_char($ob->stty_eol);
push @settings, "start";
push @settings, cntl_char(chr $ob->xon_char);
push @settings, "stop";
push @settings, cntl_char(chr $ob->xoff_char);
# "stop" is last CHAR type
 
push @settings, ($ob->stty_echo ? "" : "-")."echo";
push @settings, ($ob->stty_echoe ? "" : "-")."echoe";
push @settings, ($ob->stty_echok ? "" : "-")."echok";
push @settings, ($ob->stty_echonl ? "" : "-")."echonl";
push @settings, ($ob->stty_echoke ? "" : "-")."echoke";
push @settings, ($ob->stty_echoctl ? "" : "-")."echoctl";
push @settings, ($ob->stty_istrip ? "" : "-")."istrip";
push @settings, ($ob->stty_icrnl ? "" : "-")."icrnl";
push @settings, ($ob->stty_ocrnl ? "" : "-")."ocrnl";
push @settings, ($ob->stty_igncr ? "" : "-")."igncr";
push @settings, ($ob->stty_inlcr ? "" : "-")."inlcr";
push @settings, ($ob->stty_onlcr ? "" : "-")."onlcr";
push @settings, ($ob->stty_opost ? "" : "-")."opost";
push @settings, ($ob->stty_isig ? "" : "-")."isig";
push @settings, ($ob->stty_icanon ? "" : "-")."icanon";
 
$current = $ob->databits;
push @settings, "cs$current";
push @settings, (($ob->stopbits == 2) ? "" : "-")."cstopb";
 
$current = $ob->handshake;
push @settings, (($current eq "dtr") ? "" : "-")."clocal";
push @settings, (($current eq "rts") ? "" : "-")."crtscts";
push @settings, (($current eq "xoff") ? "" : "-")."ixoff";
push @settings, (($current eq "xoff") ? "" : "-")."ixon";
 
my $parity = $ob->parity;
if ($parity eq "none") {
push @settings, "-parenb";
push @settings, "-parodd";
push @settings, "-inpck";
}
else {
$current = $ob->is_parity_enable;
push @settings, ($current ? "" : "-")."parenb";
push @settings, (($parity eq "odd") ? "" : "-")."parodd";
push @settings, ($current ? "" : "-")."inpck";
# mark and space not supported
}
return @settings;
}
}
 
sub cntl_char {
my $n_char = shift;
return "<undef>" unless (defined $n_char);
my $pos = ord $n_char;
if ($pos < 32) {
$n_char = "^".chr($pos + 64);
}
if ($pos > 126) {
$n_char = sprintf "0x%x", $pos;
}
return $n_char;
}
 
sub argv_char {
my $n_char = shift;
return unless (defined $n_char);
my $pos = $n_char;
if ($n_char =~ s/^\^//) {
$pos = ord($n_char) - 64;
}
elsif ($n_char =~ s/^0x//) {
$pos = hex($n_char);
}
elsif ($n_char =~ /^0/) {
$pos = oct($n_char);
}
## print "pos = $pos\n";
return $pos;
}
 
sub debug {
my $self = shift;
if (ref($self)) {
if (@_) { $self->{"_DEBUG"} = yes_true ( shift ); }
else {
my $tmp = $self->{"_DEBUG"};
nocarp || carp "Debug level: $self->{ALIAS} = $tmp";
$self->debug_comm($tmp);
return $self->{"_DEBUG"};
}
} else {
$Verbose = yes_true ($self);
nocarp || carp "SerialPort Debug Class = $Verbose";
Win32API::CommPort::debug_comm($Verbose);
return $Verbose;
}
}
 
sub close {
my $self = shift;
 
return unless (defined $self->{ALIAS});
 
if ($Verbose or $self->{"_DEBUG"}) {
carp "Closing $self " . $self->{ALIAS};
}
my $success = $self->SUPER::close;
$self->{DEVICE} = undef;
$self->{ALIAS} = undef;
if ($Verbose) {
printf "SerialPort close result:%d\n", $success;
}
return $success;
}
 
1; # so the require or use succeeds
 
# Autoload methods go after =cut, and are processed by the autosplit program.
 
__END__
 
=pod
 
=head1 NAME
 
Win32::SerialPort - User interface to Win32 Serial API calls
 
=head1 SYNOPSIS
 
require 5.003;
use Win32::SerialPort qw( :STAT 0.19 );
 
=head2 Constructors
 
$PortObj = new Win32::SerialPort ($PortName, $quiet)
|| die "Can't open $PortName: $^E\n"; # $quiet is optional
 
$PortObj = start Win32::SerialPort ($Configuration_File_Name)
|| die "Can't start $Configuration_File_Name: $^E\n";
 
$PortObj = tie (*FH, 'Win32::SerialPort', $Configuration_File_Name)
|| die "Can't tie using $Configuration_File_Name: $^E\n";
 
 
=head2 Configuration Utility Methods
 
$PortObj->alias("MODEM1");
 
# before using start, restart, or tie
$PortObj->save($Configuration_File_Name)
|| warn "Can't save $Configuration_File_Name: $^E\n";
 
# after new, must check for failure
$PortObj->write_settings || undef $PortObj;
print "Can't change Device_Control_Block: $^E\n" unless ($PortObj);
 
# rereads file to either return open port to a known state
# or switch to a different configuration on the same port
$PortObj->restart($Configuration_File_Name)
|| warn "Can't reread $Configuration_File_Name: $^E\n";
 
# "app. variables" saved in $Configuration_File, not used internally
$PortObj->devicetype('none'); # CM11, CM17, 'weeder', 'modem'
$PortObj->hostname('localhost'); # for socket-based implementations
$PortObj->hostaddr(0); # false unless specified
$PortObj->datatype('raw'); # in case an application needs_to_know
$PortObj->cfg_param_1('none'); # null string '' hard to save/restore
$PortObj->cfg_param_2('none'); # 3 spares should be enough for now
$PortObj->cfg_param_3('none'); # one may end up as a log file path
 
# specials for test suite only
@necessary_param = Win32::SerialPort->set_test_mode_active(1);
$PortObj->lookclear("loopback to next 'input' method");
 
=head2 Configuration Parameter Methods
 
# most methods can be called three ways:
$PortObj->handshake("xoff"); # set parameter
$flowcontrol = $PortObj->handshake; # current value (scalar)
@handshake_opts = $PortObj->handshake; # permitted choices (list)
 
# similar
$PortObj->baudrate(9600);
$PortObj->parity("odd");
$PortObj->databits(8);
$PortObj->stopbits(1);
 
# range parameters return (minimum, maximum) in list context
$PortObj->xon_limit(100); # bytes left in buffer
$PortObj->xoff_limit(100); # space left in buffer
$PortObj->xon_char(0x11);
$PortObj->xoff_char(0x13);
$PortObj->eof_char(0x0);
$PortObj->event_char(0x0);
$PortObj->error_char(0); # for parity errors
 
$PortObj->buffers(4096, 4096); # read, write
# returns current in list context
 
$PortObj->read_interval(100); # max time between read char (milliseconds)
$PortObj->read_char_time(5); # avg time between read char
$PortObj->read_const_time(100); # total = (avg * bytes) + const
$PortObj->write_char_time(5);
$PortObj->write_const_time(100);
 
# true/false parameters (return scalar context only)
 
$PortObj->binary(T); # just say Yes (Win 3.x option)
$PortObj->parity_enable(F); # faults during input
$PortObj->debug(0);
 
=head2 Operating Methods
 
($BlockingFlags, $InBytes, $OutBytes, $LatchErrorFlags) = $PortObj->status
|| warn "could not get port status\n";
 
if ($BlockingFlags) { warn "Port is blocked"; }
if ($BlockingFlags & BM_fCtsHold) { warn "Waiting for CTS"; }
if ($LatchErrorFlags & CE_FRAME) { warn "Framing Error"; }
# The API resets errors when reading status, $LatchErrorFlags
# is all $ErrorFlags seen since the last reset_error
 
Additional useful constants may be exported eventually. If the only fault
action desired is a message, B<status> provides I<Built-In> BitMask processing:
 
$PortObj->error_msg(1); # prints hardware messages like "Framing Error"
$PortObj->user_msg(1); # prints function messages like "Waiting for CTS"
 
($count_in, $string_in) = $PortObj->read($InBytes);
warn "read unsuccessful\n" unless ($count_in == $InBytes);
 
$count_out = $PortObj->write($output_string);
warn "write failed\n" unless ($count_out);
warn "write incomplete\n" if ( $count_out != length($output_string) );
 
if ($string_in = $PortObj->input) { PortObj->write($string_in); }
# simple echo with no control character processing
 
$PortObj->transmit_char(0x03); # bypass buffer (and suspend)
 
$ModemStatus = $PortObj->modemlines;
if ($ModemStatus & $PortObj->MS_RLSD_ON) { print "carrier detected"; }
 
=head2 Methods used with Tied FileHandles
 
$PortObj = tie (*FH, 'Win32::SerialPort', $Configuration_File_Name)
|| die "Can't tie: $^E\n"; ## TIEHANDLE ##
 
print FH "text"; ## PRINT ##
$char = getc FH; ## GETC ##
syswrite FH, $out, length($out), 0; ## WRITE ##
$line = <FH>; ## READLINE ##
@lines = <FH>; ## READLINE ##
printf FH "received: %s", $line; ## PRINTF ##
read (FH, $in, 5, 0) or die "$^E"; ## READ ##
sysread (FH, $in, 5, 0) or die "$^E"; ## READ ##
close FH || warn "close failed"; ## CLOSE ##
undef $PortObj;
untie *FH; ## DESTROY ##
 
$PortObj->linesize(10); # with READLINE
$PortObj->lastline("_GOT_ME_"); # with READLINE, list only
 
$old_ors = $PortObj->output_record_separator("RECORD"); # with PRINT
$old_ofs = $PortObj->output_field_separator("COMMA"); # with PRINT
 
=head2 Destructors
 
$PortObj->close || warn "close failed";
# passed to CommPort to release port to OS - needed to reopen
# close will not usually DESTROY the object
# also called as: close FH || warn "close failed";
 
 
undef $PortObj;
# preferred unless reopen expected since it triggers DESTROY
# calls $PortObj->close but does not confirm success
# MUST precede untie - do all three IN THIS SEQUENCE before re-tie.
 
untie *FH;
 
=head2 Methods for I/O Processing
 
$PortObj->are_match("text", "\n"); # possible end strings
$PortObj->lookclear; # empty buffers
$PortObj->write("Feed Me:"); # initial prompt
$PortObj->is_prompt("More Food:"); # new prompt after "kill" char
 
my $gotit = "";
my $match1 = "";
until ("" ne $gotit) {
$gotit = $PortObj->lookfor; # poll until data ready
die "Aborted without match\n" unless (defined $gotit);
last if ($gotit);
$match1 = $PortObj->matchclear; # match is first thing received
last if ($match1);
sleep 1; # polling sample time
}
 
printf "gotit = %s\n", $gotit; # input BEFORE the match
my ($match, $after, $pattern, $instead) = $PortObj->lastlook;
# input that MATCHED, input AFTER the match, PATTERN that matched
# input received INSTEAD when timeout without match
 
if ($match1) {
$match = $match1;
}
printf "lastlook-match = %s -after = %s -pattern = %s\n",
$match, $after, $pattern;
 
$gotit = $PortObj->lookfor($count); # block until $count chars received
 
$PortObj->are_match("-re", "pattern", "text");
# possible match strings: "pattern" is a regular expression,
# "text" is a literal string
 
$gotit = $PortObj->streamline; # poll until data ready
$gotit = $PortObj->streamline($count);# block until $count chars received
# fast alternatives to lookfor with no character processing
 
$PortObj->stty_intr("\cC"); # char to abort lookfor method
$PortObj->stty_quit("\cD"); # char to abort perl
$PortObj->stty_eof("\cZ"); # end_of_file char
$PortObj->stty_eol("\cJ"); # end_of_line char
$PortObj->stty_erase("\cH"); # delete one character from buffer (backspace)
$PortObj->stty_kill("\cU"); # clear line buffer
 
$PortObj->is_stty_intr(3); # ord(char) to abort lookfor method
$qc = $PortObj->is_stty_quit; # ($qc == 4) for "\cD"
$PortObj->is_stty_eof(26);
$PortObj->is_stty_eol(10);
$PortObj->is_stty_erase(8);
$PortObj->is_stty_kill(21);
 
my $air = " "x76;
$PortObj->stty_clear("\r$air\r"); # written after kill character
$PortObj->is_stty_clear; # internal version for config file
$PortObj->stty_bsdel("\cH \cH"); # written after erase character
 
$PortObj->stty_echo(0); # echo every character
$PortObj->stty_echoe(1); # if echo erase character with bsdel string
$PortObj->stty_echok(1); # if echo \n after kill character
$PortObj->stty_echonl(0); # if echo \n
$PortObj->stty_echoke(1); # if echo clear string after kill character
$PortObj->stty_echoctl(0); # if echo "^Char" for control chars
$PortObj->stty_istrip(0); # strip input to 7-bits
$PortObj->stty_icrnl(0); # map \r to \n on input
$PortObj->stty_ocrnl(0); # map \r to \n on output
$PortObj->stty_igncr(0); # ignore \r on input
$PortObj->stty_inlcr(0); # map \n to \r on input
$PortObj->stty_onlcr(1); # map \n to \r\n on output
$PortObj->stty_opost(0); # enable output mapping
$PortObj->stty_isig(0); # enable quit and intr characters
$PortObj->stty_icanon(0); # enable erase and kill characters
 
$PortObj->stty("-icanon"); # disable eof, erase and kill char, Unix-style
@stty_all = $PortObj->stty(); # get all the parameters, Perl-style
 
=head2 Capability Methods inherited from Win32API::CommPort
 
These return scalar context only.
 
can_baud can_databits can_stopbits
can_dtrdsr can_handshake can_parity_check
can_parity_config can_parity_enable can_rlsd
can_16bitmode is_rs232 is_modem
can_rtscts can_xonxoff can_xon_char
can_spec_char can_interval_timeout can_total_timeout
buffer_max can_rlsd_config
 
=head2 Operating Methods inherited from Win32API::CommPort
 
write_bg write_done read_bg
read_done reset_error suspend_tx
resume_tx dtr_active rts_active
break_active xoff_active xon_active
purge_all purge_rx purge_tx
pulse_rts_on pulse_rts_off pulse_dtr_on
pulse_dtr_off ignore_null ignore_no_dsr
subst_pe_char abort_on_error output_xoff
output_dsr output_cts tx_on_xoff
input_xoff get_tick_count
 
 
=head1 DESCRIPTION
 
 
This module uses Win32API::CommPort for raw access to the API calls and
related constants. It provides an object-based user interface to allow
higher-level use of common API call sequences for dealing with serial
ports.
 
Uses features of the Win32 API to implement non-blocking I/O, serial
parameter setting, event-loop operation, and enhanced error handling.
 
To pass in C<NULL> as the pointer to an optional buffer, pass in C<$null=0>.
This is expected to change to an empty list reference, C<[]>, when Perl
supports that form in this usage.
 
=head2 Initialization
 
The primary constructor is B<new> with a F<PortName> (as the Registry
knows it) specified. This will create an object, and get the available
options and capabilities via the Win32 API. The object is a superset
of a B<Win32API::CommPort> object, and supports all of its methods.
The port is not yet ready for read/write access. First, the desired
I<parameter settings> must be established. Since these are tuning
constants for an underlying hardware driver in the Operating System,
they are all checked for validity by the methods that set them. The
B<write_settings> method writes a new I<Device Control Block> to the
driver. The B<write_settings> method will return true if the port is
ready for access or C<undef> on failure. Ports are opened for binary
transfers. A separate C<binmode> is not needed. The USER must release
the object if B<write_settings> does not succeed.
 
Version 0.15 adds an optional C<$quiet> parameter to B<new>. Failure
to open a port prints a error message to STDOUT by default. Since only
one application at a time can "own" the port, one source of failure was
"port in use". There was previously no way to check this without getting
a "fail message". Setting C<$quiet> disables this built-in message. It
also returns 0 instead of C<undef> if the port is unavailable (still FALSE,
used for testing this condition - other faults may still return C<undef>).
Use of C<$quiet> only applies to B<new>.
 
=over 8
 
Certain parameters I<MUST> be set before executing B<write_settings>.
Others will attempt to deduce defaults from the hardware or from other
parameters. The I<Required> parameters are:
 
=item baudrate
 
Any legal value.
 
=item parity
 
One of the following: "none", "odd", "even", "mark", "space".
If you select anything except "none", you will need to set B<parity_enable>.
 
=item databits
 
An integer from 5 to 8.
 
=item stopbits
 
Legal values are 1, 1.5, and 2. But 1.5 only works with 5 databits, 2 does
not work with 5 databits, and other combinations may not work on all
hardware if parity is also used.
 
=back
 
The B<handshake> setting is recommended but no longer required. Select one
of the following: "none", "rts", "xoff", "dtr".
 
Some individual parameters (eg. baudrate) can be changed after the
initialization is completed. These will be validated and will
update the I<Device Control Block> as required. The B<save>
method will write the current parameters to a file that B<start, tie,> and
B<restart> can use to reestablish a functional setup.
 
$PortObj = new Win32::SerialPort ($PortName, $quiet)
|| die "Can't open $PortName: $^E\n"; # $quiet is optional
 
$PortObj->user_msg(ON);
$PortObj->databits(8);
$PortObj->baudrate(9600);
$PortObj->parity("none");
$PortObj->stopbits(1);
$PortObj->handshake("rts");
$PortObj->buffers(4096, 4096);
 
$PortObj->write_settings || undef $PortObj;
 
$PortObj->save($Configuration_File_Name);
 
$PortObj->baudrate(300);
$PortObj->restart($Configuration_File_Name); # back to 9600 baud
 
$PortObj->close || die "failed to close";
undef $PortObj; # frees memory back to perl
 
The F<PortName> maps to both the Registry I<Device Name> and the
I<Properties> associated with that device. A single I<Physical> port
can be accessed using two or more I<Device Names>. But the options
and setup data will differ significantly in the two cases. A typical
example is a Modem on port "COM2". Both of these F<PortNames> open
the same I<Physical> hardware:
 
$P1 = new Win32::SerialPort ("COM2");
 
$P2 = new Win32::SerialPort ("\\\\.\\Nanohertz Modem model K-9");
 
$P1 is a "generic" serial port. $P2 includes all of $P1 plus a variety
of modem-specific added options and features. The "raw" API calls return
different size configuration structures in the two cases. Win32 uses the
"\\.\" prefix to identify "named" devices. Since both names use the same
I<Physical> hardware, they can not both be used at the same time. The OS
will complain. Consider this A Good Thing. Use B<alias> to convert the
name used by "built-in" messages.
 
$P2->alias("FIDO");
 
The second constructor, B<start> is intended to simplify scripts which
need a constant setup. It executes all the steps from B<new> to
B<write_settings> based on a previously saved configuration. This
constructor will return C<undef> on a bad configuration file or failure
of a validity check. The returned object is ready for access.
 
$PortObj2 = start Win32::SerialPort ($Configuration_File_Name)
|| die;
 
The third constructor, B<tie>, combines the B<start> with Perl's
support for tied FileHandles (see I<perltie>). Win32::SerialPort
implements the complete set of methods: TIEHANDLE, PRINT, PRINTF,
WRITE, READ, GETC, READLINE, CLOSE, and DESTROY. Tied FileHandle
support was new with Version 0.14.
 
$PortObj2 = tie (*FH, 'Win32::SerialPort', $Configuration_File_Name)
|| die;
 
The implementation attempts to mimic STDIN/STDOUT behaviour as closely
as possible: calls block until done, data strings that exceed internal
buffers are divided transparently into multiple calls, and B<stty_onlcr>
and B<stty_ocrnl> are applied to output data (WRITE, PRINT, PRINTF) when
B<stty_opost> is true. In Version 0.17, the output separators C<$,> and
C<$\> are also applied to PRINT if set. Since PRINTF is treated internally
as a single record PRINT, C<$\> will be applied. Output separators are not
applied to WRITE (called as C<syswrite FH, $scalar, $length, [$offset]>).
 
The B<output_record_separator> and B<output_field_separator> methods can set
I<Port-FileHandle-Specific> versions of C<$,> and C<$\> if desired.
The input_record_separator C<$/> is not explicitly supported - but an
identical function can be obtained with a suitable B<are_match> setting.
Record separators are experimental in Version 0.17. They are not saved
in the configuration_file.
 
The tied FileHandle methods may be combined with the Win32::SerialPort
methods for B<read, input>, and B<write> as well as other methods. The
typical restrictions against mixing B<print> with B<syswrite> do not
apply. Since both B<(tied) read> and B<sysread> call the same C<$ob-E<gt>READ>
method, and since a separate C<$ob-E<gt>read> method has existed for some
time in Win32::SerialPort, you should always use B<sysread> with the
tied interface. Beginning in Version 0.17, B<sysread> checks the input
against B<stty_icrnl>, B<stty_inlcr>, and B<stty_igncr>. With B<stty_igncr>
active, the B<sysread> returns the count of all characters received including
and C<\r> characters subsequently deleted.
 
Because all the tied methods block, they should ALWAYS be used with
timeout settings and are not suitable for background operations and
polled loops. The B<sysread> method may return fewer characters than
requested when a timeout occurs. The method call is still considered
successful. If a B<sysread> times out after receiving some characters,
the actual elapsed time may be as much as twice the programmed limit.
If no bytes are received, the normal timing applies.
 
=head2 Configuration and Capability Methods
 
Starting in Version 0.18, a number of I<Application Variables> are saved
in B<$Configuration_File>. These parameters are not used internally. But
methods allow setting and reading them. The intent is to facilitate the
use of separate I<configuration scripts> to create the files. Then an
application can use B<start> as the Constructor and not bother with
command line processing or managing its own small configuration file.
The default values and number of parameters is subject to change.
 
$PortObj->devicetype('none');
$PortObj->hostname('localhost'); # for socket-based implementations
$PortObj->hostaddr(0); # a "false" value
$PortObj->datatype('raw'); # 'record' is another possibility
$PortObj->cfg_param_1('none');
$PortObj->cfg_param_2('none'); # 3 spares should be enough for now
$PortObj->cfg_param_3('none');
 
The Win32 Serial Comm API provides extensive information concerning
the capabilities and options available for a specific port (and
instance). "Modem" ports have different capabilties than "RS-232"
ports - even if they share the same Hardware. Many traditional modem
actions are handled via TAPI. "Fax" ports have another set of options -
and are accessed via MAPI. Yet many of the same low-level API commands
and data structures are "common" to each type ("Modem" is implemented
as an "RS-232" superset). In addition, Win95 supports a variety of
legacy hardware (e.g fixed 134.5 baud) while WinNT has hooks for ISDN,
16-data-bit paths, and 256Kbaud.
 
=over 8
 
Binary selections will accept as I<true> any of the following:
C<("YES", "Y", "ON", "TRUE", "T", "1", 1)> (upper/lower/mixed case)
Anything else is I<false>.
 
There are a large number of possible configuration and option parameters.
To facilitate checking option validity in scripts, most configuration
methods can be used in three different ways:
 
=item method called with an argument
 
The parameter is set to the argument, if valid. An invalid argument
returns I<false> (undef) and the parameter is unchanged. The function
will also I<carp> if B<$user_msg> is I<true>. After B<write_settings>,
the port will be updated immediately if allowed. Otherwise, the value
will be applied when B<write_settings> is called.
 
=item method called with no argument in scalar context
 
The current value is returned. If the value is not initialized either
directly or by default, return "undef" which will parse to I<false>.
For binary selections (true/false), return the current value. All
current values from "multivalue" selections will parse to I<true>.
Current values may differ from requested values until B<write_settings>.
There is no way to see requests which have not yet been applied.
Setting the same parameter again overwrites the first request. Test
the return value of the setting method to check "success".
 
=item method called with no argument in list context
 
Return a list consisting of all acceptable choices for parameters with
discrete choices. Return a list C<(minimum, maximum)> for parameters
which can be set to a range of values. Binary selections have no need
to call this way - but will get C<(0,1)> if they do. Beginning in
Version 0.16, Binary selections inherited from Win32API::CommPort may
not return anything useful in list context. The null list C<(undef)>
will be returned for failed calls in list context (e.g. for an invalid
or unexpected argument).
 
=item Asynchronous (Background) I/O
 
The module handles Polling (do if Ready), Synchronous (block until
Ready), and Asynchronous Modes (begin and test if Ready) with the timeout
choices provided by the API. No effort has yet been made to interact with
Windows events. But background I/O has been used successfully with the
Perl Tk modules and callbacks from the event loop.
 
=item Timeouts
 
The API provides two timing models. The first applies only to reading and
essentially determines I<Read Not Ready> by checking the time between
consecutive characters. The B<ReadFile> operation returns if that time
exceeds the value set by B<read_interval>. It does this by timestamping
each character. It appears that at least one character must by received in
I<every> B<read> I<call to the API> to initialize the mechanism. The timer
is then reset by each succeeding character. If no characters are received,
the read will block indefinitely.
 
Setting B<read_interval> to C<0xffffffff> will do a non-blocking read.
The B<ReadFile> returns immediately whether or not any characters are
actually read. This replicates the behavior of the API.
 
The other model defines the total time allowed to complete the operation.
A fixed overhead time is added to the product of bytes and per_byte_time.
A wide variety of timeout options can be defined by selecting the three
parameters: fixed, each, and size.
 
Read_Total = B<read_const_time> + (B<read_char_time> * bytes_to_read)
 
Write_Total = B<write_const_time> + (B<write_char_time> * bytes_to_write)
 
When reading a known number of characters, the I<Read_Total> mechanism is
recommended. This mechanism I<MUST> be used with I<tied FileHandles> because
the tie methods can make multiple internal API calls in response to a single
B<sysread> or B<READLINE>. The I<Read_Interval> mechanism is suitable for
a B<read> method that expects a response of variable or unknown size. You
should then also set a long I<Read_Total> timeout as a "backup" in case
no bytes are received.
 
=back
 
=head2 Exports
 
Nothing is exported by default. Nothing is currently exported. Optional
tags from Win32API::CommPort are passed through.
 
=over 4
 
=item :PARAM
 
Utility subroutines and constants for parameter setting and test:
 
LONGsize SHORTsize nocarp yes_true
OS_Error internal_buffer
 
=item :STAT
 
Serial communications constants from Win32API::CommPort. Included are the
constants for ascertaining why a transmission is blocked:
 
BM_fCtsHold BM_fDsrHold BM_fRlsdHold BM_fXoffHold
BM_fXoffSent BM_fEof BM_fTxim BM_AllBits
 
Which incoming bits are active:
 
MS_CTS_ON MS_DSR_ON MS_RING_ON MS_RLSD_ON
 
What hardware errors have been detected:
 
CE_RXOVER CE_OVERRUN CE_RXPARITY CE_FRAME
CE_BREAK CE_TXFULL CE_MODE
 
Offsets into the array returned by B<status:>
 
ST_BLOCK ST_INPUT ST_OUTPUT ST_ERROR
 
=back
 
=head2 Stty Emulation
 
Nothing wrong with dreaming! A subset of stty options is available
through a B<stty> method. The purpose is support of existing serial
devices which have embedded knowledge of Unix communication line and
login practices. It is also needed by Tom Christiansen's Perl Power Tools
project. This is new and experimental in Version 0.15. The B<stty> method
returns an array of "traditional stty values" when called with no
arguments. With arguments, it sets the corresponding parameters.
 
$ok = $PortObj->stty("-icanon"); # equivalent to stty_icanon(0)
@stty_all = $PortObj->stty(); # get all the parameters, Perl-style
$ok = $PortObj->stty("cs7",19200); # multiple parameters
$ok = $PortObj->stty(@stty_save); # many parameters
 
The distribution includes a demo script, stty.plx, which gives details
of usage. Not all Unix parameters are currently supported. But the array
will contain all those which can be set. The order in C<@stty_all> will
match the following pattern:
 
baud, # numeric, always first
"intr", character, # the parameters which set special characters
"name", character, ...
"stop", character, # "stop" will always be the last "pair"
"parameter", # the on/off settings
"-parameter", ...
 
Version 0.13 added the primitive functions required to implement this
feature. A number of methods named B<stty_xxx> do what an
I<experienced stty user> would expect.
Unlike B<stty> on Unix, the B<stty_xxx> operations apply only to I/O
processed via the B<lookfor> method or the I<tied FileHandle> methods.
The B<read, input, read_done, write> methods all treat data as "raw".
 
 
The following stty functions have related SerialPort functions:
---------------------------------------------------------------
stty (control) SerialPort Default Value
---------------- ------------------ -------------
parenb inpck parity_enable from port
parodd parity from port
cs5 cs6 cs7 cs8 databits from port
cstopb stopbits from port
clocal crtscts handshake from port
ixon ixoff handshake from port
 
time read_const_time from port
110 300 600 1200 2400 baudrate from port
4800 9600 19200 38400 baudrate
75 134.5 150 1800 fixed baud only - not selectable
g, "stty < /dev/x" start, save none
sane restart none
 
stty (input) SerialPort Default Value
---------------- ------------------ -------------
istrip stty_istrip off
igncr stty_igncr off
inlcr stty_inlcr off
icrnl stty_icrnl on
parmrk error_char from port (off typ)
 
stty (output) SerialPort Default Value
---------------- ------------------ -------------
ocrnl stty_ocrnl off if opost
onlcr stty_onlcr on if opost
opost stty_opost off
 
stty (local) SerialPort Default Value
---------------- ------------------ -------------
raw read, write, input none
cooked lookfor none
echo stty_echo off
echoe stty_echoe on if echo
echok stty_echok on if echo
echonl stty_echonl off
echoke stty_echoke on if echo
echoctl stty_echoctl off
 
isig stty_isig off
 
icanon stty_icanon off
stty (char) SerialPort Default Value
---------------- ------------------ -------------
intr stty_intr "\cC"
is_stty_intr 3
 
quit stty_quit "\cD"
is_stty_quit 4
 
erase stty_erase "\cH"
is_stty_erase 8
 
(erase echo) stty_bsdel "\cH \cH"
 
kill stty_kill "\cU"
is_stty_kill 21
 
(kill echo) stty_clear "\r {76}\r"
is_stty_clear "-@{76}-"
 
eof stty_eof "\cZ"
is_stty_eof 26
 
eol stty_eol "\cJ"
is_stty_eol 10
 
start xon_char from port ("\cQ" typ)
is_xon_char 17
stop xoff_char from port ("\cS" typ)
is_xoff_char 19
The following stty functions have no equivalent in SerialPort:
--------------------------------------------------------------
[-]hup [-]ignbrk [-]brkint [-]ignpar
[-]tostop susp 0 50
134 200 exta extb
[-]cread [-]hupcl
 
The stty function list is taken from the documentation for IO::Stty by
Austin Schutz.
 
=head2 Lookfor and I/O Processing
 
Many of the B<stty_xxx> methods support features which are necessary for
line-oriented input (such as command-line handling). These include methods
which select control-keys to delete characters (B<stty_erase>) and lines
(B<stty_kill>), define input boundaries (B<stty_eol, stty_eof>), and abort
processing (B<stty_intr, stty_quit>). These keys also have B<is_stty_xxx>
methods which convert the key-codes to numeric equivalents which can be
saved in the configuration file.
 
Some communications programs have a different but related need - to collect
(or discard) input until a specific pattern is detected. For lines, the
pattern is a line-termination. But there are also requirements to search
for other strings in the input such as "username:" and "password:". The
B<lookfor> method provides a consistant mechanism for solving this problem.
It searches input character-by-character looking for a match to any of the
elements of an array set using the B<are_match> method. It returns the
entire input up to the match pattern if a match is found. If no match
is found, it returns "" unless an input error or abort is detected (which
returns undef).
 
The actual match and the characters after it (if any) may also be viewed
using the B<lastlook> method. In Version 0.13, the match test included
a C<s/$pattern//s> test which worked fine for literal text but returned
the I<Regular Expression> that matched when C<$pattern> contained any Perl
metacharacters. That was probably a bug - although no one reported it.
 
In Version 0.14, B<lastlook> returns both the input and the pattern from
the match test. It also adopts the convention from Expect.pm that match
strings are literal text (tested using B<index>) unless preceeded in the
B<are_match> list by a B<"-re",> entry. The default B<are_match> list
is C<("\n")>, which matches complete lines.
 
my ($match, $after, $pattern, $instead) = $PortObj->lastlook;
# input that MATCHED, input AFTER the match, PATTERN that matched
# input received INSTEAD when timeout without match ("" if match)
 
$PortObj->are_match("text1", "-re", "pattern", "text2");
# possible match strings: "pattern" is a regular expression,
# "text1" and "text2" are literal strings
 
The I<Regular Expression> handling in B<lookfor> is still
experimental. Please let me know if you use it (or can't use it), so
I can confirm bug fixes don't break your code. For literal strings,
C<$match> and C<$pattern> should be identical. The C<$instead> value
returns the internal buffer tested by the match logic. A successful
match or a B<lookclear> resets it to "" - so it is only useful for error
handling such as timeout processing or reporting unexpected responses.
 
The B<lookfor> method is designed to be sampled periodically (polled). Any
characters after the match pattern are saved for a subsequent B<lookfor>.
Internally, B<lookfor> is implemented using the nonblocking B<input> method
when called with no parameter. If called with a count, B<lookfor> calls
C<$PortObj-E<gt>read(count)> which blocks until the B<read> is I<Complete> or
a I<Timeout> occurs. The blocking alternative should not be used unless a
fault time has been defined using B<read_interval, read_const_time, and
read_char_time>. It exists mostly to support the I<tied FileHandle>
functions B<sysread, getc,> and B<E<lt>FHE<gt>>.
 
The internal buffers used by B<lookfor> may be purged by the B<lookclear>
method (which also clears the last match). For testing, B<lookclear> can
accept a string which is "looped back" to the next B<input>. This feature
is enabled only when C<set_test_mode_active(1)>. Normally, B<lookclear>
will return C<undef> if given parameters. It still purges the buffers and
last_match in that case (but nothing is "looped back"). You will want
B<stty_echo(0)> when exercising loopback.
 
Version 0.15 adds a B<matchclear> method. It is designed to handle the
"special case" where the match string is the first character(s) received
by B<lookfor>. In this case, C<$lookfor_return == "">, B<lookfor> does
not provide a clear indication that a match was found. The B<matchclear>
returns the same C<$match> that would be returned by B<lastlook> and
resets it to "" without resetting any of the other buffers. Since the
B<lookfor> already searched I<through> the match, B<matchclear> is used
to both detect and step-over "blank" lines.
 
The character-by-character processing used by B<lookfor> to support the
I<stty emulation> is fine for interactive activities and tasks which
expect short responses. But it has too much "overhead" to handle fast
data streams. Version 0.15 adds a B<streamline> method which is a fast,
line-oriented alternative with no echo support or input handling except
for pattern searching. Exact benchmarks will vary with input data and
patterns, but my tests indicate B<streamline> is 10-20 times faster then
B<lookfor> when uploading files averaging 25-50 characters per line.
Since B<streamline> uses the same internal buffers, the B<lookclear,
lastlook, are_match, and matchclear> methods act the same in both cases.
In fact, calls to B<streamline> and B<lookfor> can be interleaved if desired
(e.g. an interactive task that starts an upload and returns to interactive
activity when it is complete).
 
Beginning in Version 0.15, the B<READLINE> method supports "list context".
A tied FileHandle can slurp in a whole file with an "@lines = E<lt>FHE<gt>"
construct. In "scalar context", B<READLINE> calls B<lookfor>. But it calls
B<streamline> in "list context". Both contexts also call B<matchclear>
to detect "empty" lines and B<reset_error> to detect hardware problems.
The existance of a hardware fault is reported with C<$^E>, although the
specific fault is only reported when B<error_msg> is true.
 
There are two additional methods for supporting "list context" input:
B<lastline> sets an "end_of_file" I<Regular Expression>, and B<linesize>
permits changing the "packet size" in the blocking read operation to allow
tuning performance to data characteristics. These two only apply during
B<READLINE>. The default for B<linesize> is 1. There is no default for
the B<lastline> method.
 
In Version 0.15, I<Regular Expressions> set by B<are_match> and B<lastline>
will be pre-compiled using the I<qr//> construct on Perl 5.005 and higher.
This doubled B<lookfor> and B<streamline> speed in my tests with
I<Regular Expressions> - but actual improvements depend on both patterns
and input data.
 
The functionality of B<lookfor> includes a limited subset of the capabilities
found in Austin Schutz's I<Expect.pm> for Unix (and Tcl's expect which it
resembles). The C<$before, $match, $pattern, and $after> return values are
available if someone needs to create an "expect" subroutine for porting a
script. When using multiple patterns, there is one important functional
difference: I<Expect.pm> looks at each pattern in turn and returns the first
match found; B<lookfor> and B<streamline> test all patterns and return the
one found I<earliest> in the input if more than one matches.
 
Because B<lookfor> can be used to manage a command-line environment much
like a Unix serial login, a number of "stty-like" methods are included to
handle the issues raised by serial logins. One issue is dissimilar line
terminations. This is addressed by the following methods:
 
$PortObj->stty_icrnl; # map \r to \n on input
$PortObj->stty_igncr; # ignore \r on input
$PortObj->stty_inlcr; # map \n to \r on input
$PortObj->stty_ocrnl; # map \r to \n on output
$PortObj->stty_onlcr; # map \n to \r\n on output
$PortObj->stty_opost; # enable output mapping
 
The default specifies a raw device with no input or output processing.
In Version 0.14, the default was a device which sends "\r" at the end
of a line, requires "\r\n" to terminate incoming lines, and expects the
"host" to echo every keystroke. Many "dumb terminals" act this way and
the defaults were similar to Unix defaults. But some users found this
ackward and confusing.
 
Sometimes, you want perl to echo input characters back to the serial
device (and other times you don't want that).
 
$PortObj->stty_echo; # echo every character
$PortObj->stty_echoe; # if echo erase with bsdel string (default)
$PortObj->stty_echok; # if echo \n after kill character (default)
$PortObj->stty_echonl; # echo \n even if stty_echo(0)
$PortObj->stty_echoke; # if echo clear string after kill (default)
$PortObj->stty_echoctl; # if echo "^Char" for control chars
 
$PortObj->stty_istrip; # strip input to 7-bits
 
my $air = " "x76; # overwrite entire line with spaces
$PortObj->stty_clear("\r$air\r"); # written after kill character
$PortObj->is_prompt("PROMPT:"); # need to write after kill
$PortObj->stty_bsdel("\cH \cH"); # written after erase character
 
# internal method that permits clear string with \r in config file
my $plus32 = "@"x76; # overwrite line with spaces (ord += 32)
$PortObj->is_stty_clear("-$plus32-"); # equivalent to stty_clear
 
 
=head1 NOTES
 
The object returned by B<new> or B<start> is NOT a I<FileHandle>. You
will be disappointed if you try to use it as one. If you need a
I<FileHandle>, you must use B<tie> as the constructor.
 
e.g. the following is WRONG!!____C<print $PortObj "some text";>
 
You need something like this (Perl 5.005):
 
# construct
$tie_ob = tie(*FOO,'Win32::SerialPort', $cfgfile)
or die "Can't start $cfgfile\n";
 
print FOO "enter char: "; # destination is FileHandle, not Object
my $in = getc FOO;
syswrite FOO, "$in\n", 2, 0;
print FOO "enter line: ";
$in = <FOO>;
printf FOO "received: %s\n", $in;
print FOO "enter 5 char: ";
sysread (FOO, $in, 5, 0) or die;
printf FOO "received: %s\n", $in;
 
# destruct
close FOO || print "close failed\n";
undef $tie_ob; # Don't forget this one!!
untie *FOO;
 
Always include the C<undef $tie_ob> before the B<untie>. See the I<Gotcha>
description in I<perltie>.
 
The Perl 5.004 implementation of I<tied FileHandles> is missing
B<close> and B<syswrite>. The Perl 5.003 version is essentially unusable.
If you need these functions, consider Perl 5.005 seriously.
 
An important note about Win32 filenames. The reserved device names such
as C< COM1, AUX, LPT1, CON, PRN > can NOT be used as filenames. Hence
I<"COM2.cfg"> would not be usable for B<$Configuration_File_Name>.
 
Thanks to Ken White for testing on NT.
 
There is a linux clone of this module implemented using I<POSIX.pm>.
It also runs on AIX and Solaris, and will probably run on other POSIX
systems as well. It does not currently support the complete set of methods -
although portability of user programs is excellent for the calls it does
support. It is available from CPAN as I<Device::SerialPort>.
 
=head1 KNOWN LIMITATIONS
 
Since everything is (sometimes convoluted but still pure) Perl, you can
fix flaws and change limits if required. But please file a bug report if
you do. This module has been tested with each of the binary perl versions
for which Win32::API is supported: AS builds 315, 316, 500-509 and GS
5.004_02. It has only been tested on Intel hardware.
 
Although the B<lookfor, stty_xxx, and Tied FileHandle> mechanisms are
considered stable, they have only been tested on a small subset of possible
applications. While "\r" characters may be included in the clear string
using B<is_stty_clear> internally, "\n" characters may NOT be included
in multi-character strings if you plan to save the strings in a configuration
file (which uses "\n" as an internal terminator).
 
=over 4
 
=item Tutorial
 
With all the options, this module needs a good tutorial. It doesn't
have a complete one yet. A I<"How to get started"> tutorial appeared
B<The Perl Journal #13> (March 1999). Examples from the article are
available from http://tpj.com and from http://members.aol.com/Bbirthisel.
The demo programs in the distribution are a good starting point for
additional examples.
 
=item Buffers
 
The size of the Win32 buffers are selectable with B<buffers>. But each read
method currently uses a fixed internal buffer of 4096 bytes. This can be
changed in the Win32API::CommPort source and read with B<internal_buffer>.
The XS version will support dynamic buffer sizing. Large operations are
automatically converted to multiple smaller ones by the B<tied FileHandle>
methods.
 
=item Modems
 
Lots of modem-specific options are not supported. The same is true of
TAPI, MAPI. I<API Wizards> are welcome to contribute.
 
=item API Options
 
Lots of options are just "passed through from the API". Some probably
shouldn't be used together. The module validates the obvious choices when
possible. For something really fancy, you may need additional API
documentation. Available from I<Micro$oft Pre$$>.
 
=back
 
=head1 BUGS
 
On Win32, a port must B<close> before it can be reopened again by the same
process. If a physical port can be accessed using more than one name (see
above), all names are treated as one. The perl script can also be run
multiple times within a single batch file or shell script. The I<Makefile.PL>
spawns subshells with backticks to run the test suite on Perl 5.003 - ugly,
but it works.
 
On NT, a B<read_done> or B<write_done> returns I<False> if a background
operation is aborted by a purge. Win95 returns I<True>.
 
EXTENDED_OS_ERROR ($^E) is not supported by the binary ports before 5.005.
It "sort-of-tracks" B<$!> in 5.003 and 5.004, but YMMV.
 
A few NT systems seem to set B<can_parity_enable> true, but do not actually
support setting B<parity_enable>. This may be a characteristic of certain
third-party serial drivers.
 
__Please send comments and bug reports to wcbirthisel@alum.mit.edu.
 
=head1 AUTHORS
 
Bill Birthisel, wcbirthisel@alum.mit.edu, http://members.aol.com/Bbirthisel/.
 
Tye McQueen, tye@metronet.com, http://www.metronet.com/~tye/.
 
=head1 SEE ALSO
 
Win32API::CommPort - the low-level API calls which support this module
 
Win32API::File I<when available>
 
Win32::API - Aldo Calpini's "Magic", http://www.divinf.it/dada/perl/
 
Perltoot.xxx - Tom (Christiansen)'s Object-Oriented Tutorial
 
Expect.pm - Austin Schutz's adaptation of TCL's "expect" for Unix Perls
 
=head1 COPYRIGHT
 
Copyright (C) 1999, Bill Birthisel. All rights reserved.
 
This module is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
 
=head2 COMPATIBILITY
 
Most of the code in this module has been stable since version 0.12.
Except for items indicated as I<Experimental>, I do not expect functional
changes which are not fully backwards compatible. However, Version 0.16
removes the "dummy (0, 1) list" which was returned by many binary methods
in case they were called in list context. I do not know of any use outside
the test suite for that feature.
 
Version 0.12 added an I<Install.PL> script to put modules into the documented
Namespaces. The script uses I<MakeMaker> tools not available in
ActiveState 3xx builds. Users of those builds will need to install
differently (see README). Programs in the test suite are modified for
the current version. Additions to the configurtion files generated by
B<save> prevent those created by Version 0.18 from being used by earlier
Versions. 4 November 1999.
 
=cut
/MissionCockpit/tags/V0.2.5/perl/site/lib/Win32API/CommPort.pm
0,0 → 1,3146
# This part includes the low-level API calls
package Win32API::CommPort;
 
use Win32;
use Win32::API 0.01;
if ( $] < 5.004 ) {
my $no_silly_warning = $Win32::API::VERSION;
$no_silly_warning = $Win32::API::pack;
}
 
use Carp;
use strict;
 
#### API declarations ####
no strict 'subs'; # these may be imported someday
 
use vars qw(
$_CloseHandle $_CreateFile $_GetCommState
$_ReadFile $_SetCommState $_SetupComm
$_PurgeComm $_CreateEvent $_GetCommTimeouts
$_SetCommTimeouts $_GetCommProperties $_ClearCommBreak
$_ClearCommError $_EscapeCommFunction $_GetCommConfig
$_GetCommMask $_GetCommModemStatus $_SetCommBreak
$_SetCommConfig $_SetCommMask $_TransmitCommChar
$_WaitCommEvent $_WriteFile $_ResetEvent
$_GetOverlappedResult
);
 
$_CreateFile = new Win32::API("kernel32", "CreateFile",
[P, N, N, N, N, N, N], N);
$_CloseHandle = new Win32::API("kernel32", "CloseHandle", [N], N);
$_GetCommState = new Win32::API("kernel32", "GetCommState", [N, P], I);
$_SetCommState = new Win32::API("kernel32", "SetCommState", [N, P], I);
$_SetupComm = new Win32::API("kernel32", "SetupComm", [N, N, N], I);
$_PurgeComm = new Win32::API("kernel32", "PurgeComm", [N, N], I);
$_CreateEvent = new Win32::API("kernel32", "CreateEvent", [P, I, I, P], N);
$_GetCommTimeouts = new Win32::API("kernel32", "GetCommTimeouts",
[N, P], I);
$_SetCommTimeouts = new Win32::API("kernel32", "SetCommTimeouts",
[N, P], I);
$_GetCommProperties = new Win32::API("kernel32", "GetCommProperties",
[N, P], I);
$_ReadFile = new Win32::API("kernel32", "ReadFile", [N, P, N, P, P], I);
$_WriteFile = new Win32::API("kernel32", "WriteFile", [N, P, N, P, P], I);
$_TransmitCommChar = new Win32::API("kernel32", "TransmitCommChar", [N, I], I);
$_ClearCommBreak = new Win32::API("kernel32", "ClearCommBreak", [N], I);
$_SetCommBreak = new Win32::API("kernel32", "SetCommBreak", [N], I);
$_ClearCommError = new Win32::API("kernel32", "ClearCommError", [N, P, P], I);
$_EscapeCommFunction = new Win32::API("kernel32", "EscapeCommFunction",
[N, N], I);
$_GetCommModemStatus = new Win32::API("kernel32", "GetCommModemStatus",
[N, P], I);
$_GetOverlappedResult = new Win32::API("kernel32", "GetOverlappedResult",
[N, P, P, I], I);
 
#### these are not used yet
 
$_GetCommConfig = new Win32::API("kernel32", "GetCommConfig", [N, P, P], I);
$_GetCommMask = new Win32::API("kernel32", "GetCommMask", [N, P], I);
$_SetCommConfig = new Win32::API("kernel32", "SetCommConfig", [N, P, N], I);
$_SetCommMask = new Win32::API("kernel32", "SetCommMask", [N, N], I);
$_WaitCommEvent = new Win32::API("kernel32", "WaitCommEvent", [N, P, P], I);
$_ResetEvent = new Win32::API("kernel32", "ResetEvent", [N], I);
 
use strict;
 
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $RBUF_Size);
$VERSION = '0.19';
$RBUF_Size = 4096;
 
require Exporter;
## require AutoLoader;
 
@ISA = qw(Exporter);
# Items to export into callers namespace by default. Note: do not export
# names by default without a very good reason. Use EXPORT_OK instead.
# Do not simply export all your public functions/methods/constants.
 
@EXPORT= qw();
@EXPORT_OK= qw();
%EXPORT_TAGS = (STAT => [qw( BM_fCtsHold BM_fDsrHold
BM_fRlsdHold BM_fXoffHold
BM_fXoffSent BM_fEof
BM_fTxim BM_AllBits
MS_CTS_ON MS_DSR_ON
MS_RING_ON MS_RLSD_ON
CE_RXOVER CE_OVERRUN
CE_RXPARITY CE_FRAME
CE_BREAK CE_TXFULL
CE_MODE ST_BLOCK
ST_INPUT ST_OUTPUT
ST_ERROR )],
 
RAW => [qw( CloseHandle CreateFile
GetCommState ReadFile
SetCommState SetupComm
PurgeComm CreateEvent
GetCommTimeouts SetCommTimeouts
GetCommProperties ClearCommBreak
ClearCommError EscapeCommFunction
GetCommConfig GetCommMask
GetCommModemStatus SetCommBreak
SetCommConfig SetCommMask
TransmitCommChar WaitCommEvent
WriteFile ResetEvent
GetOverlappedResult
PURGE_TXABORT PURGE_RXABORT
PURGE_TXCLEAR PURGE_RXCLEAR
SETXOFF SETXON
SETRTS CLRRTS
SETDTR CLRDTR
SETBREAK CLRBREAK
EV_RXCHAR EV_RXFLAG
EV_TXEMPTY EV_CTS
EV_DSR EV_RLSD
EV_BREAK EV_ERR
EV_RING EV_PERR
EV_RX80FULL EV_EVENT1
EV_EVENT2 ERROR_IO_INCOMPLETE
ERROR_IO_PENDING )],
 
COMMPROP => [qw( BAUD_USER BAUD_075 BAUD_110
BAUD_134_5 BAUD_150 BAUD_300
BAUD_600 BAUD_1200 BAUD_1800
BAUD_2400 BAUD_4800 BAUD_7200
BAUD_9600 BAUD_14400 BAUD_19200
BAUD_38400 BAUD_56K BAUD_57600
BAUD_115200 BAUD_128K
 
PST_FAX PST_LAT PST_MODEM
PST_RS232 PST_RS422 PST_RS423
PST_RS449 PST_SCANNER PST_X25
PST_NETWORK_BRIDGE PST_PARALLELPORT
PST_TCPIP_TELNET PST_UNSPECIFIED
 
PCF_INTTIMEOUTS PCF_PARITY_CHECK
PCF_16BITMODE PCF_DTRDSR
PCF_SPECIALCHARS PCF_RLSD
PCF_RTSCTS PCF_SETXCHAR
PCF_TOTALTIMEOUTS PCF_XONXOFF
 
SP_BAUD SP_DATABITS SP_HANDSHAKING
SP_PARITY SP_PARITY_CHECK SP_RLSD
SP_STOPBITS SP_SERIALCOMM
 
DATABITS_5 DATABITS_6 DATABITS_7
DATABITS_8 DATABITS_16 DATABITS_16X
 
STOPBITS_10 STOPBITS_15 STOPBITS_20
PARITY_SPACE PARITY_NONE PARITY_ODD
PARITY_EVEN PARITY_MARK
COMMPROP_INITIALIZED )],
 
DCB => [qw( CBR_110 CBR_300 CBR_600
CBR_1200 CBR_2400 CBR_4800
CBR_9600 CBR_14400 CBR_19200
CBR_38400 CBR_56000 CBR_57600
CBR_115200 CBR_128000 CBR_256000
 
DTR_CONTROL_DISABLE DTR_CONTROL_ENABLE
DTR_CONTROL_HANDSHAKE RTS_CONTROL_DISABLE
RTS_CONTROL_ENABLE RTS_CONTROL_HANDSHAKE
RTS_CONTROL_TOGGLE
 
EVENPARITY MARKPARITY NOPARITY
ODDPARITY SPACEPARITY
 
ONESTOPBIT ONE5STOPBITS TWOSTOPBITS
 
FM_fBinary FM_fParity
FM_fOutxCtsFlow FM_fOutxDsrFlow
FM_fDtrControl FM_fDsrSensitivity
FM_fTXContinueOnXoff FM_fOutX
FM_fInX FM_fErrorChar
FM_fNull FM_fRtsControl
FM_fAbortOnError FM_fDummy2 )],
 
PARAM => [qw( LONGsize SHORTsize OS_Error
nocarp internal_buffer yes_true )]);
 
 
Exporter::export_ok_tags('STAT', 'RAW', 'COMMPROP', 'DCB', 'PARAM');
 
$EXPORT_TAGS{ALL} = \@EXPORT_OK;
 
#### subroutine wrappers for API calls
 
sub CloseHandle {
return unless ( 1 == @_ );
return $_CloseHandle->Call( shift );
}
 
sub CreateFile {
return $_CreateFile->Call( @_ );
# returns handle
}
 
sub GetCommState {
return $_GetCommState->Call( @_ );
}
 
sub SetCommState {
return $_SetCommState->Call( @_ );
}
 
sub SetupComm {
return $_SetupComm->Call( @_ );
}
 
sub PurgeComm {
return $_PurgeComm->Call( @_ );
}
 
sub CreateEvent {
return $_CreateEvent->Call( @_ );
}
 
sub GetCommTimeouts {
return $_GetCommTimeouts->Call( @_ );
}
 
sub SetCommTimeouts {
return $_SetCommTimeouts->Call( @_ );
}
 
sub GetCommProperties {
return $_GetCommProperties->Call( @_ );
}
 
sub ReadFile {
return $_ReadFile->Call( @_ );
}
 
sub WriteFile {
return $_WriteFile->Call( @_ );
}
 
sub TransmitCommChar {
return $_TransmitCommChar->Call( @_ );
}
 
sub ClearCommBreak {
return unless ( 1 == @_ );
return $_ClearCommBreak->Call( shift );
}
 
sub SetCommBreak {
return unless ( 1 == @_ );
return $_SetCommBreak->Call( shift );
}
 
sub ClearCommError {
return $_ClearCommError->Call( @_ );
}
 
sub EscapeCommFunction {
return $_EscapeCommFunction->Call( @_ );
}
 
sub GetCommModemStatus {
return $_GetCommModemStatus->Call( @_ );
}
 
sub GetOverlappedResult {
return $_GetOverlappedResult->Call( @_ );
}
 
sub GetCommConfig {
return $_GetCommConfig->Call( @_ );
}
 
sub GetCommMask {
return $_GetCommMask->Call( @_ );
}
 
sub SetCommConfig {
return $_SetCommConfig->Call( @_ );
}
 
sub SetCommMask {
return $_SetCommMask->Call( @_ );
}
 
sub WaitCommEvent {
return $_WaitCommEvent->Call( @_ );
}
 
sub ResetEvent {
return unless ( 1 == @_ );
return $_ResetEvent->Call( shift );
}
 
#### "constant" declarations from Win32 header files ####
#### compatible with ActiveState ####
 
## COMMPROP structure
sub SP_SERIALCOMM { 0x1 }
sub BAUD_075 { 0x1 }
sub BAUD_110 { 0x2 }
sub BAUD_134_5 { 0x4 }
sub BAUD_150 { 0x8 }
sub BAUD_300 { 0x10 }
sub BAUD_600 { 0x20 }
sub BAUD_1200 { 0x40 }
sub BAUD_1800 { 0x80 }
sub BAUD_2400 { 0x100 }
sub BAUD_4800 { 0x200 }
sub BAUD_7200 { 0x400 }
sub BAUD_9600 { 0x800 }
sub BAUD_14400 { 0x1000 }
sub BAUD_19200 { 0x2000 }
sub BAUD_38400 { 0x4000 }
sub BAUD_56K { 0x8000 }
sub BAUD_57600 { 0x40000 }
sub BAUD_115200 { 0x20000 }
sub BAUD_128K { 0x10000 }
sub BAUD_USER { 0x10000000 }
sub PST_FAX { 0x21 }
sub PST_LAT { 0x101 }
sub PST_MODEM { 0x6 }
sub PST_NETWORK_BRIDGE { 0x100 }
sub PST_PARALLELPORT { 0x2 }
sub PST_RS232 { 0x1 }
sub PST_RS422 { 0x3 }
sub PST_RS423 { 0x4 }
sub PST_RS449 { 0x5 }
sub PST_SCANNER { 0x22 }
sub PST_TCPIP_TELNET { 0x102 }
sub PST_UNSPECIFIED { 0 }
sub PST_X25 { 0x103 }
sub PCF_16BITMODE { 0x200 }
sub PCF_DTRDSR { 0x1 }
sub PCF_INTTIMEOUTS { 0x80 }
sub PCF_PARITY_CHECK { 0x8 }
sub PCF_RLSD { 0x4 }
sub PCF_RTSCTS { 0x2 }
sub PCF_SETXCHAR { 0x20 }
sub PCF_SPECIALCHARS { 0x100 }
sub PCF_TOTALTIMEOUTS { 0x40 }
sub PCF_XONXOFF { 0x10 }
sub SP_BAUD { 0x2 }
sub SP_DATABITS { 0x4 }
sub SP_HANDSHAKING { 0x10 }
sub SP_PARITY { 0x1 }
sub SP_PARITY_CHECK { 0x20 }
sub SP_RLSD { 0x40 }
sub SP_STOPBITS { 0x8 }
sub DATABITS_5 { 1 }
sub DATABITS_6 { 2 }
sub DATABITS_7 { 4 }
sub DATABITS_8 { 8 }
sub DATABITS_16 { 16 }
sub DATABITS_16X { 32 }
sub STOPBITS_10 { 1 }
sub STOPBITS_15 { 2 }
sub STOPBITS_20 { 4 }
sub PARITY_NONE { 256 }
sub PARITY_ODD { 512 }
sub PARITY_EVEN { 1024 }
sub PARITY_MARK { 2048 }
sub PARITY_SPACE { 4096 }
sub COMMPROP_INITIALIZED { 0xe73cf52e }
 
## DCB structure
sub CBR_110 { 110 }
sub CBR_300 { 300 }
sub CBR_600 { 600 }
sub CBR_1200 { 1200 }
sub CBR_2400 { 2400 }
sub CBR_4800 { 4800 }
sub CBR_9600 { 9600 }
sub CBR_14400 { 14400 }
sub CBR_19200 { 19200 }
sub CBR_38400 { 38400 }
sub CBR_56000 { 56000 }
sub CBR_57600 { 57600 }
sub CBR_115200 { 115200 }
sub CBR_128000 { 128000 }
sub CBR_256000 { 256000 }
sub DTR_CONTROL_DISABLE { 0 }
sub DTR_CONTROL_ENABLE { 1 }
sub DTR_CONTROL_HANDSHAKE { 2 }
sub RTS_CONTROL_DISABLE { 0 }
sub RTS_CONTROL_ENABLE { 1 }
sub RTS_CONTROL_HANDSHAKE { 2 }
sub RTS_CONTROL_TOGGLE { 3 }
sub EVENPARITY { 2 }
sub MARKPARITY { 3 }
sub NOPARITY { 0 }
sub ODDPARITY { 1 }
sub SPACEPARITY { 4 }
sub ONESTOPBIT { 0 }
sub ONE5STOPBITS { 1 }
sub TWOSTOPBITS { 2 }
 
## Flowcontrol bit mask in DCB
sub FM_fBinary { 0x1 }
sub FM_fParity { 0x2 }
sub FM_fOutxCtsFlow { 0x4 }
sub FM_fOutxDsrFlow { 0x8 }
sub FM_fDtrControl { 0x30 }
sub FM_fDsrSensitivity { 0x40 }
sub FM_fTXContinueOnXoff { 0x80 }
sub FM_fOutX { 0x100 }
sub FM_fInX { 0x200 }
sub FM_fErrorChar { 0x400 }
sub FM_fNull { 0x800 }
sub FM_fRtsControl { 0x3000 }
sub FM_fAbortOnError { 0x4000 }
sub FM_fDummy2 { 0xffff8000 }
 
## COMSTAT bit mask
sub BM_fCtsHold { 0x1 }
sub BM_fDsrHold { 0x2 }
sub BM_fRlsdHold { 0x4 }
sub BM_fXoffHold { 0x8 }
sub BM_fXoffSent { 0x10 }
sub BM_fEof { 0x20 }
sub BM_fTxim { 0x40 }
sub BM_AllBits { 0x7f }
 
## PurgeComm bit mask
sub PURGE_TXABORT { 0x1 }
sub PURGE_RXABORT { 0x2 }
sub PURGE_TXCLEAR { 0x4 }
sub PURGE_RXCLEAR { 0x8 }
 
## GetCommModemStatus bit mask
sub MS_CTS_ON { 0x10 }
sub MS_DSR_ON { 0x20 }
sub MS_RING_ON { 0x40 }
sub MS_RLSD_ON { 0x80 }
 
## EscapeCommFunction operations
sub SETXOFF { 0x1 }
sub SETXON { 0x2 }
sub SETRTS { 0x3 }
sub CLRRTS { 0x4 }
sub SETDTR { 0x5 }
sub CLRDTR { 0x6 }
sub SETBREAK { 0x8 }
sub CLRBREAK { 0x9 }
 
## ClearCommError bit mask
sub CE_RXOVER { 0x1 }
sub CE_OVERRUN { 0x2 }
sub CE_RXPARITY { 0x4 }
sub CE_FRAME { 0x8 }
sub CE_BREAK { 0x10 }
sub CE_TXFULL { 0x100 }
#### LPT only
# sub CE_PTO { 0x200 }
# sub CE_IOE { 0x400 }
# sub CE_DNS { 0x800 }
# sub CE_OOP { 0x1000 }
#### LPT only
sub CE_MODE { 0x8000 }
 
## GetCommMask bits
sub EV_RXCHAR { 0x1 }
sub EV_RXFLAG { 0x2 }
sub EV_TXEMPTY { 0x4 }
sub EV_CTS { 0x8 }
sub EV_DSR { 0x10 }
sub EV_RLSD { 0x20 }
sub EV_BREAK { 0x40 }
sub EV_ERR { 0x80 }
sub EV_RING { 0x100 }
sub EV_PERR { 0x200 }
sub EV_RX80FULL { 0x400 }
sub EV_EVENT1 { 0x800 }
sub EV_EVENT2 { 0x1000 }
 
## Allowed OVERLAP errors
sub ERROR_IO_INCOMPLETE { 996 }
sub ERROR_IO_PENDING { 997 }
 
#### "constant" declarations compatible with ActiveState ####
 
my $DCBformat="LLLSSSCCCCCCCCS";
my $CP_format1="SSLLLLLLLLLSSLLLLSA*"; # rs232
my $CP_format6="SSLLLLLLLLLSSLLLLLLLLLLLLLLLLLLLLLLLA*"; # modem
my $CP_format0="SA50LA244"; # pre-read
 
my $OVERLAPPEDformat="LLLLL";
my $TIMEOUTformat="LLLLL";
my $COMSTATformat="LLL";
my $cfg_file_sig="Win32API::SerialPort_Configuration_File -- DO NOT EDIT --\n";
 
sub SHORTsize { 0xffff; }
sub LONGsize { 0xffffffff; }
 
sub ST_BLOCK {0} # status offsets for caller
sub ST_INPUT {1}
sub ST_OUTPUT {2}
sub ST_ERROR {3} # latched
 
 
#### Package variable declarations ####
 
my @Yes_resp = (
"YES","Y",
"ON",
"TRUE","T",
"1"
);
 
my @binary_opt = (0, 1);
my @byte_opt = (0, 255);
 
my $Babble = 0;
my $testactive = 0; # test mode active
 
## my $null=[];
my $null=0;
my $zero=0;
 
# Preloaded methods go here.
 
sub OS_Error { print Win32::FormatMessage ( Win32::GetLastError() ); }
 
sub get_tick_count { return Win32::GetTickCount(); }
 
# test*.t only - suppresses default messages
sub set_no_messages {
return unless (@_ == 2);
$testactive = yes_true($_[1]);
}
 
sub nocarp { return $testactive }
 
sub internal_buffer { return $RBUF_Size }
 
sub yes_true {
my $choice = uc shift;
my $ans = 0;
foreach (@Yes_resp) { $ans = 1 if ( $choice eq $_ ) }
return $ans;
}
 
sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {};
my $ok = 0; # API return value
my $hr = 0; # temporary hashref
my $fmask = 0; # temporary for bit banging
my $fix_baud = 0;
my $key;
my $value;
my $CommPropBlank = " ";
 
# COMMPROP only used during new
my $CommProperties = " "x300; # extra buffer for modems
my $CP_Length = 0;
my $CP_Version = 0;
my $CP_ServiceMask = 0;
my $CP_Reserved1 = 0;
my $CP_MaxBaud = 0;
my $CP_ProvCapabilities = 0;
my $CP_SettableParams = 0;
my $CP_SettableBaud = 0;
my $CP_SettableData = 0;
my $CP_SettableStopParity = 0;
my $CP_ProvSpec1 = 0;
my $CP_ProvSpec2 = 0;
my $CP_ProvChar_start = 0;
my $CP_Filler = 0;
 
# MODEMDEVCAPS
my $MC_ReqSize = 0;
my $MC_SpecOffset = 0;
my $MC_SpecSize = 0;
my $MC_ProvVersion = 0;
my $MC_ManfOffset = 0;
my $MC_ManfSize = 0;
my $MC_ModOffset = 0;
my $MC_ModSize = 0;
my $MC_VerOffset = 0;
my $MC_VerSize = 0;
my $MC_DialOpt = 0;
my $MC_CallFailTime = 0;
my $MC_IdleTime = 0;
my $MC_SpkrVol = 0;
my $MC_SpkrMode = 0;
my $MC_ModOpt = 0;
my $MC_MaxDTE = 0;
my $MC_MaxDCE = 0;
my $MC_Filler = 0;
 
$self->{NAME} = shift;
my $quiet = shift;
 
$self->{"_HANDLE"}=CreateFile("$self->{NAME}",
0xc0000000,
0,
$null,
3,
0x40000000,
$null);
# device name
# GENERIC_READ | GENERIC_WRITE
# no FILE_SHARE_xx
# no SECURITY_xx
# OPEN_EXISTING
# FILE_FLAG_OVERLAPPED
# template file
 
unless ($self->{"_HANDLE"} >= 1) {
$self->{"_HANDLE"} = 0;
return 0 if ($quiet);
return if (nocarp);
OS_Error;
carp "can't open device: $self->{NAME}\n";
return;
}
 
# let Win32 know we allowed room for modem properties
$CP_Length = 300;
$CP_ProvSpec1 = COMMPROP_INITIALIZED;
$CommProperties = pack($CP_format0,
$CP_Length,
$CommPropBlank,
$CP_ProvSpec1,
$CommPropBlank);
 
$ok=GetCommProperties($self->{"_HANDLE"}, $CommProperties);
 
unless ( $ok ) {
OS_Error;
carp "can't get COMMPROP block";
undef $self;
return;
}
 
($CP_Length,
$CP_Version,
$CP_ServiceMask,
$CP_Reserved1,
$self->{"_MaxTxQueue"},
$self->{"_MaxRxQueue"},
$CP_MaxBaud,
$self->{"_TYPE"},
$CP_ProvCapabilities,
$CP_SettableParams,
$CP_SettableBaud,
$CP_SettableData,
$CP_SettableStopParity,
$self->{WRITEBUF},
$self->{READBUF},
$CP_ProvSpec1,
$CP_ProvSpec2,
$CP_ProvChar_start,
$CP_Filler)= unpack($CP_format1, $CommProperties);
 
if (($CP_Length > 64) and ($self->{"_TYPE"} == PST_RS232)) {
carp "invalid COMMPROP block length= $CP_Length";
undef $self;
return;
}
if ($CP_ServiceMask != SP_SERIALCOMM) {
carp "doesn't claim to be a serial port\n";
undef $self;
return;
}
if ($self->{"_TYPE"} == PST_MODEM) {
($CP_Length,
$CP_Version,
$CP_ServiceMask,
$CP_Reserved1,
$self->{"_MaxTxQueue"},
$self->{"_MaxRxQueue"},
$CP_MaxBaud,
$self->{"_TYPE"},
$CP_ProvCapabilities,
$CP_SettableParams,
$CP_SettableBaud,
$CP_SettableData,
$CP_SettableStopParity,
$self->{WRITEBUF},
$self->{READBUF},
$CP_ProvSpec1,
$CP_ProvSpec2,
$CP_ProvChar_start,
$MC_ReqSize,
$MC_SpecOffset,
$MC_SpecSize,
$MC_ProvVersion,
$MC_ManfOffset,
$MC_ManfSize,
$MC_ModOffset,
$MC_ModSize,
$MC_VerOffset,
$MC_VerSize,
$MC_DialOpt,
$MC_CallFailTime,
$MC_IdleTime,
$MC_SpkrVol,
$MC_SpkrMode,
$MC_ModOpt,
$MC_MaxDTE,
$MC_MaxDCE,
$MC_Filler)= unpack($CP_format6, $CommProperties);
if ($Babble) {
printf "\nMODEMDEVCAPS:\n";
printf "\$MC_ActualSize= %d\n", $CP_ProvChar_start;
printf "\$MC_ReqSize= %d\n", $MC_ReqSize;
printf "\$MC_SpecOffset= %d\n", $MC_SpecOffset;
printf "\$MC_SpecSize= %d\n", $MC_SpecSize;
if ($MC_SpecOffset) {
printf " DeviceSpecificData= %s\n", substr ($CommProperties,
60+$MC_SpecOffset, $MC_SpecSize);
}
printf "\$MC_ProvVersion= %d\n", $MC_ProvVersion;
printf "\$MC_ManfOffset= %d\n", $MC_ManfOffset;
printf "\$MC_ManfSize= %d\n", $MC_ManfSize;
if ($MC_ManfOffset) {
printf " Manufacturer= %s\n", substr ($CommProperties,
60+$MC_ManfOffset, $MC_ManfSize);
}
printf "\$MC_ModOffset= %d\n", $MC_ModOffset;
printf "\$MC_ModSize= %d\n", $MC_ModSize;
if ($MC_ModOffset) {
printf " Model= %s\n", substr ($CommProperties,
60+$MC_ModOffset, $MC_ModSize);
}
printf "\$MC_VerOffset= %d\n", $MC_VerOffset;
printf "\$MC_VerSize= %d\n", $MC_VerSize;
if ($MC_VerOffset) {
printf " Version= %s\n", substr ($CommProperties,
60+$MC_VerOffset, $MC_VerSize);
}
printf "\$MC_DialOpt= %lx\n", $MC_DialOpt;
printf "\$MC_CallFailTime= %d\n", $MC_CallFailTime;
printf "\$MC_IdleTime= %d\n", $MC_IdleTime;
printf "\$MC_SpkrVol= %d\n", $MC_SpkrVol;
printf "\$MC_SpkrMode= %d\n", $MC_SpkrMode;
printf "\$MC_ModOpt= %lx\n", $MC_ModOpt;
printf "\$MC_MaxDTE= %d\n", $MC_MaxDTE;
printf "\$MC_MaxDCE= %d\n", $MC_MaxDCE;
$MC_Filler= $MC_Filler; # for -w
}
## $MC_ReqSize = 250;
if ($CP_ProvChar_start != $MC_ReqSize) {
printf "\nARGH, a Bug! The \$CommProperties buffer must be ";
printf "at least %d bytes.\n", $MC_ReqSize+60;
}
}
## if (1 | $Babble) {
if ($Babble) {
printf "\$CP_Length= %d\n", $CP_Length;
printf "\$CP_Version= %d\n", $CP_Version;
printf "\$CP_ServiceMask= %lx\n", $CP_ServiceMask;
printf "\$CP_Reserved1= %lx\n", $CP_Reserved1;
printf "\$CP_MaxTxQueue= %lx\n", $self->{"_MaxTxQueue"};
printf "\$CP_MaxRxQueue= %lx\n", $self->{"_MaxRxQueue"};
printf "\$CP_MaxBaud= %lx\n", $CP_MaxBaud;
printf "\$CP_ProvSubType= %lx\n", $self->{"_TYPE"};
printf "\$CP_ProvCapabilities= %lx\n", $CP_ProvCapabilities;
printf "\$CP_SettableParams= %lx\n", $CP_SettableParams;
printf "\$CP_SettableBaud= %lx\n", $CP_SettableBaud;
printf "\$CP_SettableData= %x\n", $CP_SettableData;
printf "\$CP_SettableStopParity= %x\n", $CP_SettableStopParity;
printf "\$CP_CurrentTxQueue= %lx\n", $self->{WRITEBUF};
printf "\$CP_CurrentRxQueue= %lx\n", $self->{READBUF};
printf "\$CP_ProvSpec1= %lx\n", $CP_ProvSpec1;
printf "\$CP_ProvSpec2= %lx\n", $CP_ProvSpec2;
}
 
# "private" data
$self->{"_INIT"} = undef;
$self->{"_DEBUG_C"} = 0;
$self->{"_LATCH"} = 0;
$self->{"_W_BUSY"} = 0;
$self->{"_R_BUSY"} = 0;
 
$self->{"_TBUFMAX"} = $self->{"_MaxTxQueue"} ?
$self->{"_MaxTxQueue"} : LONGsize;
$self->{"_RBUFMAX"} = $self->{"_MaxRxQueue"} ?
$self->{"_MaxRxQueue"} : LONGsize;
 
# buffers
$self->{"_R_OVERLAP"} = " "x24;
$self->{"_W_OVERLAP"} = " "x24;
$self->{"_TIMEOUT"} = " "x24;
$self->{"_RBUF"} = " "x $RBUF_Size;
 
# allowed setting hashes
$self->{"_L_BAUD"} = {};
$self->{"_L_STOP"} = {};
$self->{"_L_PARITY"} = {};
$self->{"_L_DATA"} = {};
$self->{"_L_HSHAKE"} = {};
 
# capability flags
 
$fmask = $CP_SettableParams;
$self->{"_C_BAUD"} = $fmask & SP_BAUD;
$self->{"_C_DATA"} = $fmask & SP_DATABITS;
$self->{"_C_STOP"} = $fmask & SP_STOPBITS;
$self->{"_C_HSHAKE"} = $fmask & SP_HANDSHAKING;
$self->{"_C_PARITY_CFG"} = $fmask & SP_PARITY;
$self->{"_C_PARITY_EN"} = $fmask & SP_PARITY_CHECK;
$self->{"_C_RLSD_CFG"} = $fmask & SP_RLSD;
 
$fmask = $CP_ProvCapabilities;
$self->{"_C_RLSD"} = $fmask & PCF_RLSD;
$self->{"_C_PARITY_CK"} = $fmask & PCF_PARITY_CHECK;
$self->{"_C_DTRDSR"} = $fmask & PCF_DTRDSR;
$self->{"_C_16BITMODE"} = $fmask & PCF_16BITMODE;
$self->{"_C_RTSCTS"} = $fmask & PCF_RTSCTS;
$self->{"_C_XONXOFF"} = $fmask & PCF_XONXOFF;
$self->{"_C_XON_CHAR"} = $fmask & PCF_SETXCHAR;
$self->{"_C_SPECHAR"} = $fmask & PCF_SPECIALCHARS;
$self->{"_C_INT_TIME"} = $fmask & PCF_INTTIMEOUTS;
$self->{"_C_TOT_TIME"} = $fmask & PCF_TOTALTIMEOUTS;
 
if ($self->{"_C_INT_TIME"}) {
$self->{"_N_RINT"} = LONGsize; # min interval default
}
else {
$self->{"_N_RINT"} = 0;
}
$self->{"_N_RTOT"} = 0;
$self->{"_N_RCONST"} = 0;
 
if ($self->{"_C_TOT_TIME"}) {
$self->{"_N_WCONST"} = 201; # startup overhead + 1
$self->{"_N_WTOT"} = 11; # per char out + 1
}
else {
$self->{"_N_WTOT"} = 0;
$self->{"_N_WCONST"} = 0;
}
 
$hr = \%{$self->{"_L_HSHAKE"}};
 
if ($self->{"_C_HSHAKE"}) {
${$hr}{"xoff"} = "xoff" if ($fmask & PCF_XONXOFF);
${$hr}{"rts"} = "rts" if ($fmask & PCF_RTSCTS);
${$hr}{"dtr"} = "dtr" if ($fmask & PCF_DTRDSR);
${$hr}{"none"} = "none";
}
else { $self->{"_N_HSHAKE"} = undef; }
 
#### really just using the keys here, so value = Win32_definition
#### in case we ever need it for something else
 
# first check for programmable baud
 
$hr = \%{$self->{"_L_BAUD"}};
 
if ($CP_MaxBaud & BAUD_USER) {
$fmask = $CP_SettableBaud;
${$hr}{110} = CBR_110 if ($fmask & BAUD_110);
${$hr}{300} = CBR_300 if ($fmask & BAUD_300);
${$hr}{600} = CBR_600 if ($fmask & BAUD_600);
${$hr}{1200} = CBR_1200 if ($fmask & BAUD_1200);
${$hr}{2400} = CBR_2400 if ($fmask & BAUD_2400);
${$hr}{4800} = CBR_4800 if ($fmask & BAUD_4800);
${$hr}{9600} = CBR_9600 if ($fmask & BAUD_9600);
${$hr}{14400} = CBR_14400 if ($fmask & BAUD_14400);
${$hr}{19200} = CBR_19200 if ($fmask & BAUD_19200);
${$hr}{38400} = CBR_38400 if ($fmask & BAUD_38400);
${$hr}{56000} = CBR_56000 if ($fmask & BAUD_56K);
${$hr}{57600} = CBR_57600 if ($fmask & BAUD_57600);
${$hr}{115200} = CBR_115200 if ($fmask & BAUD_115200);
${$hr}{128000} = CBR_128000 if ($fmask & BAUD_128K);
${$hr}{256000} = CBR_256000 if (0); # reserved ??
}
else {
# get fixed baud from CP_MaxBaud
$fmask = $CP_MaxBaud;
$fix_baud = 75 if ($fmask & BAUD_075);
$fix_baud = 110 if ($fmask & BAUD_110);
$fix_baud = 134.5 if ($fmask & BAUD_134_5);
$fix_baud = 150 if ($fmask & BAUD_150);
$fix_baud = 300 if ($fmask & BAUD_300);
$fix_baud = 600 if ($fmask & BAUD_600);
$fix_baud = 1200 if ($fmask & BAUD_1200);
$fix_baud = 1800 if ($fmask & BAUD_1800);
$fix_baud = 2400 if ($fmask & BAUD_2400);
$fix_baud = 4800 if ($fmask & BAUD_4800);
$fix_baud = 7200 if ($fmask & BAUD_7200);
$fix_baud = 9600 if ($fmask & BAUD_9600);
$fix_baud = 14400 if ($fmask & BAUD_14400);
$fix_baud = 19200 if ($fmask & BAUD_19200);
$fix_baud = 34800 if ($fmask & BAUD_38400);
$fix_baud = 56000 if ($fmask & BAUD_56K);
$fix_baud = 57600 if ($fmask & BAUD_57600);
$fix_baud = 115200 if ($fmask & BAUD_115200);
$fix_baud = 128000 if ($fmask & BAUD_128K);
${$hr}{$fix_baud} = $fix_baud;
$self->{"_N_BAUD"} = undef;
}
 
#### data bits
 
$fmask = $CP_SettableData;
 
if ($self->{"_C_DATA"}) {
 
$hr = \%{$self->{"_L_DATA"}};
 
${$hr}{5} = 5 if ($fmask & DATABITS_5);
${$hr}{6} = 6 if ($fmask & DATABITS_6);
${$hr}{7} = 7 if ($fmask & DATABITS_7);
${$hr}{8} = 8 if ($fmask & DATABITS_8);
${$hr}{16} = 16 if ($fmask & DATABITS_16);
## ${$hr}{16X} = 16 if ($fmask & DATABITS_16X);
}
else { $self->{"_N_DATA"} = undef; }
 
#### value = (DCB Win32_definition + 1) so 0 means unchanged
 
$fmask = $CP_SettableStopParity;
 
if ($self->{"_C_STOP"}) {
 
$hr = \%{$self->{"_L_STOP"}};
 
${$hr}{1} = 1 + ONESTOPBIT if ($fmask & STOPBITS_10);
${$hr}{1.5} = 1 + ONE5STOPBITS if ($fmask & STOPBITS_15);
${$hr}{2} = 1 + TWOSTOPBITS if ($fmask & STOPBITS_20);
}
else { $self->{"_N_STOP"} = undef; }
 
if ($self->{"_C_PARITY_CFG"}) {
 
$hr = \%{$self->{"_L_PARITY"}};
 
${$hr}{"none"} = 1 + NOPARITY if ($fmask & PARITY_NONE);
${$hr}{"even"} = 1 + EVENPARITY if ($fmask & PARITY_EVEN);
${$hr}{"odd"} = 1 + ODDPARITY if ($fmask & PARITY_ODD);
${$hr}{"mark"} = 1 + MARKPARITY if ($fmask & PARITY_MARK);
${$hr}{"space"} = 1 + SPACEPARITY if ($fmask & PARITY_SPACE);
}
else { $self->{"_N_PARITY"} = undef; }
 
$hr = 0; # no loops
 
# changable dcb parameters
# 0 = no change requested
# mask_on: requested value for OR
# mask_off: complement of requested value for AND
 
$self->{"_N_FM_ON"} = 0;
$self->{"_N_FM_OFF"} = 0;
 
$self->{"_N_AUX_ON"} = 0;
$self->{"_N_AUX_OFF"} = 0;
 
### "VALUE" is initialized from DCB by default (but also in %validate)
 
# 0 = no change requested
# integer: requested value or (value+1 if 0 is a legal value)
# binary: 1=false requested, 2=true requested
 
$self->{"_N_XONLIM"} = 0;
$self->{"_N_XOFFLIM"} = 0;
$self->{"_N_XOFFCHAR"} = 0;
$self->{"_N_XONCHAR"} = 0;
$self->{"_N_ERRCHAR"} = 0;
$self->{"_N_EOFCHAR"} = 0;
$self->{"_N_EVTCHAR"} = 0;
$self->{"_N_BINARY"} = 0;
$self->{"_N_PARITY_EN"} = 0;
 
### "_N_items" for save/start
 
$self->{"_N_READBUF"} = 0;
$self->{"_N_WRITEBUF"} = 0;
$self->{"_N_HSHAKE"} = 0;
 
### The "required" DCB values are deliberately NOT defined. That way,
### write_settings can verify they "exist" to assure they got set.
### $self->{"_N_BAUD"}
### $self->{"_N_DATA"}
### $self->{"_N_STOP"}
### $self->{"_N_PARITY"}
 
 
$self->{"_R_EVENT"} = CreateEvent($null, # no security
1, # explicit reset req
0, # initial event reset
$null); # no name
unless ($self->{"_R_EVENT"}) {
OS_Error;
carp "could not create required read event";
undef $self;
return;
}
 
$self->{"_W_EVENT"} = CreateEvent($null, # no security
1, # explicit reset req
0, # initial event reset
$null); # no name
unless ($self->{"_W_EVENT"}) {
OS_Error;
carp "could not create required write event";
undef $self;
return;
}
$self->{"_R_OVERLAP"} = pack($OVERLAPPEDformat,
$zero, # osRead_Internal,
$zero, # osRead_InternalHigh,
$zero, # osRead_Offset,
$zero, # osRead_OffsetHigh,
$self->{"_R_EVENT"});
$self->{"_W_OVERLAP"} = pack($OVERLAPPEDformat,
$zero, # osWrite_Internal,
$zero, # osWrite_InternalHigh,
$zero, # osWrite_Offset,
$zero, # osWrite_OffsetHigh,
$self->{"_W_EVENT"});
 
# Device Control Block (DCB)
unless ( fetch_DCB ($self) ) {
carp "can't read Device Control Block for $self->{NAME}\n";
undef $self;
return;
}
$self->{"_L_BAUD"}{$self->{BAUD}} = $self->{BAUD}; # actual must be ok
 
# Read Timeouts
unless ( GetCommTimeouts($self->{"_HANDLE"}, $self->{"_TIMEOUT"}) ) {
carp "Error in GetCommTimeouts";
undef $self;
return;
}
 
($self->{RINT},
$self->{RTOT},
$self->{RCONST},
$self->{WTOT},
$self->{WCONST})= unpack($TIMEOUTformat, $self->{"_TIMEOUT"});
 
bless ($self, $class);
return $self;
}
 
sub fetch_DCB {
my $self = shift;
my $ok;
my $hr;
my $fmask;
my $key;
my $value;
my $dcb = " "x32;
 
GetCommState($self->{"_HANDLE"}, $dcb) or return;
 
($self->{"_DCBLength"},
$self->{BAUD},
$self->{"_BitMask"},
$self->{"_ResvWORD"},
$self->{XONLIM},
$self->{XOFFLIM},
$self->{DATA},
$self->{"_Parity"},
$self->{"_StopBits"},
$self->{XONCHAR},
$self->{XOFFCHAR},
$self->{ERRCHAR},
$self->{EOFCHAR},
$self->{EVTCHAR},
$self->{"_PackWORD"})= unpack($DCBformat, $dcb);
 
if ($self->{"_DCBLength"} > 32) {
carp "invalid DCB block length";
return;
}
 
if ($Babble) {
printf "DCBLength= %d\n", $self->{"_DCBLength"};
printf "BaudRate= %d\n", $self->{BAUD};
printf "BitMask= %lx\n", $self->{"_BitMask"};
printf "ResvWORD= %x\n", $self->{"_ResvWORD"};
printf "XonLim= %x\n", $self->{XONLIM};
printf "XoffLim= %x\n", $self->{XOFFLIM};
printf "ByteSize= %d\n", $self->{DATA};
printf "Parity= %d\n", $self->{"_Parity"};
printf "StopBits= %d\n", $self->{"_StopBits"};
printf "XonChar= %x\n", $self->{XONCHAR};
printf "XoffChar= %x\n", $self->{XOFFCHAR};
printf "ErrorChar= %x\n", $self->{ERRCHAR};
printf "EofChar= %x\n", $self->{EOFCHAR};
printf "EvtChar= %x\n", $self->{EVTCHAR};
printf "PackWORD= %x\n", $self->{"_PackWORD"};
printf "handle= %d\n\n", $self->{"_HANDLE"};
}
 
$fmask = 1 + $self->{"_StopBits"};
while (($key, $value) = each %{ $self->{"_L_STOP"} }) {
if ($value == $fmask) {
$self->{STOP} = $key;
}
}
 
$fmask = 1 + $self->{"_Parity"};
while (($key, $value) = each %{ $self->{"_L_PARITY"} }) {
if ($value == $fmask) {
$self->{PARITY} = $key;
}
}
 
$fmask = $self->{"_BitMask"};
 
$hr = DTR_CONTROL_HANDSHAKE;
$ok = RTS_CONTROL_HANDSHAKE;
 
if ($fmask & ( $hr << 4) ) {
$self->{HSHAKE} = "dtr";
}
elsif ($fmask & ( $ok << 12) ) {
$self->{HSHAKE} = "rts";
}
elsif ($fmask & ( FM_fOutX | FM_fInX ) ) {
$self->{HSHAKE} = "xoff";
}
else {
$self->{HSHAKE} = "none";
}
 
$self->{BINARY} = ($fmask & FM_fBinary);
$self->{PARITY_EN} = ($fmask & FM_fParity);
 
if ($fmask & FM_fDummy2) {
carp "Unknown DCB Flow Mask Bit in $self->{NAME}";
}
1;
}
 
sub init_done {
my $self = shift;
return 0 unless (defined $self->{"_INIT"});
return $self->{"_INIT"};
}
 
sub update_DCB {
my $self = shift;
my $ok = 0;
 
return unless (defined $self->{"_INIT"});
 
fetch_DCB ($self);
 
if ($self->{"_N_HSHAKE"}) {
$self->{HSHAKE} = $self->{"_N_HSHAKE"};
if ($self->{HSHAKE} eq "dtr" ) {
$self->{"_N_FM_ON"} = 0x1028;
$self->{"_N_FM_OFF"} = 0xffffdceb;
}
elsif ($self->{HSHAKE} eq "rts" ) {
$self->{"_N_FM_ON"} = 0x2014;
$self->{"_N_FM_OFF"} = 0xffffecd7;
}
elsif ($self->{HSHAKE} eq "xoff" ) {
$self->{"_N_FM_ON"} = 0x1310;
$self->{"_N_FM_OFF"} = 0xffffdfd3;
}
else {
$self->{"_N_FM_ON"} = 0x1010;
$self->{"_N_FM_OFF"} = 0xffffdcd3;
}
$self->{"_N_HSHAKE"} = 0;
}
 
if ($self->{"_N_PARITY_EN"}) {
if (2 == $self->{"_N_PARITY_EN"}) {
$self->{"_N_FM_ON"} |= FM_fParity; # enable
if ($self->{"_N_FM_OFF"}) {
$self->{"_N_FM_OFF"} |= FM_fParity;
}
else { $self->{"_N_FM_OFF"} = LONGsize; }
}
else {
if ($self->{"_N_FM_ON"}) {
$self->{"_N_FM_ON"} &= ~FM_fParity; # disable
}
if ($self->{"_N_FM_OFF"}) {
$self->{"_N_FM_OFF"} &= ~FM_fParity;
}
else { $self->{"_N_FM_OFF"} = ~FM_fParity; }
}
## DEBUG ##
## printf "_N_FM_ON=%lx\n", $self->{"_N_FM_ON"}; ## DEBUG ##
## printf "_N_FM_OFF=%lx\n", $self->{"_N_FM_OFF"}; ## DEBUG ##
## DEBUG ##
$self->{"_N_PARITY_EN"} = 0;
}
 
## DEBUG ##
## printf "_N_AUX_ON=%lx\n", $self->{"_N_AUX_ON"}; ## DEBUG ##
## printf "_N_AUX_OFF=%lx\n", $self->{"_N_AUX_OFF"}; ## DEBUG ##
## DEBUG ##
 
if ( $self->{"_N_AUX_ON"} or $self->{"_N_AUX_OFF"} ) {
if ( $self->{"_N_FM_OFF"} ) {
$self->{"_N_FM_OFF"} &= $self->{"_N_AUX_OFF"};
}
else {
$self->{"_N_FM_OFF"} = $self->{"_N_AUX_OFF"};
}
$self->{"_N_FM_ON"} |= $self->{"_N_AUX_ON"};
$self->{"_N_AUX_ON"} = 0;
$self->{"_N_AUX_OFF"} = 0;
}
## DEBUG ##
## printf "_N_FM_ON=%lx\n", $self->{"_N_FM_ON"}; ## DEBUG ##
## printf "_N_FM_OFF=%lx\n", $self->{"_N_FM_OFF"}; ## DEBUG ##
## DEBUG ##
 
if ( $self->{"_N_FM_ON"} or $self->{"_N_FM_OFF"} ) {
$self->{"_BitMask"} &= $self->{"_N_FM_OFF"};
$self->{"_BitMask"} |= $self->{"_N_FM_ON"};
$self->{"_N_FM_ON"} = 0;
$self->{"_N_FM_OFF"} = 0;
}
 
if ($self->{"_N_XONLIM"}) {
$self->{XONLIM} = $self->{"_N_XONLIM"} - 1;
$self->{"_N_XONLIM"} = 0;
}
 
if ($self->{"_N_XOFFLIM"}) {
$self->{XOFFLIM} = $self->{"_N_XOFFLIM"} - 1;
$self->{"_N_XOFFLIM"} = 0;
}
 
if ($self->{"_N_BAUD"}) {
$self->{BAUD} = $self->{"_N_BAUD"};
$self->{"_N_BAUD"} = 0;
}
 
if ($self->{"_N_DATA"}) {
$self->{DATA} = $self->{"_N_DATA"};
$self->{"_N_DATA"} = 0;
}
 
if ($self->{"_N_STOP"}) {
$self->{"_StopBits"} = $self->{"_N_STOP"} - 1;
$self->{"_N_STOP"} = 0;
}
 
if ($self->{"_N_PARITY"}) {
$self->{"_Parity"} = $self->{"_N_PARITY"} - 1;
$self->{"_N_PARITY"} = 0;
}
 
if ($self->{"_N_XONCHAR"}) {
$self->{XONCHAR} = $self->{"_N_XONCHAR"} - 1;
$self->{"_N_XONCHAR"} = 0;
}
 
if ($self->{"_N_XOFFCHAR"}) {
$self->{XOFFCHAR} = $self->{"_N_XOFFCHAR"} - 1;
$self->{"_N_XOFFCHAR"} = 0;
}
 
if ($self->{"_N_ERRCHAR"}) {
$self->{ERRCHAR} = $self->{"_N_ERRCHAR"} - 1;
$self->{"_N_ERRCHAR"} = 0;
}
 
if ($self->{"_N_EOFCHAR"}) {
$self->{EOFCHAR} = $self->{"_N_EOFCHAR"} - 1;
$self->{"_N_EOFCHAR"} = 0;
}
 
if ($self->{"_N_EVTCHAR"}) {
$self->{EVTCHAR} = $self->{"_N_EVTCHAR"} - 1;
$self->{"_N_EVTCHAR"} = 0;
}
 
my $dcb = pack($DCBformat,
$self->{"_DCBLength"},
$self->{BAUD},
$self->{"_BitMask"},
$self->{"_ResvWORD"},
$self->{XONLIM},
$self->{XOFFLIM},
$self->{DATA},
$self->{"_Parity"},
$self->{"_StopBits"},
$self->{XONCHAR},
$self->{XOFFCHAR},
$self->{ERRCHAR},
$self->{EOFCHAR},
$self->{EVTCHAR},
$self->{"_PackWORD"});
 
if ( SetCommState($self->{"_HANDLE"}, $dcb) ) {
print "updated DCB for $self->{NAME}\n" if ($Babble);
## DEBUG ##
## printf "DEBUG BitMask= %lx\n", $self->{"_BitMask"}; ## DEBUG ##
## DEBUG ##
}
else {
carp "SetCommState failed";
OS_Error;
if ($Babble) {
printf "\ntried to write:\n";
printf "DCBLength= %d\n", $self->{"_DCBLength"};
printf "BaudRate= %d\n", $self->{BAUD};
printf "BitMask= %lx\n", $self->{"_BitMask"};
printf "ResvWORD= %x\n", $self->{"_ResvWORD"};
printf "XonLim= %x\n", $self->{XONLIM};
printf "XoffLim= %x\n", $self->{XOFFLIM};
printf "ByteSize= %d\n", $self->{DATA};
printf "Parity= %d\n", $self->{"_Parity"};
printf "StopBits= %d\n", $self->{"_StopBits"};
printf "XonChar= %x\n", $self->{XONCHAR};
printf "XoffChar= %x\n", $self->{XOFFCHAR};
printf "ErrorChar= %x\n", $self->{ERRCHAR};
printf "EofChar= %x\n", $self->{EOFCHAR};
printf "EvtChar= %x\n", $self->{EVTCHAR};
printf "PackWORD= %x\n", $self->{"_PackWORD"};
printf "handle= %d\n", $self->{"_HANDLE"};
}
}
}
 
sub initialize {
my $self = shift;
my $item;
my $fault = 0;
foreach $item (@_) {
unless (exists $self->{"_N_$item"}) {
# must be "exists" so undef=not_settable
$fault++;
nocarp or carp "Missing REQUIRED setting for $item";
}
}
unless ($self->{"_INIT"}) {
$self->{"_INIT"} = 1 unless ($fault);
$self->{"_BitMask"} = 0x1011;
$self->{XONLIM} = 100 unless ($self->{"_N_XONLIM"});
$self->{XOFFLIM} = 100 unless ($self->{"_N_XOFFLIM"});
$self->{XONCHAR} = 0x11 unless ($self->{"_N_XONCHAR"});
$self->{XOFFCHAR} = 0x13 unless ($self->{"_N_XOFFCHAR"});
$self->{ERRCHAR} = 0 unless ($self->{"_N_ERRCHAR"});
$self->{EOFCHAR} = 0 unless ($self->{"_N_EOFCHAR"});
$self->{EVTCHAR} = 0 unless ($self->{"_N_EVTCHAR"});
 
update_timeouts($self);
}
 
if ($self->{"_N_READBUF"} or $self->{"_N_WRITEBUF"}) {
if ($self->{"_N_READBUF"}) {
$self->{READBUF} = $self->{"_N_READBUF"};
}
if ($self->{"_N_WRITEBUF"}) {
$self->{WRITEBUF} = $self->{"_N_WRITEBUF"};
}
$self->{"_N_READBUF"} = 0;
$self->{"_N_WRITEBUF"} = 0;
SetupComm($self->{"_HANDLE"}, $self->{READBUF}, $self->{WRITEBUF});
}
purge_all($self);
return $fault;
}
 
sub is_status {
my $self = shift;
my $ok = 0;
my $error_p = " "x4;
my $CommStatus = " "x12;
 
if (@_ and $testactive) {
$self->{"_LATCH"} |= shift;
}
 
$ok=ClearCommError($self->{"_HANDLE"}, $error_p, $CommStatus);
 
my $Error_BitMask = unpack("L", $error_p);
$self->{"_LATCH"} |= $Error_BitMask;
my @stat = unpack($COMSTATformat, $CommStatus);
push @stat, $self->{"_LATCH"};
 
$stat[ST_BLOCK] &= BM_AllBits;
if ( $Babble or $self->{"_DEBUG_C"} ) {
printf "Blocking Bits= %d\n", $stat[ST_BLOCK];
printf "Input Queue= %d\n", $stat[ST_INPUT];
printf "Output Queue= %d\n", $stat[ST_OUTPUT];
printf "Latched Errors= %d\n", $stat[ST_ERROR];
printf "ok= %d\n", $ok;
}
return ($ok ? @stat : undef);
}
 
sub reset_error {
my $self = shift;
my $was = $self->{"_LATCH"};
$self->{"_LATCH"} = 0;
return $was;
}
 
sub can_baud {
my $self = shift;
return $self->{"_C_BAUD"};
}
 
sub can_databits {
my $self = shift;
return $self->{"_C_DATA"};
}
 
sub can_stopbits {
my $self = shift;
return $self->{"_C_STOP"};
}
 
sub can_dtrdsr {
my $self = shift;
return $self->{"_C_DTRDSR"};
}
 
sub can_handshake {
my $self = shift;
return $self->{"_C_HSHAKE"};
}
 
sub can_parity_check {
my $self = shift;
return $self->{"_C_PARITY_CK"};
}
 
sub can_parity_config {
my $self = shift;
return $self->{"_C_PARITY_CFG"};
}
 
sub can_parity_enable {
my $self = shift;
return $self->{"_C_PARITY_EN"};
}
 
sub can_rlsd_config {
my $self = shift;
return $self->{"_C_RLSD_CFG"};
}
 
sub can_rlsd {
my $self = shift;
return $self->{"_C_RLSD"};
}
 
sub can_16bitmode {
my $self = shift;
return $self->{"_C_16BITMODE"};
}
 
sub is_rs232 {
my $self = shift;
return ($self->{"_TYPE"} == PST_RS232);
}
 
sub is_modem {
my $self = shift;
return ($self->{"_TYPE"} == PST_MODEM);
}
 
sub can_rtscts {
my $self = shift;
return $self->{"_C_RTSCTS"};
}
 
sub can_xonxoff {
my $self = shift;
return $self->{"_C_XONXOFF"};
}
 
sub can_xon_char {
my $self = shift;
return $self->{"_C_XON_CHAR"};
}
 
sub can_spec_char {
my $self = shift;
return $self->{"_C_SPECHAR"};
}
 
sub can_interval_timeout {
my $self = shift;
return $self->{"_C_INT_TIME"};
}
 
sub can_total_timeout {
my $self = shift;
return $self->{"_C_TOT_TIME"};
}
 
sub is_handshake {
my $self = shift;
if (@_) {
return unless $self->{"_C_HSHAKE"};
return unless (defined $self->{"_L_HSHAKE"}{$_[0]});
$self->{"_N_HSHAKE"} = $self->{"_L_HSHAKE"}{$_[0]};
update_DCB ($self);
}
return unless fetch_DCB ($self);
return $self->{HSHAKE};
}
 
sub are_handshake {
my $self = shift;
return unless $self->{"_C_HSHAKE"};
return if (@_);
return keys(%{$self->{"_L_HSHAKE"}});
}
 
sub is_baudrate {
my $self = shift;
if (@_) {
return unless $self->{"_C_BAUD"};
return unless (defined $self->{"_L_BAUD"}{$_[0]});
$self->{"_N_BAUD"} = int shift;
update_DCB ($self);
}
return unless fetch_DCB ($self);
return $self->{BAUD};
}
 
sub are_baudrate {
my $self = shift;
return unless $self->{"_C_BAUD"};
return if (@_);
return keys(%{$self->{"_L_BAUD"}});
}
 
sub is_parity {
my $self = shift;
if (@_) {
return unless $self->{"_C_PARITY_CFG"};
return unless (defined $self->{"_L_PARITY"}{$_[0]});
$self->{"_N_PARITY"} = $self->{"_L_PARITY"}{$_[0]};
update_DCB ($self);
}
return unless fetch_DCB ($self);
return $self->{PARITY};
}
 
sub are_parity {
my $self = shift;
return unless $self->{"_C_PARITY_CFG"};
return if (@_);
return keys(%{$self->{"_L_PARITY"}});
}
 
sub is_databits {
my $self = shift;
if (@_) {
return unless $self->{"_C_DATA"};
return unless (defined $self->{"_L_DATA"}{$_[0]});
$self->{"_N_DATA"} = $self->{"_L_DATA"}{$_[0]};
update_DCB ($self);
}
return unless fetch_DCB ($self);
return $self->{DATA};
}
 
sub are_databits {
my $self = shift;
return unless $self->{"_C_DATA"};
return if (@_);
return keys(%{$self->{"_L_DATA"}});
}
 
sub is_stopbits {
my $self = shift;
if (@_) {
return unless $self->{"_C_STOP"};
return unless (defined $self->{"_L_STOP"}{$_[0]});
$self->{"_N_STOP"} = $self->{"_L_STOP"}{$_[0]};
update_DCB ($self);
}
return unless fetch_DCB ($self);
return $self->{STOP};
}
 
sub are_stopbits {
my $self = shift;
return unless $self->{"_C_STOP"};
return if (@_);
return keys(%{$self->{"_L_STOP"}});
}
 
# single value for save/start
sub is_read_buf {
my $self = shift;
if (@_) { $self->{"_N_READBUF"} = int shift; }
return $self->{READBUF};
}
 
# single value for save/start
sub is_write_buf {
my $self = shift;
if (@_) { $self->{"_N_WRITEBUF"} = int shift; }
return $self->{WRITEBUF};
}
 
sub is_buffers {
my $self = shift;
 
return unless (@_ == 2);
my $rbuf = shift;
my $wbuf = shift;
SetupComm($self->{"_HANDLE"}, $rbuf, $wbuf) or return;
$self->{"_N_READBUF"} = 0;
$self->{"_N_WRITEBUF"} = 0;
$self->{READBUF} = $rbuf;
$self->{WRITEBUF} = $wbuf;
1;
}
 
sub read_bg {
return unless (@_ == 2);
my $self = shift;
my $wanted = shift;
return unless ($wanted > 0);
if ($self->{"_R_BUSY"}) {
nocarp or carp "Second Read attempted before First is done";
return;
}
my $got_p = " "x4;
my $ok;
my $got = 0;
if ($wanted > $RBUF_Size) {
$wanted = $RBUF_Size;
warn "read buffer limited to $RBUF_Size bytes at the moment";
}
$self->{"_R_BUSY"} = 1;
 
$ok=ReadFile( $self->{"_HANDLE"},
$self->{"_RBUF"},
$wanted,
$got_p,
$self->{"_R_OVERLAP"});
 
if ($ok) {
$got = unpack("L", $got_p);
$self->{"_R_BUSY"} = 0;
}
return $got;
}
 
sub write_bg {
return unless (@_ == 2);
my $self = shift;
my $wbuf = shift;
if ($self->{"_W_BUSY"}) {
nocarp or carp "Second Write attempted before First is done";
return;
}
my $ok;
my $got_p = " "x4;
return 0 if ($wbuf eq "");
my $lbuf = length ($wbuf);
my $written = 0;
$self->{"_W_BUSY"} = 1;
 
$ok=WriteFile( $self->{"_HANDLE"},
$wbuf,
$lbuf,
$got_p,
$self->{"_W_OVERLAP"});
 
if ($ok) {
$written = unpack("L", $got_p);
$self->{"_W_BUSY"} = 0;
}
if ($Babble) {
print "error=$ok\n";
print "wbuf=$wbuf\n";
print "lbuf=$lbuf\n";
print "write_bg=$written\n";
}
return $written;
}
 
sub read_done {
return unless (@_ == 2);
my $self = shift;
my $wait = yes_true ( shift );
my $ov;
my $got_p = " "x4;
my $wanted = 0;
$self->{"_R_BUSY"} = 1;
 
$ov=GetOverlappedResult( $self->{"_HANDLE"},
$self->{"_R_OVERLAP"},
$got_p,
$wait);
if ($ov) {
$wanted = unpack("L", $got_p);
$self->{"_R_BUSY"} = 0;
print "read_done=$wanted\n" if ($Babble);
return (1, $wanted, substr($self->{"_RBUF"}, 0, $wanted));
}
return (0, 0, "");
}
 
sub write_done {
return unless (@_ == 2);
my $self = shift;
my $wait = yes_true ( shift );
my $ov;
my $got_p = " "x4;
my $written = 0;
$self->{"_W_BUSY"} = 1;
 
$ov=GetOverlappedResult( $self->{"_HANDLE"},
$self->{"_W_OVERLAP"},
$got_p,
$wait);
if ($ov) {
$written = unpack("L", $got_p);
$self->{"_W_BUSY"} = 0;
print "write_done=$written\n" if ($Babble);
return (1, $written);
}
return (0, $written);
}
 
sub purge_all {
my $self = shift;
return if (@_);
 
# PURGE_TXABORT | PURGE_RXABORT | PURGE_TXCLEAR | PURGE_RXCLEAR
unless ( PurgeComm($self->{"_HANDLE"}, 0x0000000f) ) {
carp "Error in PurgeComm";
OS_Error;
return;
}
$self->{"_R_BUSY"} = 0;
$self->{"_W_BUSY"} = 0;
return 1;
}
 
sub purge_rx {
my $self = shift;
return if (@_);
 
# PURGE_RXABORT | PURGE_RXCLEAR
unless ( PurgeComm($self->{"_HANDLE"}, 0x0000000a) ) {
OS_Error;
carp "Error in PurgeComm";
return;
}
$self->{"_R_BUSY"} = 0;
return 1;
}
 
sub purge_tx {
my $self = shift;
return if (@_);
 
# PURGE_TXABORT | PURGE_TXCLEAR
unless ( PurgeComm($self->{"_HANDLE"}, 0x00000005) ) {
OS_Error;
carp "Error in PurgeComm";
return;
}
$self->{"_W_BUSY"} = 0;
return 1;
}
 
sub are_buffers {
my $self = shift;
return if (@_);
return ($self->{READBUF}, $self->{WRITEBUF});
}
 
sub buffer_max {
my $self = shift;
return if (@_);
return ($self->{"_RBUFMAX"}, $self->{"_TBUFMAX"});
}
 
sub suspend_tx {
my $self = shift;
return if (@_);
return SetCommBreak($self->{"_HANDLE"});
}
 
sub resume_tx {
my $self = shift;
return if (@_);
return ClearCommBreak($self->{"_HANDLE"});
}
 
sub xmit_imm_char {
my $self = shift;
return unless (@_ == 1);
my $v = int shift;
unless ( TransmitCommChar($self->{"_HANDLE"}, $v) ) {
carp "Can't transmit char: $v";
return;
}
1;
}
 
sub is_xon_char {
my $self = shift;
if ((@_ == 1) and $self->{"_C_XON_CHAR"}) {
$self->{"_N_XONCHAR"} = 1 + shift;
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
return $self->{XONCHAR};
}
 
sub is_xoff_char {
my $self = shift;
if ((@_ == 1) and $self->{"_C_XON_CHAR"}) {
$self->{"_N_XOFFCHAR"} = 1 + shift;
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
return $self->{XOFFCHAR};
}
 
sub is_eof_char {
my $self = shift;
if ((@_ == 1) and $self->{"_C_SPECHAR"}) {
$self->{"_N_EOFCHAR"} = 1 + shift;
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
return $self->{EOFCHAR};
}
 
sub is_event_char {
my $self = shift;
if ((@_ == 1) and $self->{"_C_SPECHAR"}) {
$self->{"_N_EVTCHAR"} = 1 + shift;
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
return $self->{EVTCHAR};
}
 
sub is_error_char {
my $self = shift;
if ((@_ == 1) and $self->{"_C_SPECHAR"}) {
$self->{"_N_ERRCHAR"} = 1 + shift;
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
return $self->{ERRCHAR};
}
 
sub is_xon_limit {
my $self = shift;
if (@_) {
return unless ($self->{"_C_XONXOFF"});
my $v = int shift;
return if (($v < 0) or ($v > SHORTsize));
$self->{"_N_XONLIM"} = ++$v;
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
return $self->{XONLIM};
}
 
sub is_xoff_limit {
my $self = shift;
if (@_) {
return unless ($self->{"_C_XONXOFF"});
my $v = int shift;
return if (($v < 0) or ($v > SHORTsize));
$self->{"_N_XOFFLIM"} = ++$v;
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
return $self->{XOFFLIM};
}
 
sub is_read_interval {
my $self = shift;
if (@_) {
return unless ($self->{"_C_INT_TIME"});
my $v = int shift;
return if (($v < 0) or ($v > LONGsize));
if ($v == LONGsize) {
$self->{"_N_RINT"} = $v; # Win32 uses as flag
}
else {
$self->{"_N_RINT"} = ++$v;
}
return unless update_timeouts ($self);
}
return $self->{RINT};
}
 
sub is_read_char_time {
my $self = shift;
if (@_) {
return unless ($self->{"_C_TOT_TIME"});
my $v = int shift;
return if (($v < 0) or ($v >= LONGsize));
$self->{"_N_RTOT"} = ++$v;
return unless update_timeouts ($self);
}
return $self->{RTOT};
}
 
sub is_read_const_time {
my $self = shift;
if (@_) {
return unless ($self->{"_C_TOT_TIME"});
my $v = int shift;
return if (($v < 0) or ($v >= LONGsize));
$self->{"_N_RCONST"} = ++$v;
return unless update_timeouts ($self);
}
return $self->{RCONST};
}
 
sub is_write_const_time {
my $self = shift;
if (@_) {
return unless ($self->{"_C_TOT_TIME"});
my $v = int shift;
return if (($v < 0) or ($v >= LONGsize));
$self->{"_N_WCONST"} = ++$v;
return unless update_timeouts ($self);
}
return $self->{WCONST};
}
 
sub is_write_char_time {
my $self = shift;
if (@_) {
return unless ($self->{"_C_TOT_TIME"});
my $v = int shift;
return if (($v < 0) or ($v >= LONGsize));
$self->{"_N_WTOT"} = ++$v;
return unless update_timeouts ($self);
}
return $self->{WTOT};
}
 
sub update_timeouts {
return unless (@_ == 1);
my $self = shift;
unless ( GetCommTimeouts($self->{"_HANDLE"}, $self->{"_TIMEOUT"}) ) {
carp "Error in GetCommTimeouts";
return;
}
 
($self->{RINT},
$self->{RTOT},
$self->{RCONST},
$self->{WTOT},
$self->{WCONST})= unpack($TIMEOUTformat, $self->{"_TIMEOUT"});
 
if ($self->{"_N_RINT"}) {
if ($self->{"_N_RINT"} == LONGsize) {
$self->{RINT} = $self->{"_N_RINT"}; # Win32 uses as flag
}
else {
$self->{RINT} = $self->{"_N_RINT"} -1;
}
$self->{"_N_RINT"} = 0;
}
 
if ($self->{"_N_RTOT"}) {
$self->{RTOT} = $self->{"_N_RTOT"} -1;
$self->{"_N_RTOT"} = 0;
}
 
if ($self->{"_N_RCONST"}) {
$self->{RCONST} = $self->{"_N_RCONST"} -1;
$self->{"_N_RCONST"} = 0;
}
 
if ($self->{"_N_WTOT"}) {
$self->{WTOT} = $self->{"_N_WTOT"} -1;
$self->{"_N_WTOT"} = 0;
}
 
if ($self->{"_N_WCONST"}) {
$self->{WCONST} = $self->{"_N_WCONST"} -1;
$self->{"_N_WCONST"} = 0;
}
 
$self->{"_TIMEOUT"} = pack($TIMEOUTformat,
$self->{RINT},
$self->{RTOT},
$self->{RCONST},
$self->{WTOT},
$self->{WCONST});
 
if ( SetCommTimeouts($self->{"_HANDLE"}, $self->{"_TIMEOUT"}) ) {
return 1;
}
else {
carp "Error in SetCommTimeouts";
return;
}
}
 
 
# true/false parameters
 
sub is_binary {
my $self = shift;
if (@_) {
$self->{"_N_BINARY"} = 1 + yes_true ( shift );
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
### printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fBinary);
}
 
sub is_parity_enable {
my $self = shift;
if (@_) {
$self->{"_N_PARITY_EN"} = 1 + yes_true ( shift );
update_DCB ($self);
}
return unless fetch_DCB ($self);
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ## DEBUG ##
return ($self->{"_BitMask"} & FM_fParity);
}
 
sub ignore_null {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fNull;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fNull;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fNull;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fNull);
}
 
sub ignore_no_dsr {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fDsrSensitivity;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fDsrSensitivity;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fDsrSensitivity;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fDsrSensitivity);
}
 
sub subst_pe_char {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fErrorChar;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fErrorChar;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fErrorChar;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fErrorChar);
}
 
sub abort_on_error {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fAbortOnError;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fAbortOnError;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fAbortOnError;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fAbortOnError);
}
 
sub output_dsr {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fOutxDsrFlow;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fOutxDsrFlow;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fOutxDsrFlow;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fOutxDsrFlow);
}
 
sub output_cts {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fOutxCtsFlow;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fOutxCtsFlow;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fOutxCtsFlow;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fOutxCtsFlow);
}
 
sub input_xoff {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fInX;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fInX;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fInX;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fInX);
}
 
sub output_xoff {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fOutX;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fOutX;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fOutX;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fOutX);
}
 
sub tx_on_xoff {
my $self = shift;
if (@_) {
if ($self->{"_N_AUX_OFF"}) {
$self->{"_N_AUX_OFF"} &= ~FM_fTXContinueOnXoff;
}
else {
$self->{"_N_AUX_OFF"} = ~FM_fTXContinueOnXoff;
}
if ( yes_true ( shift ) ) {
$self->{"_N_AUX_ON"} |= FM_fTXContinueOnXoff;
}
update_DCB ($self);
}
else {
return unless fetch_DCB ($self);
}
## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ###
return ($self->{"_BitMask"} & FM_fTXContinueOnXoff);
}
 
sub dtr_active {
return unless (@_ == 2);
my $self = shift;
my $onoff = yes_true ( shift ) ? SETDTR : CLRDTR ;
return EscapeCommFunction($self->{"_HANDLE"}, $onoff);
}
 
sub rts_active {
return unless (@_ == 2);
my $self = shift;
my $onoff = yes_true ( shift ) ? SETRTS : CLRRTS ;
return EscapeCommFunction($self->{"_HANDLE"}, $onoff);
}
 
# pulse parameters
 
sub pulse_dtr_off {
return unless (@_ == 2);
if ( ($] < 5.005) and ($] >= 5.004) ) {
nocarp or carp "\npulse_dtr_off not supported on version $]\n";
return;
}
my $self = shift;
my $delay = shift;
$self->dtr_active(0) or carp "Did not pulse DTR off";
Win32::Sleep($delay);
$self->dtr_active(1) or carp "Did not restore DTR on";
Win32::Sleep($delay);
}
 
sub pulse_rts_off {
return unless (@_ == 2);
if ( ($] < 5.005) and ($] >= 5.004) ) {
nocarp or carp "\npulse_rts_off not supported on version $]\n";
return;
}
my $self = shift;
my $delay = shift;
$self->rts_active(0) or carp "Did not pulse RTS off";
Win32::Sleep($delay);
$self->rts_active(1) or carp "Did not restore RTS on";
Win32::Sleep($delay);
}
 
sub pulse_break_on {
return unless (@_ == 2);
if ( ($] < 5.005) and ($] >= 5.004) ) {
nocarp or carp "\npulse_break_on not supported on version $]\n";
return;
}
my $self = shift;
my $delay = shift;
$self->break_active(1) or carp "Did not pulse BREAK on";
Win32::Sleep($delay);
$self->break_active(0) or carp "Did not restore BREAK off";
Win32::Sleep($delay);
}
 
sub pulse_dtr_on {
return unless (@_ == 2);
if ( ($] < 5.005) and ($] >= 5.004) ) {
nocarp or carp "\npulse_dtr_on not supported on version $]\n";
return;
}
my $self = shift;
my $delay = shift;
$self->dtr_active(1) or carp "Did not pulse DTR on";
Win32::Sleep($delay);
$self->dtr_active(0) or carp "Did not restore DTR off";
Win32::Sleep($delay);
}
 
sub pulse_rts_on {
return unless (@_ == 2);
if ( ($] < 5.005) and ($] >= 5.004) ) {
nocarp or carp "\npulse_rts_on not supported on version $]\n";
return;
}
my $self = shift;
my $delay = shift;
$self->rts_active(1) or carp "Did not pulse RTS on";
Win32::Sleep($delay);
$self->rts_active(0) or carp "Did not restore RTS off";
Win32::Sleep($delay);
}
 
sub break_active {
return unless (@_ == 2);
my $self = shift;
my $onoff = yes_true ( shift ) ? SETBREAK : CLRBREAK ;
return EscapeCommFunction($self->{"_HANDLE"}, $onoff);
}
 
sub xon_active {
return unless (@_ == 1);
my $self = shift;
return EscapeCommFunction($self->{"_HANDLE"}, SETXON);
}
 
sub xoff_active {
return unless (@_ == 1);
my $self = shift;
return EscapeCommFunction($self->{"_HANDLE"}, SETXOFF);
}
 
sub is_modemlines {
return unless (@_ == 1);
my $self = shift;
my $mstat = " " x4;
unless ( GetCommModemStatus($self->{"_HANDLE"}, $mstat) ) {
carp "Error in GetCommModemStatus";
return;
}
my $result = unpack ("L", $mstat);
return $result;
}
 
sub debug_comm {
my $self = shift;
if (ref($self)) {
if (@_) { $self->{"_DEBUG_C"} = yes_true ( shift ); }
else {
nocarp or carp "Debug level: $self->{NAME} = $self->{\"_DEBUG_C\"}";
return $self->{"_DEBUG_C"};
}
} else {
$Babble = yes_true ($self);
nocarp or carp "CommPort Debug Class = $Babble";
return $Babble;
}
}
 
sub close {
my $self = shift;
my $ok;
my $success = 1;
 
return unless (defined $self->{NAME});
 
if ($Babble) {
carp "Closing $self " . $self->{NAME};
}
if ($self->{"_HANDLE"}) {
purge_all ($self);
update_timeouts ($self); # if any running ??
$ok=CloseHandle($self->{"_HANDLE"});
if (! $ok) {
print "Error Closing handle $self->{\"_HANDLE\"} for $self->{NAME}\n";
OS_Error;
$success = 0;
}
elsif ($Babble) {
print "Closing Device handle $self->{\"_HANDLE\"} for $self->{NAME}\n";
}
$self->{"_HANDLE"} = undef;
}
if ($self->{"_R_EVENT"}) {
$ok=CloseHandle($self->{"_R_EVENT"});
if (! $ok) {
print "Error closing Read Event handle $self->{\"_R_EVENT\"} for $self->{NAME}\n";
OS_Error;
$success = 0;
}
$self->{"_R_EVENT"} = undef;
}
if ($self->{"_W_EVENT"}) {
$ok=CloseHandle($self->{"_W_EVENT"});
if (! $ok) {
print "Error closing Write Event handle $self->{\"_W_EVENT\"} for $self->{NAME}\n";
OS_Error;
$success = 0;
}
$self->{"_W_EVENT"} = undef;
}
$self->{NAME} = undef;
if ($Babble) {
printf "CommPort close result:%d\n", $success;
}
return $success;
}
 
sub DESTROY {
my $self = shift;
return unless (defined $self->{NAME});
 
if ($Babble or $self->{"_DEBUG_C"}) {
print "Destroying $self->{NAME}\n" if (defined $self->{NAME});
}
$self->close;
}
 
1; # so the require or use succeeds
 
# Autoload methods go after =cut, and are processed by the autosplit program.
 
__END__
 
=pod
 
=head1 NAME
 
Win32API::CommPort - Raw Win32 system API calls for serial communications.
 
=head1 SYNOPSIS
 
use Win32; ## not required under all circumstances
require 5.003;
use Win32API::CommPort qw( :PARAM :STAT 0.19 );
 
## when available ## use Win32API::File 0.07 qw( :ALL );
 
=head2 Constructors
 
$PortObj = new Win32API::CommPort ($PortName, $quiet)
|| die "Can't open $PortName: $^E\n"; # $quiet is optional
 
@required = qw( BAUD DATA STOP );
$faults = $PortObj->initialize(@required);
if ($faults) { die "Required parameters not set before initialize\n"; }
 
=head2 Configuration Utility Methods
 
set_no_messages(1); # test suite use
 
# exported by :PARAM
nocarp || carp "Something fishy";
$a = SHORTsize; # 0xffff
$a = LONGsize; # 0xffffffff
$answer = yes_true("choice"); # 1 or 0
OS_Error unless ($API_Call_OK); # prints error
 
$PortObj->init_done || die "Not done";
 
$PortObj->fetch_DCB || die "Not done";
$PortObj->update_DCB || die "Not done";
 
$milliseconds = $PortObj->get_tick_count;
 
=head2 Capability Methods (read only)
 
# true/false capabilities
$a = $PortObj->can_baud; # else fixed
$a = $PortObj->can_databits;
$a = $PortObj->can_stopbits;
$a = $PortObj->can_dtrdsr;
$a = $PortObj->can_handshake;
$a = $PortObj->can_parity_check;
$a = $PortObj->can_parity_config;
$a = $PortObj->can_parity_enable;
$a = $PortObj->can_rlsd; # receive line signal detect (carrier)
$a = $PortObj->can_rlsd_config;
$a = $PortObj->can_16bitmode;
$a = $PortObj->is_rs232;
$a = $PortObj->is_modem;
$a = $PortObj->can_rtscts;
$a = $PortObj->can_xonxoff;
$a = $PortObj->can_xon_char;
$a = $PortObj->can_spec_char;
$a = $PortObj->can_interval_timeout;
$a = $PortObj->can_total_timeout;
 
# list output capabilities
($rmax, $wmax) = $PortObj->buffer_max;
($rbuf, $wbuf) = $PortObj->are_buffers; # current
@choices = $PortObj->are_baudrate; # legal values
@choices = $PortObj->are_handshake;
@choices = $PortObj->are_parity;
@choices = $PortObj->are_databits;
@choices = $PortObj->are_stopbits;
 
=head2 Configuration Methods
 
# most methods can be called two ways:
$PortObj->is_handshake("xoff"); # set parameter
$flowcontrol = $PortObj->is_handshake; # current value (scalar)
 
# similar
$PortObj->is_baudrate(9600);
$PortObj->is_parity("odd");
$PortObj->is_databits(8);
$PortObj->is_stopbits(1);
$PortObj->debug_comm(0);
$PortObj->is_xon_limit(100); # bytes left in buffer
$PortObj->is_xoff_limit(100); # space left in buffer
$PortObj->is_xon_char(0x11);
$PortObj->is_xoff_char(0x13);
$PortObj->is_eof_char(0x0);
$PortObj->is_event_char(0x0);
$PortObj->is_error_char(0); # for parity errors
 
$rbuf = $PortObj->is_read_buf; # read_only except internal use
$wbuf = $PortObj->is_write_buf;
$size = $PortObj->internal_buffer;
 
$PortObj->is_buffers(4096, 4096); # read, write
# returns current in list context
 
$PortObj->is_read_interval(100); # max time between read char (millisec)
$PortObj->is_read_char_time(5); # avg time between read char
$PortObj->is_read_const_time(100); # total = (avg * bytes) + const
$PortObj->is_write_char_time(5);
$PortObj->is_write_const_time(100);
 
$PortObj->is_binary(T); # just say Yes (Win 3.x option)
$PortObj->is_parity_enable(F); # faults during input
 
=head2 Operating Methods
 
($BlockingFlags, $InBytes, $OutBytes, $LatchErrorFlags) = $PortObj->is_status
|| warn "could not get port status\n";
 
$ClearedErrorFlags = $PortObj->reset_error;
# The API resets errors when reading status, $LatchErrorFlags
# is all $ErrorFlags since they were last explicitly cleared
 
if ($BlockingFlags) { warn "Port is blocked"; }
if ($BlockingFlags & BM_fCtsHold) { warn "Waiting for CTS"; }
if ($LatchErrorFlags & CE_FRAME) { warn "Framing Error"; }
 
Additional useful constants may be exported eventually.
 
$count_in = $PortObj->read_bg($InBytes);
($done, $count_in, $string_in) = $PortObj->read_done(1);
# background read with wait until done
 
$count_out = $PortObj->write_bg($output_string); # background write
($done, $count_out) = $PortObj->write_done(0);
 
$PortObj->suspend_tx; # output from write buffer
$PortObj->resume_tx;
$PortObj->xmit_imm_char(0x03); # bypass buffer (and suspend)
 
$PortObj->xoff_active; # simulate received xoff
$PortObj->xon_active; # simulate received xon
 
$PortObj->purge_all;
$PortObj->purge_rx;
$PortObj->purge_tx;
 
# controlling outputs from the port
$PortObj->dtr_active(T); # sends outputs direct to hardware
$PortObj->rts_active(Yes); # returns status of API call
$PortObj->break_active(N); # NOT state of bit
 
$PortObj->pulse_break_on($milliseconds); # off version is implausible
$PortObj->pulse_rts_on($milliseconds);
$PortObj->pulse_rts_off($milliseconds);
$PortObj->pulse_dtr_on($milliseconds);
$PortObj->pulse_dtr_off($milliseconds);
# sets_bit, delays, resets_bit, delays
# pulse_xxx methods not supported on Perl 5.004
 
$ModemStatus = $PortObj->is_modemlines;
if ($ModemStatus & $PortObj->MS_RLSD_ON) { print "carrier detected"; }
 
$PortObj->close || die;
# "undef $PortObj" preferred unless reopening port
# "close" should precede "undef" if both used
 
=head1 DESCRIPTION
 
This provides fairly low-level access to the Win32 System API calls
dealing with serial ports.
 
Uses features of the Win32 API to implement non-blocking I/O, serial
parameter setting, event-loop operation, and enhanced error handling.
 
To pass in C<NULL> as the pointer to an optional buffer, pass in C<$null=0>.
This is expected to change to an empty list reference, C<[]>, when Perl
supports that form in this usage.
 
Beyond raw access to the API calls and related constants, this module
will eventually handle smart buffer allocation and translation of return
codes.
 
=head2 Initialization
 
The constructor is B<new> with a F<PortName> (as the Registry
knows it) specified. This will do a B<CreateFile>, get the available
options and capabilities via the Win32 API, and create the object.
The port is not yet ready for read/write access. First, the desired
I<parameter settings> must be established. Since these are tuning
constants for an underlying hardware driver in the Operating System,
they should all checked for validity by the method calls that set them.
The B<initialize> method takes a list of required parameters and confirms
they have been set. For others, it will attempt to deduce defaults from
the hardware or from other parameters. The B<initialize> method returns
the number of faults (zero if the port is setup ok). The B<update_DCB>
method writes a new I<Device Control Block> to complete the startup and
allow the port to be used. Ports are opened for binary transfers. A
separate C<binmode> is not needed. The USER must release the object
if B<initialize> or B<update_DCB> does not succeed.
 
Version 0.15 adds an optional C<$quiet> parameter to B<new>. Failure
to open a port prints a error message to STDOUT by default. Since only
one application at a time can "own" the port, one source of failure was
"port in use". There was previously no way to check this without getting
a "fail message". Setting C<$quiet> disables this built-in message. It
also returns 0 instead of C<undef> if the port is unavailable (still FALSE,
used for testing this condition - other faults may still return C<undef>).
Use of C<$quiet> only applies to B<new>.
 
The fault checking in B<initialize> consists in verifying an I<_N_$item>
internal variable exists for each I<$item> in the input list. The
I<_N_$item> is created for each parameter that is set either directly
or by default. A derived class must create the I<_N_$items> for any
varibles it adds to the base class if it wants B<initialize> to check
them. Win32API::CommPort supports the following:
 
$item _N_$item setting method
------ --------- --------------
BAUD "_N_BAUD" is_baudrate
BINARY "_N_BINARY" is_binary
DATA "_N_DATA" is_databits
EOFCHAR "_N_EOFCHAR" is_eof_char
ERRCHAR "_N_ERRCHAR" is_error_char
EVTCHAR "_N_EVTCHAR" is_event_char
HSHAKE "_N_HSHAKE" is_handshake
PARITY "_N_PARITY" is_parity
PARITY_EN "_N_PARITY_EN" is_parity_enable
RCONST "_N_RCONST" is_read_const_time
READBUF "_N_READBUF" is_read_buf
RINT "_N_RINT" is_read_interval
RTOT "_N_RTOT" is_read_char_time
STOP "_N_STOP" is_stopbits
WCONST "_N_WCONST" is_write_const_time
WRITEBUF "_N_WRITEBUF" is_write_buf
WTOT "_N_WTOT" is_write_char_time
XOFFCHAR "_N_XOFFCHAR" is_xoff_char
XOFFLIM "_N_XOFFLIM" is_xoff_limit
XONCHAR "_N_XONCHAR" is_xon_char
XONLIM "_N_XONLIM" is_xon_limit
 
Some individual parameters (eg. baudrate) can be changed after the
initialization is completed. These will automatically update the
I<Device Control Block> as required. The I<init_done> method indicates
when I<initialize> has completed successfully.
 
 
$PortObj = new Win32API::CommPort ($PortName, $quiet)
|| die "Can't open $PortName: $^E\n"; # $quiet is optional
 
if $PortObj->can_databits { $PortObj->is_databits(8) };
$PortObj->is_baudrate(9600);
$PortObj->is_parity("none");
$PortObj->is_stopbits(1);
$PortObj->is_handshake("rts");
$PortObj->is_buffers(4096, 4096);
$PortObj->dtr_active(T);
 
@required = qw( BAUD DATA STOP PARITY );
$PortObj->initialize(@required) || undef $PortObj;
 
$PortObj->dtr_active(f);
$PortObj->is_baudrate(300);
 
$PortObj->close || die;
# "undef $PortObj" preferred unless reopening port
# "close" should precede "undef" if both used
 
undef $PortObj; # closes port AND frees memory in perl
 
The F<PortName> maps to both the Registry I<Device Name> and the
I<Properties> associated with that device. A single I<Physical> port
can be accessed using two or more I<Device Names>. But the options
and setup data will differ significantly in the two cases. A typical
example is a Modem on port "COM2". Both of these F<PortNames> open
the same I<Physical> hardware:
 
$P1 = new Win32API::CommPort ("COM2");
 
$P2 = new Win32API::CommPort ("\\\\.\\Nanohertz Modem model K-9");
 
$P1 is a "generic" serial port. $P2 includes all of $P1 plus a variety
of modem-specific added options and features. The "raw" API calls return
different size configuration structures in the two cases. Win32 uses the
"\\.\" prefix to identify "named" devices. Since both names use the same
I<Physical> hardware, they can not both be used at the same time. The OS
will complain. Consider this A Good Thing.
 
Version 0.16 adds B<pulse> methods for the I<RTS, BREAK, and DTR> bits. The
B<pulse> methods assume the bit is in the opposite state when the method
is called. They set the requested state, delay the specified number of
milliseconds, set the opposite state, and again delay the specified time.
These methods are designed to support devices, such as the X10 "FireCracker"
control and some modems, which require pulses on these lines to signal
specific events or data. Since the 5.00402 Perl distribution from CPAN does
not support sub-second time delays readily, these methods are not supported
on that version of Perl.
 
$PortObj->pulse_break_on($milliseconds);
$PortObj->pulse_rts_on($milliseconds);
$PortObj->pulse_rts_off($milliseconds);
$PortObj->pulse_dtr_on($milliseconds);
$PortObj->pulse_dtr_off($milliseconds);
 
Version 0.16 also adds I<experimental> support for the rest of the option bits
available through the I<Device Control Block>. They have not been extensively
tested and these settings are NOT saved in the B<configuration file> by
I<Win32::SerialPort>. Please let me know if one does not work as advertised.
[Win32 API bit designation]
 
$PortObj->ignore_null(0); # discard \000 bytes on input [fNull]
 
$PortObj->ignore_no_dsr(0); # discard input bytes unless DSR
# [fDsrSensitivity]
 
$PortObj->subst_pe_char(0); # replace parity errors with B<is_error_char>
# when B<is_parity_enable> [fErrorChar]
 
$PortObj->abort_on_error(0); # cancel read/write [fAbortOnError]
 
# next one set by $PortObj->is_handshake("dtr");
$PortObj->output_dsr(0); # use DSR handshake on output [fOutxDsrFlow]
 
# next one set by $PortObj->is_handshake("rts");
$PortObj->output_cts(0); # use CTS handshake on output [fOutxCtsFlow]
 
# next two set by $PortObj->is_handshake("xoff");
$PortObj->input_xoff(0); # use Xon/Xoff handshake on input [fInX]
$PortObj->output_xoff(0); # use Xon/Xoff handshake on output [fOutX]
 
$PortObj->tx_on_xoff(0); # continue output even after input xoff sent
# [fTXContinueOnXoff]
 
The B<get_tick_count> method is a wrapper around the I<Win32::GetTickCount()>
function. It matches a corresponding method in I<Device::SerialPort> which
does not have access to the I<Win32::> namespace. It still returns time
in milliseconds - but can be used in cross-platform scripts.
 
=head2 Configuration and Capability Methods
 
The Win32 Serial Comm API provides extensive information concerning
the capabilities and options available for a specific port (and
instance). "Modem" ports have different capabilties than "RS-232"
ports - even if they share the same Hardware. Many traditional modem
actions are handled via TAPI. "Fax" ports have another set of options -
and are accessed via MAPI. Yet many of the same low-level API commands
and data structures are "common" to each type ("Modem" is implemented
as an "RS-232" superset). In addition, Win95 supports a variety of
legacy hardware (e.g fixed 134.5 baud) while WinNT has hooks for ISDN,
16-data-bit paths, and 256Kbaud.
 
=over 8
 
Binary selections will accept as I<true> any of the following:
C<("YES", "Y", "ON", "TRUE", "T", "1", 1)> (upper/lower/mixed case)
Anything else is I<false>.
 
There are a large number of possible configuration and option parameters.
To facilitate checking option validity in scripts, most configuration
methods can be used in two different ways:
 
=item method called with an argument
 
The parameter is set to the argument, if valid. An invalid argument
returns I<false> (undef) and the parameter is unchanged. After B<init_done>,
the port will be updated immediately if allowed. Otherwise, the value
will be applied when B<update_DCB> is called.
 
=item method called with no argument in scalar context
 
The current value is returned. If the value is not initialized either
directly or by default, return "undef" which will parse to I<false>.
For binary selections (true/false), return the current value. All
current values from "multivalue" selections will parse to I<true>.
Current values may differ from requested values until B<init_done>.
There is no way to see requests which have not yet been applied.
Setting the same parameter again overwrites the first request. Test
the return value of the setting method to check "success".
 
=item Asynchronous (Background) I/O
 
This version now handles Polling (do if Ready), Synchronous (block until
Ready), and Asynchronous Modes (begin and test if Ready) with the timeout
choices provided by the API. No effort has yet been made to interact with
Windows events. But background I/O has been used successfully with the
Perl Tk modules and callbacks from the event loop.
 
=item Timeouts
 
The API provides two timing models. The first applies only to reading and
essentially determines I<Read Not Ready> by checking the time between
consecutive characters. The B<ReadFile> operation returns if that time
exceeds the value set by B<is_read_interval>. It does this by timestamping
each character. It appears that at least one character must by received in
I<every> B<read> I<call to the API> to initialize the mechanism. The timer
is then reset by each succeeding character. If no characters are received,
the read will block indefinitely.
 
Setting B<is_read_interval> to C<0xffffffff> will do a non-blocking read.
The B<ReadFile> returns immediately whether or not any characters are
actually read. This replicates the behavior of the API.
 
The other model defines the total time allowed to complete the operation.
A fixed overhead time is added to the product of bytes and per_byte_time.
A wide variety of timeout options can be defined by selecting the three
parameters: fixed, each, and size.
 
Read_Total = B<is_read_const_time> + (B<is_read_char_time> * bytes_to_read)
 
Write_Total = B<is_write_const_time> + (B<is_write_char_time> * bytes_to_write)
 
When reading a known number of characters, the I<Read_Total> mechanism is
recommended. This mechanism I<MUST> be used with
I<Win32::SerialPort tied FileHandles> because the tie methods can make
multiple internal API calls. The I<Read_Interval> mechanism is suitable for
a B<read_bg> method that expects a response of variable or unknown size. You
should then also set a long I<Read_Total> timeout as a "backup" in case
no bytes are received.
 
=back
 
=head2 Exports
 
Nothing is exported by default. The following tags can be used to have
large sets of symbols exported:
 
=over 4
 
=item :PARAM
 
Utility subroutines and constants for parameter setting and test:
 
LONGsize SHORTsize nocarp yes_true
OS_Error internal_buffer
 
=item :STAT
 
Serial communications status constants. Included are the constants for
ascertaining why a transmission is blocked:
 
BM_fCtsHold BM_fDsrHold BM_fRlsdHold BM_fXoffHold
BM_fXoffSent BM_fEof BM_fTxim BM_AllBits
 
Which incoming bits are active:
 
MS_CTS_ON MS_DSR_ON MS_RING_ON MS_RLSD_ON
 
What hardware errors have been detected:
 
CE_RXOVER CE_OVERRUN CE_RXPARITY CE_FRAME
CE_BREAK CE_TXFULL CE_MODE
 
Offsets into the array returned by B<status:>
 
ST_BLOCK ST_INPUT ST_OUTPUT ST_ERROR
 
=item :RAW
 
The constants and wrapper methods for low-level API calls. Details of
these methods may change with testing. Some may be inherited from
Win32API::File when that becomes available.
 
$result=ClearCommError($handle, $Error_BitMask_p, $CommStatus);
$result=ClearCommBreak($handle);
$result=SetCommBreak($handle);
$result=GetCommModemStatus($handle, $ModemStatus);
$result=GetCommProperties($handle, $CommProperties);
$result=GetCommState($handle, $DCB_Buffer);
$result=SetCommState($handle, $DCB_Buffer);
$result=SetupComm($handle, $in_buf_size, $out_buf_size);
$result=ReadFile($handle, $buffer, $wanted, $got, $template);
$result=WriteFile($handle, $buffer, $size, $count, $template);
 
$result=GetCommTimeouts($handle, $CommTimeOuts);
$result=SetCommTimeouts($handle, $CommTimeOuts);
$result=EscapeCommFunction($handle, $Func_ID);
$result=GetCommConfig($handle, $CommConfig, $Size);
$result=SetCommConfig($handle, $CommConfig, $Size);
$result=PurgeComm($handle, $flags);
 
$result=GetCommMask($handle, $Event_Bitmask);
$result=SetCommMask($handle, $Event_Bitmask);
$hEvent=CreateEvent($security, $reset_req, $initial, $name);
$handle=CreateFile($file, $access, $share, $security,
$creation, $flags, $template);
$result=CloseHandle($handle);
$result=ResetEvent($hEvent);
$result=TransmitCommChar($handle, $char);
$result=WaitCommEvent($handle, $Event_Bitmask, $lpOverlapped);
$result=GetOverlappedResult($handle, $lpOverlapped, $count, $bool);
 
Flags used by B<PurgeComm:>
 
PURGE_TXABORT PURGE_RXABORT PURGE_TXCLEAR PURGE_RXCLEAR
 
Function IDs used by EscapeCommFunction:
 
SETXOFF SETXON SETRTS CLRRTS
SETDTR CLRDTR SETBREAK CLRBREAK
 
Events used by B<WaitCommEvent:>
 
EV_RXCHAR EV_RXFLAG EV_TXEMPTY EV_CTS
EV_DSR EV_RLSD EV_BREAK EV_ERR
EV_RING EV_PERR EV_RX80FULL EV_EVENT1
EV_EVENT2
 
Errors specific to B<GetOverlappedResult:>
 
ERROR_IO_INCOMPLETE ERROR_IO_PENDING
 
=item :COMMPROP
 
The constants for the I<CommProperties structure> returned by
B<GetCommProperties>. Included mostly for completeness.
 
BAUD_USER BAUD_075 BAUD_110 BAUD_134_5
BAUD_150 BAUD_300 BAUD_600 BAUD_1200
BAUD_1800 BAUD_2400 BAUD_4800 BAUD_7200
BAUD_9600 BAUD_14400 BAUD_19200 BAUD_38400
BAUD_56K BAUD_57600 BAUD_115200 BAUD_128K
 
PST_FAX PST_LAT PST_MODEM PST_PARALLELPORT
PST_RS232 PST_RS422 PST_X25 PST_NETWORK_BRIDGE
PST_RS423 PST_RS449 PST_SCANNER PST_TCPIP_TELNET
PST_UNSPECIFIED
 
PCF_INTTIMEOUTS PCF_PARITY_CHECK PCF_16BITMODE
PCF_DTRDSR PCF_SPECIALCHARS PCF_RLSD
PCF_RTSCTS PCF_SETXCHAR PCF_TOTALTIMEOUTS
PCF_XONXOFF
 
SP_BAUD SP_DATABITS SP_HANDSHAKING SP_PARITY
SP_RLSD SP_STOPBITS SP_SERIALCOMM SP_PARITY_CHECK
 
DATABITS_5 DATABITS_6 DATABITS_7 DATABITS_8
DATABITS_16 DATABITS_16X
 
STOPBITS_10 STOPBITS_15 STOPBITS_20
 
PARITY_SPACE PARITY_NONE PARITY_ODD PARITY_EVEN
PARITY_MARK
 
COMMPROP_INITIALIZED
 
=item :DCB
 
The constants for the I<Device Control Block> returned by B<GetCommState>
and updated by B<SetCommState>. Again, included mostly for completeness.
But there are some combinations of "FM_f" settings which are not currently
supported by high-level commands. If you need one of those, please report
the lack as a bug.
 
CBR_110 CBR_300 CBR_600 CBR_1200
CBR_2400 CBR_4800 CBR_9600 CBR_14400
CBR_19200 CBR_38400 CBR_56000 CBR_57600
CBR_115200 CBR_128000 CBR_256000
 
DTR_CONTROL_DISABLE DTR_CONTROL_ENABLE DTR_CONTROL_HANDSHAKE
RTS_CONTROL_DISABLE RTS_CONTROL_ENABLE RTS_CONTROL_HANDSHAKE
RTS_CONTROL_TOGGLE
 
EVENPARITY MARKPARITY NOPARITY ODDPARITY
SPACEPARITY
 
ONESTOPBIT ONE5STOPBITS TWOSTOPBITS
 
FM_fBinary FM_fParity FM_fOutxCtsFlow
FM_fOutxDsrFlow FM_fDtrControl FM_fDsrSensitivity
FM_fTXContinueOnXoff FM_fOutX FM_fInX
FM_fErrorChar FM_fNull FM_fRtsControl
FM_fAbortOnError FM_fDummy2
 
=item :ALL
 
All of the above. Except for the I<test suite>, there is not really a good
reason to do this.
 
=back
 
=head1 NOTES
 
The object returned by B<new> is NOT a I<Filehandle>. You
will be disappointed if you try to use it as one.
 
e.g. the following is WRONG!!____C<print $PortObj "some text";>
 
I<Win32::SerialPort> supports accessing ports via I<Tied Filehandles>.
 
An important note about Win32 filenames. The reserved device names such
as C< COM1, AUX, LPT1, CON, PRN > can NOT be used as filenames. Hence
I<"COM2.cfg"> would not be usable for B<$Configuration_File_Name>.
 
This module uses Win32::API extensively. The raw API calls are B<very>
unforgiving. You will certainly want to start perl with the B<-w> switch.
If you can, B<use strict> as well. Try to ferret out all the syntax and
usage problems BEFORE issuing the API calls (many of which modify tuning
constants in hardware device drivers....not where you want to look for bugs).
 
Thanks to Ken White for testing on NT.
 
=head1 KNOWN LIMITATIONS
 
The current version of the module has been designed for testing using
the ActiveState and Core (GS 5.004_02) ports of Perl for Win32 without
requiring a compiler or using XS. In every case, compatibility has been
selected over performance. Since everything is (sometimes convoluted but
still pure) Perl, you can fix flaws and change limits if required. But
please file a bug report if you do. This module has been tested with
each of the binary perl versions for which Win32::API is supported: AS
builds 315, 316, and 500-509 and GS 5.004_02. It has only been tested on
Intel hardware.
 
=over 4
 
=item Tutorial
 
With all the options, this module needs a good tutorial. It doesn't
have a complete one yet. A I<"How to get started"> tutorial appeared
B<The Perl Journal #13> (March 1999). The demo programs are a good
starting point for additional examples.
 
=item Buffers
 
The size of the Win32 buffers are selectable with B<is_buffers>. But each read
method currently uses a fixed internal buffer of 4096 bytes. This can be
changed in the module source. The read-only B<internal_buffer> method will
give the current size. There are other fixed internal buffers as well. But
no one has needed to change those. The XS version will support dynamic buffer
sizing.
 
=item Modems
 
Lots of modem-specific options are not supported. The same is true of
TAPI, MAPI. I<API Wizards> are welcome to contribute.
 
=item API Options
 
Lots of options are just "passed through from the API". Some probably
shouldn't be used together. The module validates the obvious choices when
possible. For something really fancy, you may need additional API
documentation. Available from I<Micro$oft Pre$$>.
 
=back
 
=head1 BUGS
 
ActiveState ports of Perl for Win32 before build 500 do not support the
tools for building extensions and so will not support later versions of
this extension. In particular, the automated install and test scripts in
this distribution work differently with ActiveState builds 3xx.
 
There is no parameter checking on the "raw" API calls. You probably should
be familiar with using the calls in "C" before doing much experimenting.
 
On Win32, a port must B<close> before it can be reopened again by the same
process. If a physical port can be accessed using more than one name (see
above), all names are treated as one. The perl script can also be run
multiple times within a single batch file or shell script. The I<Makefile.PL>
spawns subshells with backticks to run the test suite on Perl 5.003 - ugly,
but it works.
 
On NT, a B<read_done> or B<write_done> returns I<False> if a background
operation is aborted by a purge. Win95 returns I<True>.
 
EXTENDED_OS_ERROR ($^E) is not supported by the binary ports before 5.005.
It "sort-of-tracks" B<$!> in 5.003 and 5.004, but YMMV.
 
A few NT systems seem to set B<can_parity_enable> true, but do not actually
support setting B<is_parity_enable>. This may be a characteristic of certain
third-party serial drivers. Or a Microsoft bug. I have not been able to
reproduce it on my system.
 
__Please send comments and bug reports to wcbirthisel@alum.mit.edu.
 
=head1 AUTHORS
 
Bill Birthisel, wcbirthisel@alum.mit.edu, http://members.aol.com/Bbirthisel/.
 
Tye McQueen, tye@metronet.com, http://www.metronet.com/~tye/.
 
=head1 SEE ALSO
 
Wi32::SerialPort - High-level user interface/front-end for this module
 
Win32API::File I<when available>
 
Win32::API - Aldo Calpini's "Magic", http://www.divinf.it/dada/perl/
 
Perltoot.xxx - Tom (Christiansen)'s Object-Oriented Tutorial
 
=head1 COPYRIGHT
 
Copyright (C) 1999, Bill Birthisel. All rights reserved.
 
This module is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
 
=head2 COMPATIBILITY
 
Most of the code in this module has been stable since version 0.12.
Except for items indicated as I<Experimental>, I do not expect functional
changes which are not fully backwards compatible. However, Version 0.16
removes the "dummy (0, 1) list" which was returned by many binary methods
in case they were called in list context. I do not know of any use outside
the test suite for that feature.
 
Version 0.12 added an I<Install.PL> script to put modules into the documented
Namespaces. The script uses I<MakeMaker> tools not available in
ActiveState 3xx builds. Users of those builds will need to install
differently (see README). Programs in the test suite are modified for
the current version. Additions to the configurtion files generated by
B<save> prevent those created by Version 0.15 from being used by earlier
Versions. 4 November 1999.
 
=cut
/MissionCockpit/tags/V0.2.5/perl/site/lib/threads/shared.pm
0,0 → 1,616
package threads::shared;
 
use 5.008;
 
use strict;
use warnings;
 
use Scalar::Util qw(reftype refaddr blessed);
 
our $VERSION = '1.28';
my $XS_VERSION = $VERSION;
$VERSION = eval $VERSION;
 
# Declare that we have been loaded
$threads::shared::threads_shared = 1;
 
# Load the XS code, if applicable
if ($threads::threads) {
require XSLoader;
XSLoader::load('threads::shared', $XS_VERSION);
 
*is_shared = \&_id;
 
} else {
# String eval is generally evil, but we don't want these subs to
# exist at all if 'threads' is not loaded successfully.
# Vivifying them conditionally this way saves on average about 4K
# of memory per thread.
eval <<'_MARKER_';
sub share (\[$@%]) { return $_[0] }
sub is_shared (\[$@%]) { undef }
sub cond_wait (\[$@%];\[$@%]) { undef }
sub cond_timedwait (\[$@%]$;\[$@%]) { undef }
sub cond_signal (\[$@%]) { undef }
sub cond_broadcast (\[$@%]) { undef }
_MARKER_
}
 
 
### Export ###
 
sub import
{
# Exported subroutines
my @EXPORT = qw(share is_shared cond_wait cond_timedwait
cond_signal cond_broadcast shared_clone);
if ($threads::threads) {
push(@EXPORT, 'bless');
}
 
# Export subroutine names
my $caller = caller();
foreach my $sym (@EXPORT) {
no strict 'refs';
*{$caller.'::'.$sym} = \&{$sym};
}
}
 
 
# Predeclarations for internal functions
my ($make_shared);
 
 
### Methods, etc. ###
 
sub threads::shared::tie::SPLICE
{
require Carp;
Carp::croak('Splice not implemented for shared arrays');
}
 
 
# Create a thread-shared clone of a complex data structure or object
sub shared_clone
{
if (@_ != 1) {
require Carp;
Carp::croak('Usage: shared_clone(REF)');
}
 
return $make_shared->(shift, {});
}
 
 
### Internal Functions ###
 
# Used by shared_clone() to recursively clone
# a complex data structure or object
$make_shared = sub {
my ($item, $cloned) = @_;
 
# Just return the item if:
# 1. Not a ref;
# 2. Already shared; or
# 3. Not running 'threads'.
return $item if (! ref($item) || is_shared($item) || ! $threads::threads);
 
# Check for previously cloned references
# (this takes care of circular refs as well)
my $addr = refaddr($item);
if (exists($cloned->{$addr})) {
# Return the already existing clone
return $cloned->{$addr};
}
 
# Make copies of array, hash and scalar refs and refs of refs
my $copy;
my $ref_type = reftype($item);
 
# Copy an array ref
if ($ref_type eq 'ARRAY') {
# Make empty shared array ref
$copy = &share([]);
# Add to clone checking hash
$cloned->{$addr} = $copy;
# Recursively copy and add contents
push(@$copy, map { $make_shared->($_, $cloned) } @$item);
}
 
# Copy a hash ref
elsif ($ref_type eq 'HASH') {
# Make empty shared hash ref
$copy = &share({});
# Add to clone checking hash
$cloned->{$addr} = $copy;
# Recursively copy and add contents
foreach my $key (keys(%{$item})) {
$copy->{$key} = $make_shared->($item->{$key}, $cloned);
}
}
 
# Copy a scalar ref
elsif ($ref_type eq 'SCALAR') {
$copy = \do{ my $scalar = $$item; };
share($copy);
# Add to clone checking hash
$cloned->{$addr} = $copy;
}
 
# Copy of a ref of a ref
elsif ($ref_type eq 'REF') {
# Special handling for $x = \$x
if ($addr == refaddr($$item)) {
$copy = \$copy;
share($copy);
$cloned->{$addr} = $copy;
} else {
my $tmp;
$copy = \$tmp;
share($copy);
# Add to clone checking hash
$cloned->{$addr} = $copy;
# Recursively copy and add contents
$tmp = $make_shared->($$item, $cloned);
}
 
} else {
require Carp;
Carp::croak("Unsupported ref type: ", $ref_type);
}
 
# If input item is an object, then bless the copy into the same class
if (my $class = blessed($item)) {
bless($copy, $class);
}
 
# Clone READONLY flag
if ($ref_type eq 'SCALAR') {
if (Internals::SvREADONLY($$item)) {
Internals::SvREADONLY($$copy, 1) if ($] >= 5.008003);
}
}
if (Internals::SvREADONLY($item)) {
Internals::SvREADONLY($copy, 1) if ($] >= 5.008003);
}
 
return $copy;
};
 
1;
 
__END__
 
=head1 NAME
 
threads::shared - Perl extension for sharing data structures between threads
 
=head1 VERSION
 
This document describes threads::shared version 1.28
 
=head1 SYNOPSIS
 
use threads;
use threads::shared;
 
my $var :shared;
my %hsh :shared;
my @ary :shared;
 
my ($scalar, @array, %hash);
share($scalar);
share(@array);
share(%hash);
 
$var = $scalar_value;
$var = $shared_ref_value;
$var = shared_clone($non_shared_ref_value);
$var = shared_clone({'foo' => [qw/foo bar baz/]});
 
$hsh{'foo'} = $scalar_value;
$hsh{'bar'} = $shared_ref_value;
$hsh{'baz'} = shared_clone($non_shared_ref_value);
$hsh{'quz'} = shared_clone([1..3]);
 
$ary[0] = $scalar_value;
$ary[1] = $shared_ref_value;
$ary[2] = shared_clone($non_shared_ref_value);
$ary[3] = shared_clone([ {}, [] ]);
 
{ lock(%hash); ... }
 
cond_wait($scalar);
cond_timedwait($scalar, time() + 30);
cond_broadcast(@array);
cond_signal(%hash);
 
my $lockvar :shared;
# condition var != lock var
cond_wait($var, $lockvar);
cond_timedwait($var, time()+30, $lockvar);
 
=head1 DESCRIPTION
 
By default, variables are private to each thread, and each newly created
thread gets a private copy of each existing variable. This module allows you
to share variables across different threads (and pseudo-forks on Win32). It
is used together with the L<threads> module.
 
This module supports the sharing of the following data types only: scalars
and scalar refs, arrays and array refs, and hashes and hash refs.
 
=head1 EXPORT
 
The following functions are exported by this module: C<share>,
C<shared_clone>, C<is_shared>, C<cond_wait>, C<cond_timedwait>, C<cond_signal>
and C<cond_broadcast>
 
Note that if this module is imported when L<threads> has not yet been loaded,
then these functions all become no-ops. This makes it possible to write
modules that will work in both threaded and non-threaded environments.
 
=head1 FUNCTIONS
 
=over 4
 
=item share VARIABLE
 
C<share> takes a variable and marks it as shared:
 
my ($scalar, @array, %hash);
share($scalar);
share(@array);
share(%hash);
 
C<share> will return the shared rvalue, but always as a reference.
 
Variables can also be marked as shared at compile time by using the
C<:shared> attribute:
 
my ($var, %hash, @array) :shared;
 
Shared variables can only store scalars, refs of shared variables, or
refs of shared data (discussed in next section):
 
my ($var, %hash, @array) :shared;
my $bork;
 
# Storing scalars
$var = 1;
$hash{'foo'} = 'bar';
$array[0] = 1.5;
 
# Storing shared refs
$var = \%hash;
$hash{'ary'} = \@array;
$array[1] = \$var;
 
# The following are errors:
# $var = \$bork; # ref of non-shared variable
# $hash{'bork'} = []; # non-shared array ref
# push(@array, { 'x' => 1 }); # non-shared hash ref
 
=item shared_clone REF
 
C<shared_clone> takes a reference, and returns a shared version of its
argument, performing a deep copy on any non-shared elements. Any shared
elements in the argument are used as is (i.e., they are not cloned).
 
my $cpy = shared_clone({'foo' => [qw/foo bar baz/]});
 
Object status (i.e., the class an object is blessed into) is also cloned.
 
my $obj = {'foo' => [qw/foo bar baz/]};
bless($obj, 'Foo');
my $cpy = shared_clone($obj);
print(ref($cpy), "\n"); # Outputs 'Foo'
 
For cloning empty array or hash refs, the following may also be used:
 
$var = &share([]); # Same as $var = shared_clone([]);
$var = &share({}); # Same as $var = shared_clone({});
 
=item is_shared VARIABLE
 
C<is_shared> checks if the specified variable is shared or not. If shared,
returns the variable's internal ID (similar to
L<refaddr()|Scalar::Util/"refaddr EXPR">). Otherwise, returns C<undef>.
 
if (is_shared($var)) {
print("\$var is shared\n");
} else {
print("\$var is not shared\n");
}
 
When used on an element of an array or hash, C<is_shared> checks if the
specified element belongs to a shared array or hash. (It does not check
the contents of that element.)
 
my %hash :shared;
if (is_shared(%hash)) {
print("\%hash is shared\n");
}
 
$hash{'elem'} = 1;
if (is_shared($hash{'elem'})) {
print("\$hash{'elem'} is in a shared hash\n");
}
 
=item lock VARIABLE
 
C<lock> places a B<advisory> lock on a variable until the lock goes out of
scope. If the variable is locked by another thread, the C<lock> call will
block until it's available. Multiple calls to C<lock> by the same thread from
within dynamically nested scopes are safe -- the variable will remain locked
until the outermost lock on the variable goes out of scope.
 
C<lock> follows references exactly I<one> level:
 
my %hash :shared;
my $ref = \%hash;
lock($ref); # This is equivalent to lock(%hash)
 
Note that you cannot explicitly unlock a variable; you can only wait for the
lock to go out of scope. This is most easily accomplished by locking the
variable inside a block.
 
my $var :shared;
{
lock($var);
# $var is locked from here to the end of the block
...
}
# $var is now unlocked
 
As locks are advisory, they do not prevent data access or modification by
another thread that does not itself attempt to obtain a lock on the variable.
 
You cannot lock the individual elements of a container variable:
 
my %hash :shared;
$hash{'foo'} = 'bar';
#lock($hash{'foo'}); # Error
lock(%hash); # Works
 
If you need more fine-grained control over shared variable access, see
L<Thread::Semaphore>.
 
=item cond_wait VARIABLE
 
=item cond_wait CONDVAR, LOCKVAR
 
The C<cond_wait> function takes a B<locked> variable as a parameter, unlocks
the variable, and blocks until another thread does a C<cond_signal> or
C<cond_broadcast> for that same locked variable. The variable that
C<cond_wait> blocked on is relocked after the C<cond_wait> is satisfied. If
there are multiple threads C<cond_wait>ing on the same variable, all but one
will re-block waiting to reacquire the lock on the variable. (So if you're only
using C<cond_wait> for synchronisation, give up the lock as soon as possible).
The two actions of unlocking the variable and entering the blocked wait state
are atomic, the two actions of exiting from the blocked wait state and
re-locking the variable are not.
 
In its second form, C<cond_wait> takes a shared, B<unlocked> variable followed
by a shared, B<locked> variable. The second variable is unlocked and thread
execution suspended until another thread signals the first variable.
 
It is important to note that the variable can be notified even if no thread
C<cond_signal> or C<cond_broadcast> on the variable. It is therefore
important to check the value of the variable and go back to waiting if the
requirement is not fulfilled. For example, to pause until a shared counter
drops to zero:
 
{ lock($counter); cond_wait($count) until $counter == 0; }
 
=item cond_timedwait VARIABLE, ABS_TIMEOUT
 
=item cond_timedwait CONDVAR, ABS_TIMEOUT, LOCKVAR
 
In its two-argument form, C<cond_timedwait> takes a B<locked> variable and an
absolute timeout as parameters, unlocks the variable, and blocks until the
timeout is reached or another thread signals the variable. A false value is
returned if the timeout is reached, and a true value otherwise. In either
case, the variable is re-locked upon return.
 
Like C<cond_wait>, this function may take a shared, B<locked> variable as an
additional parameter; in this case the first parameter is an B<unlocked>
condition variable protected by a distinct lock variable.
 
Again like C<cond_wait>, waking up and reacquiring the lock are not atomic,
and you should always check your desired condition after this function
returns. Since the timeout is an absolute value, however, it does not have to
be recalculated with each pass:
 
lock($var);
my $abs = time() + 15;
until ($ok = desired_condition($var)) {
last if !cond_timedwait($var, $abs);
}
# we got it if $ok, otherwise we timed out!
 
=item cond_signal VARIABLE
 
The C<cond_signal> function takes a B<locked> variable as a parameter and
unblocks one thread that's C<cond_wait>ing on that variable. If more than one
thread is blocked in a C<cond_wait> on that variable, only one (and which one
is indeterminate) will be unblocked.
 
If there are no threads blocked in a C<cond_wait> on the variable, the signal
is discarded. By always locking before signaling, you can (with care), avoid
signaling before another thread has entered cond_wait().
 
C<cond_signal> will normally generate a warning if you attempt to use it on an
unlocked variable. On the rare occasions where doing this may be sensible, you
can suppress the warning with:
 
{ no warnings 'threads'; cond_signal($foo); }
 
=item cond_broadcast VARIABLE
 
The C<cond_broadcast> function works similarly to C<cond_signal>.
C<cond_broadcast>, though, will unblock B<all> the threads that are blocked in
a C<cond_wait> on the locked variable, rather than only one.
 
=back
 
=head1 OBJECTS
 
L<threads::shared> exports a version of L<bless()|perlfunc/"bless REF"> that
works on shared objects such that I<blessings> propagate across threads.
 
# Create a shared 'Foo' object
my $foo :shared = shared_clone({});
bless($foo, 'Foo');
 
# Create a shared 'Bar' object
my $bar :shared = shared_clone({});
bless($bar, 'Bar');
 
# Put 'bar' inside 'foo'
$foo->{'bar'} = $bar;
 
# Rebless the objects via a thread
threads->create(sub {
# Rebless the outer object
bless($foo, 'Yin');
 
# Cannot directly rebless the inner object
#bless($foo->{'bar'}, 'Yang');
 
# Retrieve and rebless the inner object
my $obj = $foo->{'bar'};
bless($obj, 'Yang');
$foo->{'bar'} = $obj;
 
})->join();
 
print(ref($foo), "\n"); # Prints 'Yin'
print(ref($foo->{'bar'}), "\n"); # Prints 'Yang'
print(ref($bar), "\n"); # Also prints 'Yang'
 
=head1 NOTES
 
L<threads::shared> is designed to disable itself silently if threads are not
available. This allows you to write modules and packages that can be used
in both threaded and non-threaded applications.
 
If you want access to threads, you must C<use threads> before you
C<use threads::shared>. L<threads> will emit a warning if you use it after
L<threads::shared>.
 
=head1 BUGS AND LIMITATIONS
 
When C<share> is used on arrays, hashes, array refs or hash refs, any data
they contain will be lost.
 
my @arr = qw(foo bar baz);
share(@arr);
# @arr is now empty (i.e., == ());
 
# Create a 'foo' object
my $foo = { 'data' => 99 };
bless($foo, 'foo');
 
# Share the object
share($foo); # Contents are now wiped out
print("ERROR: \$foo is empty\n")
if (! exists($foo->{'data'}));
 
Therefore, populate such variables B<after> declaring them as shared. (Scalar
and scalar refs are not affected by this problem.)
 
It is often not wise to share an object unless the class itself has been
written to support sharing. For example, an object's destructor may get
called multiple times, once for each thread's scope exit. Another danger is
that the contents of hash-based objects will be lost due to the above
mentioned limitation. See F<examples/class.pl> (in the CPAN distribution of
this module) for how to create a class that supports object sharing.
 
Does not support C<splice> on arrays!
 
Taking references to the elements of shared arrays and hashes does not
autovivify the elements, and neither does slicing a shared array/hash over
non-existent indices/keys autovivify the elements.
 
C<share()> allows you to C<< share($hashref->{key}) >> and
C<< share($arrayref->[idx]) >> without giving any error message. But the
C<< $hashref->{key} >> or C<< $arrayref->[idx] >> is B<not> shared, causing
the error "lock can only be used on shared values" to occur when you attempt
to C<< lock($hasref->{key}) >> or C<< lock($arrayref->[idx]) >> in another
thread.
 
Using L<refaddr()|Scalar::Util/"refaddr EXPR">) is unreliable for testing
whether or not two shared references are equivalent (e.g., when testing for
circular references). Use L<is_shared()/"is_shared VARIABLE">, instead:
 
use threads;
use threads::shared;
use Scalar::Util qw(refaddr);
 
# If ref is shared, use threads::shared's internal ID.
# Otherwise, use refaddr().
my $addr1 = is_shared($ref1) || refaddr($ref1);
my $addr2 = is_shared($ref2) || refaddr($ref2);
 
if ($addr1 == $addr2) {
# The refs are equivalent
}
 
L<each()|perlfunc/"each HASH"> does not work properly on shared references
embedded in shared structures. For example:
 
my %foo :shared;
$foo{'bar'} = shared_clone({'a'=>'x', 'b'=>'y', 'c'=>'z'});
 
while (my ($key, $val) = each(%{$foo{'bar'}})) {
...
}
 
Either of the following will work instead:
 
my $ref = $foo{'bar'};
while (my ($key, $val) = each(%{$ref})) {
...
}
 
foreach my $key (keys(%{$foo{'bar'}})) {
my $val = $foo{'bar'}{$key};
...
}
 
View existing bug reports at, and submit any new bugs, problems, patches, etc.
to: L<http://rt.cpan.org/Public/Dist/Display.html?Name=threads-shared>
 
=head1 SEE ALSO
 
L<threads::shared> Discussion Forum on CPAN:
L<http://www.cpanforum.com/dist/threads-shared>
 
Annotated POD for L<threads::shared>:
L<http://annocpan.org/~JDHEDDEN/threads-shared-1.28/shared.pm>
 
Source repository:
L<http://code.google.com/p/threads-shared/>
 
L<threads>, L<perlthrtut>
 
L<http://www.perl.com/pub/a/2002/06/11/threads.html> and
L<http://www.perl.com/pub/a/2002/09/04/threads.html>
 
Perl threads mailing list:
L<http://lists.cpan.org/showlist.cgi?name=iThreads>
 
=head1 AUTHOR
 
Artur Bergman E<lt>sky AT crucially DOT netE<gt>
 
Documentation borrowed from the old Thread.pm.
 
CPAN version produced by Jerry D. Hedden E<lt>jdhedden AT cpan DOT orgE<gt>.
 
=head1 LICENSE
 
threads::shared is released under the same license as Perl.
 
=cut