Subversion Repositories NaviCtrl

Compare Revisions

Ignore whitespace Rev 640 → Rev 641

/tags/V2.10c/spi_slave.c
0,0 → 1,947
/*#######################################################################################*/
/* !!! THIS IS NOT FREE SOFTWARE !!! */
/*#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software Nutzungsbedingungen (english version: see below)
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand
// + des Mitverschuldens offen.
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
// + Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software LICENSING TERMS
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
// + The Software may only be used with the Licensor's products.
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
// + agreement shall be the property of the Licensor.
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
// + features that can be used to identify the program may not be altered or defaced by the customer.
// + The customer shall be responsible for taking reasonable precautions
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
// + #### END OF LICENSING TERMS ####
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "91x_lib.h"
#include "led.h"
#include "gps.h"
#include "uart1.h"
#include "spi_slave.h"
#include "compass.h"
#include "timer1.h"
#include "timer2.h"
#include "config.h"
#include "main.h"
#include "params.h"
#include "settings.h"
 
#define SPI_RXSYNCBYTE1 0xAA
#define SPI_RXSYNCBYTE2 0x83
#define SPI_TXSYNCBYTE1 0x81
#define SPI_TXSYNCBYTE2 0x55
 
//communication packets
FromFlightCtrl_t FromFlightCtrl;
ToFlightCtrl_t ToFlightCtrl;
#define SPI0_TIMEOUT 2500 //ms
volatile u32 SPI0_Timeout = 0;
u8 Logging_FCStatusFlags1 = 0,Logging_FCStatusFlags2 = 0;
u8 SpeakHoTT = 0;
u32 LoggingGasFilter = 0, LoggingGasCnt = 0;
u8 Out1TriggerUpdateBlocked = 0;
u8 Out1TriggerUpdateNewData = 0;
 
// tx packet buffer
#define SPI_TXBUFFER_LEN (2 + sizeof(ToFlightCtrl)) // 2 bytes at start are for synchronization
volatile u8 SPI_TxBuffer[SPI_TXBUFFER_LEN + 10];
volatile u8 SPI_TxBufferIndex = 0;
u8 *Ptr_TxChksum = NULL ; // pointer to checksum in TxBuffer
 
// rx packet buffer
#define SPI_RXBUFFER_LEN sizeof(FromFlightCtrl)
volatile u8 SPI_RxBuffer[SPI_RXBUFFER_LEN+10];
volatile u8 SPI_RxBufferIndex = 0;
volatile u8 SPI_RxBuffer_Request = 0;
#define SPI_COMMAND_INDEX 0
 
s32 Kalman_K = 32;
s32 Kalman_MaxDrift = 5 * 16;
s32 Kalman_MaxFusion = 64;
s32 Kalman_Kompass = 32;
s32 ToFcGpsZ = 0;
u8 CompassCalState = 0;
 
u8 SPI_CommandSequence[] = { SPI_NCCMD_KALMAN, SPI_NCCMD_GPSINFO ,SPI_NCCMD_KALMAN, SPI_NCCMD_HOTT_INFO, SPI_NCCMD_KALMAN, SPI_MISC, SPI_NCCMD_KALMAN, SPI_NCCMD_VERSION };
u8 SPI_CommandCounter = 0;
s32 ToFC_Rotate_C = 64, ToFC_Rotate_S = 0;
s32 HeadFreeStartAngle = 0; // in 0,1°
s32 CompassDirectionAtMotorStart = 0; // in 0,1°
s16 FC_WP_EventChannel = 0, LogFC_WP_EventChannel = 0, FC_WP_EventChannel_Processed = 0; // gibt einen Schaltkanal an die FC weiter, wenn der Wegpunkt erreicht wurde
u32 ToFC_AltitudeRate = 0;
s32 ToFC_AltitudeSetpoint = 0;
u8 FromFC_VarioCharacter = ' ';
s16 GPS_Aid_StickMultiplikator = 0;
u8 NC_GPS_ModeCharacter = ' ';
u8 FCCalibActive = 0;
u8 FC_is_Calibrated = 0;
Motor_t Motor[MAX_MOTORS];
u8 Motor_Version[MAX_MOTORS]; // das kann nicht in die struct, weil der PC die Struktur bekommt
u8 NC_To_FC_Flags = 0;
u8 BL_MinOfMaxPWM = 255; // indication if all BL-controllers run on full power
u8 Logging_BL_MinOfMaxPWM = 255;
u8 ErrorCheck_BL_MinOfMaxPWM = 255;
u32 FC_I2C_ErrorConter;
SPI_Version_t FC_Version;
s16 POI_KameraNick = 0;
u8 NC_Wait_for_LED = 0;
s16 GyroCompassCorrected = 0; // corrected with the magnetic declination
s16 CompassSetpointCorrected = 0; // The compass setpoint that the FC tries to keep - corrected with the magnetic declination
s16 CompassSetpoint = 0; // in 0,1°
s16 SimulatedDirection = 0; // only for flight simulation
u8 AmountOfMotors = 0;
u16 FlugMinutenGesamt;
u8 HoverGas = 0;
u8 LowVoltageLandingActive = 0;
//--------------------------------------------------------------
void SSP0_IRQHandler(void)
{
static u8 rxchksum = 0;
u8 rxdata;
 
#define SPI_SYNC1 0
#define SPI_SYNC2 1
#define SPI_DATA 2
static u8 SPI_State = SPI_SYNC1;
//IENABLE;
 
// clear pending bits
SSP_ClearITPendingBit(SSP0, SSP_IT_RxTimeOut);
SSP_ClearITPendingBit(SSP0, SSP_IT_RxFifo);
 
// while RxFIFO not empty
while(SSP_GetFlagStatus(SSP0, SSP_FLAG_RxFifoNotEmpty) == SET)
{
rxdata = SSP0->DR; // catch the received byte
// Fill TxFIFO while its not full or end of packet is reached
while (SSP_GetFlagStatus(SSP0, SSP_FLAG_TxFifoNotFull) == SET)
{
if (SPI_TxBufferIndex < SPI_TXBUFFER_LEN) // still data to send ?
{
SSP0->DR = SPI_TxBuffer[SPI_TxBufferIndex]; // send a byte
*Ptr_TxChksum += SPI_TxBuffer[SPI_TxBufferIndex]; // update checksum
if(SPIWatchDog == 0) *Ptr_TxChksum += 1; // disturbe this packet to stop the communication!
SPI_TxBufferIndex++; // pointer to next byte
}
else // end of packet is reached reset and copy data to tx buffer
{
SPI_TxBufferIndex = 0; // reset buffer index
ToFlightCtrl.Chksum = 0; // initialize checksum
ToFlightCtrl.BeepTime = BeepTime; // set beeptime
BeepTime = 0; // reset local beeptime
// copy contents of ToFlightCtrl->SPI_TxBuffer
memcpy((u8 *) &(SPI_TxBuffer[2]), (u8 *) &ToFlightCtrl, sizeof(ToFlightCtrl));
}
}
switch (SPI_State)
{
case SPI_SYNC1:
SPI_RxBufferIndex = 0; // reset buffer index
rxchksum = rxdata; // init checksum
if (rxdata == SPI_RXSYNCBYTE1)
{ // 1st syncbyte ok
SPI_State = SPI_SYNC2; // step to sync2
}
break;
case SPI_SYNC2:
if (rxdata == SPI_RXSYNCBYTE2)
{ // 2nd Syncbyte ok
rxchksum += rxdata;
SPI_State = SPI_DATA;
} // 2nd Syncbyte does not match
else
{
SPI_State = SPI_SYNC1; //jump back to sync1
}
break;
case SPI_DATA:
SPI_RxBuffer[SPI_RxBufferIndex++]= rxdata; // copy databyte to rx buffer
if(SPI_RxBufferIndex >= SPI_RXBUFFER_LEN) // end of packet is reached
{
if (rxdata == rxchksum) // verify checksum byte
{
// copy SPI_RxBuffer -> FromFlightCtrl
if(!SPI_RxBuffer_Request) // block writing to FromFlightCtrl on reading access
{
memcpy((u8 *) &FromFlightCtrl, (u8 *) SPI_RxBuffer, sizeof(FromFlightCtrl));
SPI_RxBuffer_Request = 1;
}
// reset timeout counter on good packet
SPI0_Timeout = SetDelay(SPI0_TIMEOUT);
DebugOut.Analog[13]++;
}
else // bad checksum byte
{
DebugOut.Analog[12]++; // increase SPI chksum error counter
}
SPI_State = SPI_SYNC1; // reset state
}
else // end of packet not reached
{
rxchksum += rxdata; // update checksum
}
break;
default:
SPI_State = SPI_SYNC1;
break;
}
}
 
// IDISABLE;
VIC1->VAR = 0xFF; // write any value to VIC0 Vector address register
}
 
//--------------------------------------------------------------
void SPI0_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SSP_InitTypeDef SSP_InitStructure;
 
UART1_PutString("\r\n SPI init...");
 
SCU_APBPeriphClockConfig(__GPIO2 ,ENABLE);
SCU_APBPeriphClockConfig(__SSP0 ,ENABLE);
 
GPIO_DeInit(GPIO2);
//SSP0_CLK, SSP0_MOSI, SSP0_NSS pins
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinInput;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Type = GPIO_Type_PushPull ;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Enable;
GPIO_InitStructure.GPIO_Alternate = GPIO_InputAlt1; //SSP0_SCLK, SSP0_MOSI, SSP0_NSS
GPIO_Init (GPIO2, &GPIO_InitStructure);
 
// SSP0_MISO pin GPIO2.6
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinOutput;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Type = GPIO_Type_PushPull ;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Enable;
GPIO_InitStructure.GPIO_Alternate = GPIO_OutputAlt2; //SSP0_MISO
GPIO_Init (GPIO2, &GPIO_InitStructure);
 
SSP_DeInit(SSP0);
SSP_StructInit(&SSP_InitStructure);
SSP_InitStructure.SSP_FrameFormat = SSP_FrameFormat_Motorola;
SSP_InitStructure.SSP_Mode = SSP_Mode_Slave;
SSP_InitStructure.SSP_SlaveOutput = SSP_SlaveOutput_Enable;
SSP_InitStructure.SSP_CPHA = SSP_CPHA_1Edge;
SSP_InitStructure.SSP_CPOL = SSP_CPOL_Low;
SSP_InitStructure.SSP_ClockRate = 0;
 
SSP_Init(SSP0, &SSP_InitStructure);
SSP_ITConfig(SSP0, SSP_IT_RxFifo | SSP_IT_RxTimeOut, ENABLE);
SSP_Cmd(SSP0, ENABLE);
// initialize the syncbytes in the tx buffer
SPI_TxBuffer[0] = SPI_TXSYNCBYTE1;
SPI_TxBuffer[1] = SPI_TXSYNCBYTE2;
// set the pointer to the checksum byte in the tx buffer
Ptr_TxChksum = (u8 *) &(((ToFlightCtrl_t *) &(SPI_TxBuffer[2]))->Chksum);
 
ToFlightCtrl.GPSStick.Nick = 0;
ToFlightCtrl.GPSStick.Roll = 0;
// ToFlightCtrl.GPSStick.Yaw = 0;
 
VIC_Config(SSP0_ITLine, VIC_IRQ, PRIORITY_SPI0);
VIC_ITCmd(SSP0_ITLine, ENABLE);
 
SPI0_Timeout = SetDelay(4*SPI0_TIMEOUT);
 
UART1_PutString("ok");
}
 
 
//------------------------------------------------------
void SPI0_UpdateBuffer(void)
{
static u32 timeout = 0;
static u8 counter = 50,hott_index = 0, last_error_code = 0, enable_injecting = 0;
static s16 last_wp_event = 0;
u8 index;
s16 tmp;
s32 i1,i2;
/*
union
{
unsigned char Byte[4];
unsigned int Int[2];
unsigned long Long;
} Temp;
*/
SPIWatchDog = 3500; // stop communication to FC after this timeout
if(SPI_RxBuffer_Request)
{
// avoid sending data via SPI during the update of the ToFlightCtrl structure
VIC_ITCmd(SSP0_ITLine, DISABLE); // disable SPI interrupt
ToFlightCtrl.CompassHeading = Compass_Heading;
DebugOut.Analog[10] = ToFlightCtrl.CompassHeading;
GyroCompassCorrected = (3600 + FromFlightCtrl.GyroHeading + FC.FromFC_CompassOffset + GeoMagDec) % 3600;
if(ToFlightCtrl.CompassHeading >= 0) ToFlightCtrl.CompassHeading = (360 + ToFlightCtrl.CompassHeading + FromFlightCtrl.GyroYaw / 12) % 360;
ToFlightCtrl.MagVecX = MagVector.X;
ToFlightCtrl.MagVecY = MagVector.Y;
ToFlightCtrl.MagVecZ = MagVector.Z;
// ToFlightCtrl.NCStatus = 0;
// cycle spi commands
if(ErrorCode != last_error_code && enable_injecting)
{
ToFlightCtrl.Command = SPI_NCCMD_VERSION;
last_error_code = ErrorCode;
enable_injecting = 0;
}
else
if(FC_WP_EventChannel != last_wp_event && enable_injecting)
{
ToFlightCtrl.Command = SPI_NCCMD_GPSINFO;
last_wp_event = FC_WP_EventChannel;
enable_injecting = 0;
}
else
{
ToFlightCtrl.Command = SPI_CommandSequence[SPI_CommandCounter++];
// restart command cycle at the end
if(SPI_CommandCounter >= sizeof(SPI_CommandSequence)) SPI_CommandCounter = 0;
if(ToFlightCtrl.Command == SPI_NCCMD_KALMAN) enable_injecting = 1;
}
 
#define FLAG_GPS_AID 0x01
switch (ToFlightCtrl.Command)
{
case SPI_NCCMD_KALMAN: // wird am häufigsten betätigt
ToFlightCtrl.Param.sByte[0] = (s8) Kalman_K;
ToFlightCtrl.Param.sByte[1] = (s8) Kalman_MaxFusion;
ToFlightCtrl.Param.sByte[2] = (s8) Kalman_MaxDrift;
ToFlightCtrl.Param.Byte[3] = (u8) Kalman_Kompass;
ToFlightCtrl.Param.Byte[4] = 0; // siehe bitcodiert unten
ToFlightCtrl.Param.Byte[5] = (s8) ToFC_Rotate_C;
ToFlightCtrl.Param.Byte[6] = (s8) ToFC_Rotate_S;
ToFlightCtrl.Param.Byte[7] = GPS_Aid_StickMultiplikator;
if(CAM_Orientation.UpdateMask & CAM_UPDATE_AZIMUTH)
{
// if(CAM_Orientation.Azimuth != -1) ToFlightCtrl.Param.sInt[4] = (CAM_Orientation.Azimuth + (3*360) - (FC.FromFC_CompassOffset / 10 + GeoMagDec/10 + Parameter.OrientationAngle * 15)) % 360; // the FC uses the uncorrected comnpass value
if(CAM_Orientation.Azimuth != -1) ToFlightCtrl.Param.sInt[4] = (CAM_Orientation.Azimuth + (3*360) - (FC.FromFC_CompassOffset / 10 + GeoMagDec/10 + Parameter.CamOrientation * 15)) % 360; // the FC uses the uncorrected comnpass value
else CAM_Orientation.Azimuth = -1;
if(CAM_Orientation.UpdateMask & FORCE_AZIMUTH_ROTATION) ToFlightCtrl.Param.sByte[4] = 0x01; // allows Yawing without CareFree (Yawing at Coming Home)
CAM_Orientation.UpdateMask &= ~(CAM_UPDATE_AZIMUTH | FORCE_AZIMUTH_ROTATION);
}
else
{
ToFlightCtrl.Param.sInt[4] = -1;
}
 
if(NCRARAM_STATE_VALID == NCParams_GetValue(NCPARAMS_NEW_CAMERA_ELEVATION, &tmp)) // Elevation set via 'j' command
{
POI_KameraNick = tmp;
}
else
{
//if(FC.StatusFlags2 & FC_STATUS2_CAREFREE) // only, if carefree is active
POI_KameraNick = CAM_Orientation.Elevation;
//else ToFlightCtrl.Param.sInt[5] = 0;
}
ToFlightCtrl.Param.sInt[5] = POI_KameraNick;
break;
 
case SPI_NCCMD_VERSION:
//+++++++++++++++++++++++++++++++++++++++++++++++++++
//+ higher than the maximum allowed altitude
//+++++++++++++++++++++++++++++++++++++++++++++++++++
ToFlightCtrl.Param.Byte[0] = VERSION_MAJOR;
ToFlightCtrl.Param.Byte[1] = VERSION_MINOR;
ToFlightCtrl.Param.Byte[2] = VERSION_PATCH;
ToFlightCtrl.Param.Byte[3] = FC_SPI_COMPATIBLE;
ToFlightCtrl.Param.Byte[4] = Version_HW;
ToFlightCtrl.Param.Byte[5] = DebugOut.StatusGreen;
ToFlightCtrl.Param.Byte[6] = DebugOut.StatusRed;
ToFlightCtrl.Param.Byte[7] = ErrorCode; // muss in SPI_NCCMD_VERSION bleiben! (siehe oben)
ToFlightCtrl.Param.Byte[8] = NC_GPS_ModeCharacter;
ToFlightCtrl.Param.Byte[9] = SerialLinkOkay;
ToFlightCtrl.Param.Byte[10] = NC_To_FC_Flags;
//[11]
// if(AbsoluteFlyingAltitude > 255) ToFlightCtrl.Param.Byte[11] = 0; // then the limitation of the FC doesn't work
// else ToFlightCtrl.Param.Byte[11] = AbsoluteFlyingAltitude;
break;
case SPI_MISC:
ToFlightCtrl.Param.Byte[0] = EarthMagneticFieldFiltered/5;
ToFlightCtrl.Param.Byte[1] = EarthMagneticInclination;
ToFlightCtrl.Param.Byte[2] = EarthMagneticInclinationTheoretic;
ToFlightCtrl.Param.Byte[3] = SpeakHoTT;
ToFlightCtrl.Param.Byte[4] = NaviData.WaypointIndex; // index of current waypoints running from 0 to WaypointNumber-1
ToFlightCtrl.Param.Byte[5] = NaviData.WaypointNumber; // number of stored waypoints
ToFlightCtrl.Param.Int[3] = NaviData.TargetPositionDeviation.Distance / 10;
ToFlightCtrl.Param.Byte[8] = NaviData.TargetHoldTime; // time in s to stay at the given target, counts down to 0 if target has been reached
ToFlightCtrl.Param.Byte[9] = ToFC_MaxWpListIndex;
ToFlightCtrl.Param.sInt[5] = GyroCompassCorrected / 10; // Bytes 10 & 11
 
SpeakHoTT = 0;
break;
 
case SPI_NCCMD_GPSINFO:
ToFlightCtrl.Param.Byte[0] = GPSData.Flags;
ToFlightCtrl.Param.Byte[1] = GPSData.NumOfSats;
ToFlightCtrl.Param.Byte[2] = GPSData.SatFix;
ToFlightCtrl.Param.Byte[3] = GPSData.Speed_Ground / 100; // m/s
ToFlightCtrl.Param.Int[2] = NaviData.HomePositionDeviation.Distance; // dm //4&5
ToFlightCtrl.Param.sInt[3] = NaviData.HomePositionDeviation.Bearing; // deg //6&7
if(FC_WP_EventChannel > 254) FC_WP_EventChannel = 254; // Muss in SPI_NCCMD_GPSINFO bleiben! (siehe oben)
if(FC_WP_EventChannel)
{
LogFC_WP_EventChannel = FC_WP_EventChannel; // to make sure that it will be logged
NaviData_WP.WP_Eventchannel = FC_WP_EventChannel; // to make sure that it will be logged
Out1TriggerUpdateBlocked = 3; // makes sure that the right trigger-pos is sent in command 18
NaviData_Out1Trigger.Longitude = NaviData.CurrentPosition.Longitude;
NaviData_Out1Trigger.Latitude = NaviData.CurrentPosition.Latitude;
}
FC_WP_EventChannel_Processed = 1;
//DebugOut.Analog[] = FC_WP_EventChannel;
// ++++++++++++++++++++++++++++++++++
// Waypoint event +++++++++++++++++++
// ++++++++++++++++++++++++++++++++++
if(NCRARAM_STATE_VALID == NCParams_GetValue(NCPARAMS_WP_EVENT_ONCE, &tmp))
{
ToFlightCtrl.Param.Byte[8] = (s8)(tmp - 127);
NCParams_ClearValue(NCPARAMS_WP_EVENT_ONCE);
NCParams_ClearValue(NCPARAMS_WP_EVENT_FOREVER);
}
else
if(NCRARAM_STATE_VALID == NCParams_GetValue(NCPARAMS_WP_EVENT_FOREVER, &tmp))
{
ToFlightCtrl.Param.Byte[8] = (s8)(tmp - 127);
if(tmp == 0) NCParams_ClearValue(NCPARAMS_WP_EVENT_FOREVER);
}
else ToFlightCtrl.Param.Byte[8] = (s8)(FC_WP_EventChannel - 127);
// FC_WP_EventChannel = 0; // the GPS-Routine will set it again
// ++++++++++++++++++++++++++++++++++
if(NCRARAM_STATE_VALID == NCParams_GetValue(NCPARAMS_ALTITUDE_RATE, &tmp))
{
ToFlightCtrl.Param.Byte[9] = (u8)tmp;
}
else
{
ToFlightCtrl.Param.Byte[9] = (u8)ToFC_AltitudeRate;
}
if(NCRARAM_STATE_VALID == NCParams_GetValue(NCPARAMS_ALTITUDE_SETPOINT, &tmp))
{
ToFlightCtrl.Param.sInt[5] = tmp;
}
else
{
ToFlightCtrl.Param.sInt[5] = (s16)ToFC_AltitudeSetpoint;
}
//DebugOut.Analog[] = ToFlightCtrl.Param.Byte[8];
break;
case SPI_NCCMD_HOTT_INFO:
if(NewWPL_Name) hott_index = 100;
switch(hott_index++)
{
case 0:
//Dezimalgrad --> Grad mit Dezimalminuten --> Grad, Minuten, Sekunden
//53.28 5788 7.4847269 --> N53° 17.14728 E7° 29.08362 --> N53° 17' 8.837" E7° 29' 5.017"
ToFlightCtrl.Param.Byte[11] = HOTT_GPS_PACKET_ID;
ToFlightCtrl.Param.Byte[0] = 3+3; // index +3, weil bei HoTT V4 3 Bytes eingeschoben wurden
ToFlightCtrl.Param.Byte[1] = 9-1; // how many
//-----------------------------
ToFlightCtrl.Param.Byte[2] = GyroCompassCorrected / 20;//NaviData.HomePositionDeviation.Bearing / 2;
i1 = GPSData.Speed_Ground; // in cm/sec
i1 *= 36;
i1 /= 1000;
ToFlightCtrl.Param.Byte[3] = i1 % 256;
ToFlightCtrl.Param.Byte[4] = i1 / 256;
//-----------------------------
if(GPSData.Position.Latitude < 0) ToFlightCtrl.Param.Byte[5] = 1; // 1 = S
else ToFlightCtrl.Param.Byte[5] = 0; // 1 = S
i1 = abs(GPSData.Position.Latitude)/10000000L;
i2 = abs(GPSData.Position.Latitude)%10000000L;
if(!(NCFlags & NC_FLAG_GPS_OK)) {i1 = 0; i2 = 0;}
i1 *= 100;
// Minuten
i2 *= 6;
i2 /= 10;
i1 += i2 / 100000;
i2 = i2 % 100000;
i2 /= 10;
ToFlightCtrl.Param.Byte[6] = i1 % 256;
ToFlightCtrl.Param.Byte[7] = i1 / 256;
ToFlightCtrl.Param.Byte[8] = i2 % 256;
ToFlightCtrl.Param.Byte[9] = i2 / 256;
break;
case 1:
ToFlightCtrl.Param.Byte[11] = HOTT_GPS_PACKET_ID;
ToFlightCtrl.Param.Byte[0] = 11+3; // index +3, weil bei HoTT V4 3 Bytes eingeschoben wurden
ToFlightCtrl.Param.Byte[1] = 8-1; // how many
//-----------------------------
if(GPSData.Position.Longitude < 0) ToFlightCtrl.Param.Byte[2] = 1; // 1 = E
else ToFlightCtrl.Param.Byte[2] = 0; // 1 = S
i1 = abs(GPSData.Position.Longitude)/10000000L;
i2 = abs(GPSData.Position.Longitude)%10000000L;
if(!(NCFlags & NC_FLAG_GPS_OK)) {i1 = 0; i2 = 0;}
i1 *= 100;
// Minuten
i2 *= 6;
i2 /= 10;
i1 += i2 / 100000;
i2 = i2 % 100000;
i2 /= 10;
ToFlightCtrl.Param.Byte[3] = i1 % 256;
ToFlightCtrl.Param.Byte[4] = i1 / 256;
ToFlightCtrl.Param.Byte[5] = i2 % 256;
ToFlightCtrl.Param.Byte[6] = i2 / 256;
//-----------------------------
i1 = NaviData.HomePositionDeviation.Distance / 10; // dann in m
ToFlightCtrl.Param.Byte[7] = i1 % 256;
ToFlightCtrl.Param.Byte[8] = i1 / 256;
break;
case 2:
ToFlightCtrl.Param.Byte[11] = HOTT_GENERAL_PACKET_ID;
ToFlightCtrl.Param.Byte[0] = 5+3; // index // +3, weil bei HoTT V4 3 Bytes eingeschoben wurden
ToFlightCtrl.Param.Byte[1] = 2; // how many
ToFlightCtrl.Param.Byte[2] = EarthMagneticField / (5 * 2);
ToFlightCtrl.Param.Byte[3] = EarthMagneticInclination / 2;
break;
case 3:
ToFlightCtrl.Param.Byte[11] = JETI_GPS_PACKET_ID1;
ToFlightCtrl.Param.Byte[0] = 0; // index
ToFlightCtrl.Param.Byte[1] = 4; // how many
//JetiExData[14].Value = 53 * 0x10000 + 23467;
if(GPSData.Position.Latitude < 0) ToFlightCtrl.Param.Byte[5] = 0x40;
else ToFlightCtrl.Param.Byte[5] = 0x00;
ToFlightCtrl.Param.Byte[4] = abs(GPSData.Position.Latitude)/10000000L;
i2 = abs(GPSData.Position.Latitude)%10000000L;
i2 *= 6;
i2 /= 1000;
ToFlightCtrl.Param.Byte[3] = i2 / 256;
ToFlightCtrl.Param.Byte[2] = i2 % 256;
break;
case 4:
ToFlightCtrl.Param.Byte[11] = JETI_GPS_PACKET_ID2;
ToFlightCtrl.Param.Byte[0] = 0; // index
ToFlightCtrl.Param.Byte[1] = 4; // how many
if(GPSData.Position.Latitude < 0) ToFlightCtrl.Param.Byte[5] = 0x60;
else ToFlightCtrl.Param.Byte[5] = 0x20;
ToFlightCtrl.Param.Byte[4] = abs(GPSData.Position.Longitude)/10000000L;
i2 = abs(GPSData.Position.Longitude)%10000000L;
i2 *= 6;
i2 /= 1000;
ToFlightCtrl.Param.Byte[3] = i2 / 256;
ToFlightCtrl.Param.Byte[2] = i2 % 256;
hott_index = 0;
break;
 
case 100:
ToFlightCtrl.Param.Byte[11] = HOTT_WPL_NAME;
ToFlightCtrl.Param.Byte[0] = 0; // index
ToFlightCtrl.Param.Byte[2] = WPL_Store.Name[0];
ToFlightCtrl.Param.Byte[3] = WPL_Store.Name[1];
ToFlightCtrl.Param.Byte[4] = WPL_Store.Name[2];
ToFlightCtrl.Param.Byte[5] = WPL_Store.Name[3];
ToFlightCtrl.Param.Byte[6] = WPL_Store.Name[4];
ToFlightCtrl.Param.Byte[7] = WPL_Store.Name[5];
ToFlightCtrl.Param.Byte[8] = WPL_Store.Name[6];
ToFlightCtrl.Param.Byte[9] = WPL_Store.Name[7];
ToFlightCtrl.Param.Byte[10]= WPL_Store.Name[8];
ToFlightCtrl.Param.Byte[1] = 9; // how many
NewWPL_Name = 0;
hott_index = 0;
break;
default:
ToFlightCtrl.Param.Byte[0] = 255;
hott_index = 0;
break;
}
break;
default:
break;
// 0 = 0,1
// 1 = 2,3
// 2 = 4,5
// 3 = 6,7
// 4 = 8,9
// 5 = 10,11
}
VIC_ITCmd(SSP0_ITLine, ENABLE); // enable SPI interrupt
switch(FromFlightCtrl.Command)
{
case SPI_FCCMD_USER:
Parameter.User1 = FromFlightCtrl.Param.Byte[0];
Parameter.User2 = FromFlightCtrl.Param.Byte[1];
Parameter.User3 = FromFlightCtrl.Param.Byte[2];
Parameter.User4 = FromFlightCtrl.Param.Byte[3];
Parameter.User5 = FromFlightCtrl.Param.Byte[4];
Parameter.User6 = FromFlightCtrl.Param.Byte[5];
Parameter.User7 = FromFlightCtrl.Param.Byte[6];
Parameter.User8 = FromFlightCtrl.Param.Byte[7];
FC.RealStatusFlags = FromFlightCtrl.Param.Byte[8];
if(FC.RealStatusFlags & FC_STATUS_MOTOR_RUN) SimulationFlags = 0; // stop the simulation if the motors would really start
 
if(!(SimulationFlags & SIMULATION_ACTIVE))
{
if(ClearFCStatusFlags)
{
FC.StatusFlags = 0;
ClearFCStatusFlags = 0;
}
}
FC.StatusFlags |= FC.RealStatusFlags;
if(FC.StatusFlags & FC_STATUS_CALIBRATE && !FCCalibActive)
{
HeadFreeStartAngle = (3600 + Compass_Heading * 10 + GeoMagDec) % 3600;
CompassDirectionAtMotorStart = HeadFreeStartAngle;
Compass_Init();
FCCalibActive = 10;
FC_is_Calibrated = 0;
}
else
{
if(FCCalibActive)
{
if(--FCCalibActive == 0)
{
FC_is_Calibrated = 1;
Compass_Check();
}
}
}
if(FC.StatusFlags & FC_STATUS_START)
{
if(Compass_Heading != -1) HeadFreeStartAngle = (3600 + Compass_Heading * 10 + GeoMagDec) % 3600;
else HeadFreeStartAngle = GyroCompassCorrected;
CompassDirectionAtMotorStart = HeadFreeStartAngle;
}
 
if((Parameter.ExtraConfig & CFG_TEACHABLE_CAREFREE))
{
if(!(FC.StatusFlags2 & FC_STATUS2_CAREFREE)) // CF ist jetzt ausgeschaltet -> neue Richtung lernen
{
if((NaviData.HomePositionDeviation.Distance > 200) && (NCFlags & NC_FLAG_GPS_OK)) // nur bei ausreichender Distance -> 20m
{
HeadFreeStartAngle = (10 * NaviData.HomePositionDeviation.Bearing + 1800 + 3600 - Parameter.OrientationAngle * 150) % 3600; // in 0.1°
}
else // Ansonsten die aktuelle Richtung übernehmen
HeadFreeStartAngle = GyroCompassCorrected; // in 0.1°
}
}
NaviData.FCStatusFlags = FC.StatusFlags;
if(FC.StatusFlags2 & FC_STATUS2_WAIT_FOR_TAKEOFF) NaviData.FCStatusFlags &= ~FC_STATUS_FLY;
FC.StatusFlags2 = FromFlightCtrl.Param.Byte[9];
NaviData.FCStatusFlags2 = (NaviData.FCStatusFlags2 & (FC_STATUS2_OUT1_ACTIVE | FC_STATUS2_OUT2_ACTIVE)) | (FC.StatusFlags2 & (0xff - (FC_STATUS2_OUT1_ACTIVE | FC_STATUS2_OUT2_ACTIVE)));
if((!(LastTransmittedFCStatusFlags2 & FC_STATUS2_OUT1_ACTIVE)) && (FC.StatusFlags2 & FC_STATUS2_OUT1_ACTIVE)) NaviData.FCStatusFlags2 |= FC_STATUS2_OUT1_ACTIVE;
else
if(((LastTransmittedFCStatusFlags2 & FC_STATUS2_OUT1_ACTIVE)) && !(FC.StatusFlags2 & FC_STATUS2_OUT1_ACTIVE)) NaviData.FCStatusFlags2 &= ~FC_STATUS2_OUT1_ACTIVE;
 
if((!(LastTransmittedFCStatusFlags2 & FC_STATUS2_OUT2_ACTIVE)) && (FC.StatusFlags2 & FC_STATUS2_OUT2_ACTIVE)) NaviData.FCStatusFlags2 |= FC_STATUS2_OUT2_ACTIVE;
else
if(((LastTransmittedFCStatusFlags2 & FC_STATUS2_OUT2_ACTIVE)) && !(FC.StatusFlags2 & FC_STATUS2_OUT2_ACTIVE)) NaviData.FCStatusFlags2 &= ~FC_STATUS2_OUT2_ACTIVE;
//DebugOut.Analog[] = (NaviData.FCStatusFlags2 & FC_STATUS2_OUT1_ACTIVE);
Logging_FCStatusFlags1 |= FC.StatusFlags;
Logging_FCStatusFlags2 |= FC.StatusFlags2;
FC.BAT_Voltage = FromFlightCtrl.Param.Int[5]; // 10 & 11
DebugOut.Analog[7] = FC.BAT_Voltage;
DebugOut.Analog[5] = FC.StatusFlags;
NaviData.UBat = (u8) FC.BAT_Voltage; // Achtung: die (u8) NaviData.UBat kann überlaufen -> das KopterTool müsste dann 25,5V drauf rechnen
break;
case SPI_FCCMD_BL_ACCU:
FC.BAT_Current = FromFlightCtrl.Param.Int[0];
DebugOut.Analog[8] = FC.BAT_Current;
BL_MinOfMaxPWM = FromFlightCtrl.Param.Byte[3];
if(BL_MinOfMaxPWM < Logging_BL_MinOfMaxPWM) Logging_BL_MinOfMaxPWM = BL_MinOfMaxPWM; // hold the value until logged
if(BL_MinOfMaxPWM < ErrorCheck_BL_MinOfMaxPWM) ErrorCheck_BL_MinOfMaxPWM = BL_MinOfMaxPWM; // hold the value until Error processed
Parameter.NaviGpsModeControl = FromFlightCtrl.Param.Byte[4];
FromFC_VarioCharacter = FromFlightCtrl.Param.Byte[5];
//0x40
//0x20
//0x10
if(FromFlightCtrl.Param.Byte[2] & 0x80) // this Flag marks a changed Out1
{
Out1TriggerUpdateNewData = 1;
if(!Out1TriggerUpdateBlocked)
{
NaviData_Out1Trigger.Longitude = NaviData.CurrentPosition.Longitude;
NaviData_Out1Trigger.Latitude = NaviData.CurrentPosition.Latitude;
}
Out1TriggerUpdateBlocked = 0;
}
if(Out1TriggerUpdateBlocked) Out1TriggerUpdateBlocked--;
index = FromFlightCtrl.Param.Byte[2] & 0x0f; //MAX_MOTORS
if(AmountOfMotors < index+1) AmountOfMotors = index+1;
Motor[index].NotReadyCnt = FromFlightCtrl.Param.Byte[6];
Motor_Version[index] = FromFlightCtrl.Param.Byte[7];
Motor[index].MaxPWM = FromFlightCtrl.Param.Byte[8];
Motor[index].State = FromFlightCtrl.Param.Byte[9];
Motor[index].Temperature = FromFlightCtrl.Param.Byte[10];
Motor[index].Current = FromFlightCtrl.Param.Byte[11];
if(FromFC_VarioCharacter == '+' || FromFC_VarioCharacter == '-') // manual setpoint clears the NC-Parameter command
{
NCParams_ClearValue(NCPARAMS_ALTITUDE_RATE);
}
if(!(SimulationFlags & SIMULATION_ACTIVE)) NaviData.Current = FC.BAT_Current;
NaviData.UsedCapacity = FC.BAT_UsedCapacity;
break;
case SPI_FCCMD_PARAMETER1:
Parameter.LowVoltageWarning = FromFlightCtrl.Param.Byte[0];
CHK_POTI_MM(Parameter.NaviGpsGain,FromFlightCtrl.Param.Byte[1],0,255);
CHK_POTI_MM(Parameter.NaviGpsP,FromFlightCtrl.Param.Byte[2],0,255);
CHK_POTI_MM(Parameter.NaviGpsI,FromFlightCtrl.Param.Byte[3],0,255);
CHK_POTI_MM(Parameter.NaviGpsD,FromFlightCtrl.Param.Byte[4],0,255);
CHK_POTI_MM(Parameter.NaviGpsACC,FromFlightCtrl.Param.Byte[5],0,255);
Parameter.NaviGpsMinSat = FromFlightCtrl.Param.Byte[6];
Parameter.NaviStickThreshold = FromFlightCtrl.Param.Byte[7];
// CHK_POTI_MM(Parameter.NaviOperatingRadius,FromFlightCtrl.Param.Byte[8],0,255);
Parameter.NaviMaxFlyingRange = FromFlightCtrl.Param.Byte[8];
CHK_POTI_MM(Parameter.NaviWindCorrection,FromFlightCtrl.Param.Byte[9],0,255);
CHK_POTI_MM(Parameter.NaviAccCompensation,FromFlightCtrl.Param.Byte[10],0,255);
CHK_POTI_MM(Parameter.NaviAngleLimitation,FromFlightCtrl.Param.Byte[11],0,255);
break;
case SPI_FCCMD_PARAMETER2:
CHK_POTI_MM(FC.AutoPhotoDistance,FromFlightCtrl.Param.Byte[0],0,255);
if(FromFlightCtrl.Param.Byte[1])
{
FC.FromFC_SpeakHoTT = FromFlightCtrl.Param.Byte[1]; // will be cleared in the SD-Logging
}
if(NaviData_Flags_SpeakHoTT_Processed)
{
NaviData_Flags.SpeakHoTT = FromFlightCtrl.Param.Byte[1]; // will be cleared after the Uart-Trasmitting
NaviData_Flags_SpeakHoTT_Processed = 0;
}
FC.BAT_UsedCapacity = FromFlightCtrl.Param.Int[1]; // 2 & 3
Parameter.FromFC_LowVoltageHomeActive = FromFlightCtrl.Param.Byte[4];
if(FromFlightCtrl.Param.Byte[5]) FromFC_LoadWP_List = FromFlightCtrl.Param.Byte[5];
if(FromFlightCtrl.Param.Byte[6]) FromFC_Load_SinglePoint = FromFlightCtrl.Param.Byte[6];
if(FromFlightCtrl.Param.Byte[7]) FromFC_Save_SinglePoint = FromFlightCtrl.Param.Byte[7];
CompassSetpoint = FromFlightCtrl.Param.sInt[4] * 10; // 8 & 9
CompassSetpointCorrected = (3600 + CompassSetpoint + FC.FromFC_CompassOffset + GeoMagDec) % 3600;
FC.StatusFlags3 = FromFlightCtrl.Param.Byte[10];
Parameter.SingleWpSpeed = FromFlightCtrl.Param.Byte[11];
break;
case SPI_FCCMD_STICK:
FC.StickGas = FromFlightCtrl.Param.sByte[0];
FC.StickYaw = FromFlightCtrl.Param.sByte[1];
FC.StickRoll = FromFlightCtrl.Param.sByte[2];
FC.StickNick = FromFlightCtrl.Param.sByte[3];
FC.Poti[0] = FromFlightCtrl.Param.Byte[4];
FC.Poti[1] = FromFlightCtrl.Param.Byte[5];
FC.Poti[2] = FromFlightCtrl.Param.Byte[6];
FC.Poti[3] = FromFlightCtrl.Param.Byte[7];
FC.Poti[4] = FromFlightCtrl.Param.Byte[8];
FC.Poti[5] = FromFlightCtrl.Param.Byte[9];
FC.Poti[6] = FromFlightCtrl.Param.Byte[10];
FC.Poti[7] = FromFlightCtrl.Param.Byte[11];
CHK_POTI_MM(WaypointAcceleration,WaypointAccelerationSetting,0,255); // that could be a Poti-Value
break;
 
case SPI_FCCMD_MISC:
if(CompassCalState != FromFlightCtrl.Param.Byte[0])
{ // put only new CompassCalState into queue to send via I2C
// if(FromFlightCtrl.Param.Byte[0] == CompassCalState+1 || FromFlightCtrl.Param.Byte[0] == 0)
{
CompassCalState = FromFlightCtrl.Param.Byte[0];
Compass_SetCalState(CompassCalState);
}
// else CompassCalState = 0;
}
HoverGas = FromFlightCtrl.Param.Byte[1];
NaviData.Variometer = (NaviData.Variometer + 2 * (FromFlightCtrl.Param.sInt[1] - NaviData.Altimeter)) / 2; // provisorisch
FC.Altimeter = FromFlightCtrl.Param.sInt[1]; // in 5cm
if(!(SimulationFlags & SIMULATION_ACTIVE)) NaviData.SetpointAltitude = FromFlightCtrl.Param.sInt[2]; // in 5cm
FC.Error[0] |= FromFlightCtrl.Param.Byte[6];
FC.Error[1] |= FromFlightCtrl.Param.Byte[7];
DebugOut.StatusGreen |= AMPEL_FC; // status of FC Present
DebugOut.StatusGreen |= AMPEL_BL; // status of BL Present
if(FC.Error[0] || FC.Error[1] /* || FC.Error[2] || FC.Error[3] || FC.Error[4]*/) DebugOut.StatusRed |= AMPEL_FC;
else DebugOut.StatusRed &= ~AMPEL_FC;
FC_I2C_ErrorConter = FromFlightCtrl.Param.Byte[8];
FC.RC_Quality = FromFlightCtrl.Param.Byte[9];
if(FC.RC_Quality > 160) NaviData.RC_Quality = 200; else NaviData.RC_Quality = FC.RC_Quality;
NC_Wait_for_LED = FromFlightCtrl.Param.Byte[10];
//DebugOut.Analog[] = NC_Wait_for_LED;
NaviData.Gas = (FC.BAT_Voltage * (u32) FromFlightCtrl.Param.Byte[11]) / (u32) Parameter.LowVoltageWarning;
if(LoggingGasCnt == 0) LoggingGasFilter = 0;
LoggingGasFilter += (u32) FromFlightCtrl.Param.Byte[11];
LoggingGasCnt++;
break;
 
case SPI_FCCMD_VERSION: // slow!
FC_Version.Major = FromFlightCtrl.Param.Byte[0];
FC_Version.Minor = FromFlightCtrl.Param.Byte[1];
FC_Version.Patch = FromFlightCtrl.Param.Byte[2];
FC_Version.Compatible = FromFlightCtrl.Param.Byte[3];
FC_Version.Hardware = FromFlightCtrl.Param.Byte[4];
Parameter.FromFC_LandingSpeed = FromFlightCtrl.Param.Byte[5];
Parameter.ComingHomeAltitude = FromFlightCtrl.Param.Byte[6];
CHK_POTI_MM(Parameter.AutoPhotoAltitudes,FromFlightCtrl.Param.Byte[7],0,255);
UART_VersionInfo.BL_Firmware = FromFlightCtrl.Param.Byte[8];
Parameter.ActiveSetting = FromFlightCtrl.Param.Byte[9];
FlugMinutenGesamt = FromFlightCtrl.Param.Int[5]; // 10 & 11
break;
case SPI_FCCMD_NEUTRAL: // slow!
FC.AdNeutralNick = FromFlightCtrl.Param.Int[0];
FC.AdNeutralRoll = FromFlightCtrl.Param.Int[1];
FC.AdNeutralYaw = FromFlightCtrl.Param.Int[2];
Parameter.Driftkomp = FromFlightCtrl.Param.Byte[6];
Parameter.NaviPH_LoginTime = FromFlightCtrl.Param.Byte[7];
Parameter.ReceiverType = FromFlightCtrl.Param.Byte[8];
CHK_POTI_MM(Parameter.NaviGpsPLimit,FromFlightCtrl.Param.Byte[9],0,255);
CHK_POTI_MM(Parameter.NaviGpsILimit,FromFlightCtrl.Param.Byte[10],0,255);
CHK_POTI_MM(Parameter.NaviGpsDLimit,FromFlightCtrl.Param.Byte[11],0,255);
break;
case SPI_FCCMD_SLOW2: // slow!
FC.BoatNeutralNick = FromFlightCtrl.Param.Int[0]; // 0 & 1
FC.BoatNeutralRoll = FromFlightCtrl.Param.Int[1]; // 2 & 3
FC.BoatNeutralYaw = FromFlightCtrl.Param.Int[2]; // 4 & 5
Parameter.CamOrientation = FromFlightCtrl.Param.Byte[6];
if(FromFlightCtrl.Param.Byte[7] >= 68 && FromFlightCtrl.Param.Byte[7] <= 188)
{
FC.FromFC_DisableDeclination = 1;
FC.FromFC_CompassOffset = 10 * (s8) (FromFlightCtrl.Param.Byte[7] - 128);
GeoMagDec = 0;
}
else
{
FC.FromFC_DisableDeclination = 0;
FC.FromFC_CompassOffset = 10 * FromFlightCtrl.Param.sByte[7];
}
Parameter.GlobalConfig = FromFlightCtrl.Param.Byte[8];
Parameter.ExtraConfig = FromFlightCtrl.Param.Byte[9];
Parameter.OrientationAngle = FromFlightCtrl.Param.Byte[10];
Parameter.GlobalConfig3 = FromFlightCtrl.Param.Byte[11];
break;
case SPI_FCCMD_SLOW3: // slow!
ServoParams.NickControl = FromFlightCtrl.Param.Byte[0];
ServoParams.RollControl = FromFlightCtrl.Param.Byte[1];
Parameter.DescendRange = FromFlightCtrl.Param.Byte[2];
Parameter.MaximumAltitude = FromFlightCtrl.Param.Byte[3];
ServoParams.CompInvert = FromFlightCtrl.Param.Byte[4];
Parameter.HomeYawMode = ((ServoParams.CompInvert & 0x18) >> 3);
NaviData_Home.LipoCellCount = FromFlightCtrl.Param.Byte[5];
NaviData_Volatile.ShutterCounter = FromFlightCtrl.Param.Int[3]; // 6 & 7
LowVoltageLandingActive = FromFlightCtrl.Param.Byte[8];
// DebugOut.Analog[] = NaviData_Volatile.ShutterCounter;
// 8
// 9
// 10
// 11
break;
 
default:
break;
}
DebugOut.Analog[0] = FromFlightCtrl.AngleNick;
DebugOut.Analog[1] = FromFlightCtrl.AngleRoll;
DebugOut.Analog[2] = FromFlightCtrl.AccNick;
DebugOut.Analog[3] = FromFlightCtrl.AccRoll;
DebugOut.Analog[11] = FromFlightCtrl.GyroHeading/10;// in deg
// every time we got new data from the FC via SPI call the navigation routine
// and update GPSStick that are returned to FC
SPI_RxBuffer_Request = 0;
GPS_Navigation(&GPSData, &(ToFlightCtrl.GPSStick));
ClearFCStatusFlags = 1;
if(counter)
{
counter--; // count down to enable servo
if(!counter) TIMER2_Init(); // enable Servo Output
}
timeout = SetDelay(80); // 80 ms, new data are send every 20 ms
 
} // EOF if(SPI_RxBuffer_Request)
else // no new SPI data
{
if(CheckDelay(timeout) && (counter == 0))
{
TIMER2_Deinit(); // disable Servo Output
counter = 50; // reset counter for enabling Servo Output
}
}
}
 
//------------------------------------------------------
void SPI0_GetFlightCtrlVersion(void)
{
u32 timeout;
u8 repeat;
u8 msg[64];
 
UART1_PutString("\r\n Looking for FlightControl");
FC_Version.Major = 0xFF;
FC_Version.Minor = 0xFF;
FC_Version.Patch = 0xFF;
FC_Version.Compatible = 0xFF;
 
// polling FC version info
repeat = 0;
do
{
timeout = SetDelay(250);
do
{
SPI0_UpdateBuffer();
if (FC_Version.Major != 0xFF) break;
}while (!CheckDelay(timeout));
UART1_PutString(".");
repeat++;
FCCalibActive = 1;
}while((FC_Version.Major == 0xFF) && (repeat < 40)); // 40*250ms = 10s
// if we got it
if (FC_Version.Major != 0xFF)
{
sprintf(msg, " FC V%d.%02d%c HW:%d.%d", FC_Version.Major, FC_Version.Minor, 'a'+FC_Version.Patch, FC_Version.Hardware/10,FC_Version.Hardware%10);
UART1_PutString(msg);
}
else UART1_PutString("\n\r not found!");
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + extended Current measurement -> 200 = 20A 201 = 21A 255 = 75A (20+55)
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
u16 BL3_Current(u8 who) // in 0,1A
{
if(Motor[who].Current <= 200) return((u16) Motor[who].Current);
else
{
if(Motor_Version[who] & MOTOR_STATE_BL30) return(200 + 10 * (u16) (Motor[who].Current - 200));
else return((u16) Motor[who].Current);
}
}