Subversion Repositories NaviCtrl

Compare Revisions

Ignore whitespace Rev 542 → Rev 543

/tags/V2.06d/i2c.c
0,0 → 1,718
/*#######################################################################################*/
/* !!! THIS IS NOT FREE SOFTWARE !!! */
/*#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software Nutzungsbedingungen (english version: see below)
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand
// + des Mitverschuldens offen.
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
// + Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software LICENSING TERMS
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
// + The Software may only be used with the Licensor's products.
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
// + agreement shall be the property of the Licensor.
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
// + features that can be used to identify the program may not be altered or defaced by the customer.
// + The customer shall be responsible for taking reasonable precautions
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
// + #### END OF LICENSING TERMS ####
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <string.h>
#include "i2c.h"
#include "uart1.h"
#include "timer1.h"
#include "config.h"
#include "led.h"
 
// the transfer buffer
u8 I2C0_Buffer[I2C_BUFFER_LEN];
u8 I2C1_Buffer[I2C_BUFFER_LEN];
 
volatile I2C_Bus_t I2C0_Bus;
volatile I2C_Bus_t I2C1_Bus;
 
// Retourns pointer to data structure of the selected bus
volatile I2C_Bus_t* I2CBus(I2C_TypeDef* I2Cx)
{
volatile I2C_Bus_t *pBus = NULL;
 
if(I2Cx == I2C0) pBus = &I2C0_Bus;
if(I2Cx == I2C1) pBus = &I2C1_Bus;
 
return(pBus);
}
 
//--------------------------------------------------------------
void I2CBus_Init(I2C_TypeDef* I2Cx)
{
volatile I2C_Bus_t *pBus = NULL;
I2C_InitTypeDef I2C_Struct;
GPIO_InitTypeDef GPIO_InitStructure;
u8 SCL_Pin = 0;
u8 SDA_Pin = 0;
u32 SCL_Clock = 0;
u32 APBPeriph = 0;
u8 VIC_Priority = 0;
 
if (I2Cx == I2C0)
{
UART1_PutString("\r\n I2C0 init...");
SCL_Pin = GPIO_Pin_0;
SDA_Pin = GPIO_Pin_1;
SCL_Clock = I2C0_CLOCK;
APBPeriph = __I2C0;
VIC_Priority = PRIORITY_I2C0;
 
pBus = &I2C0_Bus;
pBus->pData = I2C0_Buffer;
pBus->VIC_Source = I2C0_ITLine;
}
if (I2Cx == I2C1)
{
UART1_PutString("\r\n I2C1 init...");
SCL_Pin = GPIO_Pin_2;
SDA_Pin = GPIO_Pin_3;
SCL_Clock = I2C1_CLOCK;
APBPeriph = __I2C1;
VIC_Priority = PRIORITY_I2C1;
 
pBus = &I2C1_Bus;
pBus->pData = I2C1_Buffer;
pBus->VIC_Source = I2C1_ITLine;
}
if(pBus == NULL) return;
pBus->State = I2C_STATE_UNDEF;
pBus->Error = I2C_ERROR_UNKNOWN;
pBus->Timeout = 0;
pBus->TxBufferSize = 0;
pBus->RxBufferSize = 0;
pBus->Direction = 0;
pBus->SlaveAddr = 0;
pBus->pRxHandler = NULL;
 
// enable Port 2 peripherie
SCU_APBPeriphClockConfig(__GPIO2, ENABLE);
// disable a reset state
SCU_APBPeriphReset(__GPIO2, DISABLE);
 
// free a busy bus
 
// At switch on I2C devices can get in a state where they
// are still waiting for a command due to all the bus lines bouncing
// around at startup have started clocking data into the device(s).
// Enable the ports as open collector port outputs
// and clock out at least 9 SCL pulses, then generate a stop
// condition and then leave the clock line high.
 
// configure I2C_CLKOUT and I2C_DOUT to normal port operation
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinOutput;
GPIO_InitStructure.GPIO_Pin = SCL_Pin | SDA_Pin;
GPIO_InitStructure.GPIO_Type = GPIO_Type_OpenCollector;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Disable;
GPIO_InitStructure.GPIO_Alternate = GPIO_OutputAlt1;
GPIO_Init(GPIO2, &GPIO_InitStructure);
 
u8 i;
u32 delay;
// set SCL high and then SDA to low (start condition)
GPIO_WriteBit(GPIO2, SCL_Pin, Bit_SET);
delay = SetDelay(1);
while (!CheckDelay(delay));
GPIO_WriteBit(GPIO2, SDA_Pin, Bit_RESET);
// toggle SCL at least 10 times from high to low to high
for(i = 0; i < 10; i++)
{
delay = SetDelay(1);
while (!CheckDelay(delay));
 
GPIO_WriteBit(GPIO2, SCL_Pin, Bit_RESET);
delay = SetDelay(1);
while (!CheckDelay(delay));
GPIO_WriteBit(GPIO2, SCL_Pin, Bit_SET);
}
delay = SetDelay(1);
while (!CheckDelay(delay));
// create stop condition setting SDA HIGH when SCL is HIGH
GPIO_WriteBit(GPIO2, SDA_Pin, Bit_SET);
 
 
// reconfigure I2C_CLKOUT and I2C_DOUT
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinOutput;
GPIO_InitStructure.GPIO_Pin = SCL_Pin | SDA_Pin;
GPIO_InitStructure.GPIO_Type = GPIO_Type_OpenCollector;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Enable;
GPIO_InitStructure.GPIO_Alternate = GPIO_OutputAlt2; //I2C_CLKOUT, I2C_DOUT
GPIO_Init(GPIO2, &GPIO_InitStructure);
 
// enable I2C peripherie
SCU_APBPeriphClockConfig(APBPeriph, ENABLE);
// reset I2C peripherie
SCU_APBPeriphReset(APBPeriph, ENABLE);
SCU_APBPeriphReset(APBPeriph, DISABLE);
 
I2C_DeInit(I2Cx);
I2C_StructInit(&I2C_Struct);
I2C_Struct.I2C_GeneralCall = I2C_GeneralCall_Disable;
I2C_Struct.I2C_Ack = I2C_Ack_Enable;
I2C_Struct.I2C_CLKSpeed = SCL_Clock;
I2C_Struct.I2C_OwnAddress = 0x00;
I2C_Init(I2Cx, &I2C_Struct);
 
I2C_Cmd(I2Cx, ENABLE);
I2C_ITConfig(I2Cx, ENABLE);
 
VIC_Config(pBus->VIC_Source, VIC_IRQ , VIC_Priority);
pBus->Timeout = SetDelay(2*I2C_TIMEOUT);
I2C_GenerateSTOP(I2Cx, ENABLE);
pBus->State = I2C_STATE_IDLE;
 
// start some dummy transmissions cycles
// to get the irq routine to work
for(i = 0; i < 10; i++)
{
pBus->State = I2C_STATE_BUFFBUSY;
I2CBus_Transmission(I2Cx, 0, NULL, 1, 0, 0); // transfer 1 byte in the isr
if(I2CBus_WaitForEndOfTransmission(I2Cx, 10)) break;
UART1_Putchar('.');
}
UART1_PutString("ok");
}
 
 
//--------------------------------------------------------------
void I2CBus_Deinit(I2C_TypeDef* I2Cx)
{
volatile I2C_Bus_t *pBus = NULL;
GPIO_InitTypeDef GPIO_InitStructure;
u32 APBPeriph = 0;
u16 VIC_Source = 0;
u8 SCL_Pin = 0;
u8 SDA_Pin = 0;
 
if (I2Cx == I2C0)
{
UART1_PutString("\r\n I2C0 deinit...");
SCL_Pin = GPIO_Pin_0;
SDA_Pin = GPIO_Pin_1;
APBPeriph = __I2C0;
VIC_Source = I2C0_ITLine;
pBus = &I2C0_Bus;
}
if (I2Cx == I2C1)
{
UART1_PutString("\r\n I2C1 deinit...");
SCL_Pin = GPIO_Pin_2;
SDA_Pin = GPIO_Pin_3;
APBPeriph = __I2C1;
VIC_Source = I2C1_ITLine;
pBus = &I2C1_Bus;
}
 
if(pBus == NULL) return;
 
I2C_GenerateStart(I2Cx, DISABLE);
I2C_GenerateSTOP(I2Cx, ENABLE);
VIC_ITCmd(VIC_Source, DISABLE);
pBus->State = I2C_STATE_UNDEF;
I2C_ITConfig(I2Cx, DISABLE);
I2C_Cmd(I2Cx, DISABLE);
I2C_DeInit(I2Cx);
SCU_APBPeriphClockConfig(APBPeriph, DISABLE);
 
// set ports to input
SCU_APBPeriphClockConfig(__GPIO2, ENABLE);
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinInput;
GPIO_InitStructure.GPIO_Pin = SCL_Pin | SDA_Pin;
GPIO_InitStructure.GPIO_Type = GPIO_Type_PushPull;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Disable;
GPIO_InitStructure.GPIO_Alternate = GPIO_InputAlt1;
GPIO_Init(GPIO2, &GPIO_InitStructure);
 
// empty rx and tx buffer
pBus->TxBufferSize = 0;
pBus->RxBufferSize = 0;
 
pBus->Timeout = SetDelay(2*I2C_TIMEOUT);
 
UART1_PutString("ok");
}
 
//--------------------------------------------------------------
void I2C0_IRQHandler(void)
{
static u8 Rx_Idx = 0, Tx_Idx = 0;
u16 status;
u16 timeout = 500;
 
//IENABLE; // do not enable IRQ nesting for I2C!!!!
// detemine I2C State
status = I2C_GetLastEvent(I2C0);
 
if(status & (I2C_FLAG_AF|I2C_FLAG_BERR)) // if an acknowledge failure or bus error occured
{ // Set and subsequently clear the STOP bit while BTF is set.
while(I2C_GetFlagStatus (I2C0, I2C_FLAG_BTF) != RESET)
{
I2C_GenerateSTOP (I2C0, ENABLE); // free the bus
I2C_GenerateSTOP (I2C0, DISABLE); // free the bus
if(--timeout == 0)
{
DebugOut.Analog[14]++; // count I2C error
break;
}
}
I2C0_Bus.State = I2C_STATE_IDLE;
I2C0_Bus.Error = I2C_ERROR_NOACK;
VIC_ITCmd(I2C0_ITLine, DISABLE);
return;
}
else
{ // depending on current i2c state
switch(status)
{
// the start condition was initiated on the bus
case I2C_EVENT_MASTER_MODE_SELECT:
// update current bus state variable
// jump to rx state if there is nothing to send
switch(I2C0_Bus.Direction)
{
case I2C_MODE_TRANSMITTER:
I2C0_Bus.State = I2C_STATE_TX_PROGRESS;
break;
 
case I2C_MODE_RECEIVER:
if (I2C0_Bus.RxBufferSize == 0) // nothing to send?
{
I2C_GenerateSTOP (I2C0, ENABLE);
VIC_ITCmd(I2C0_ITLine, DISABLE);
I2C0_Bus.State = I2C_STATE_IDLE;
I2C1_Bus.Error = I2C_ERROR_NONE;
return;
}
else
{
I2C0_Bus.State = I2C_STATE_RX_PROGRESS;
}
break;
 
default: // invalid direction
I2C_GenerateSTOP (I2C0, ENABLE);
VIC_ITCmd(I2C0_ITLine, DISABLE);
I2C1_Bus.State = I2C_STATE_IDLE;
I2C1_Bus.Error = I2C_ERROR_UNKNOWN;
return;
}
// enable acknowledge
I2C_AcknowledgeConfig (I2C0, ENABLE);
// send address/direction byte on the bus
I2C_Send7bitAddress(I2C0, I2C0_Bus.SlaveAddr, I2C0_Bus.Direction);
break;
 
// the address byte was send
case I2C_EVENT_MASTER_MODE_SELECTED:
// Clear EV6 by set again the PE bit
I2C_Cmd(I2C0, ENABLE);
switch(I2C0_Bus.State)
{
case I2C_STATE_TX_PROGRESS:
// send 1st data byte
Tx_Idx = 0;
I2C_SendData(I2C0, I2C0_Bus.pData[Tx_Idx]);
Tx_Idx++;
// reset timeout
I2C0_Bus.Timeout = SetDelay(I2C_TIMEOUT); // after inactivity the I2C1 bus will be reset
break;
 
case I2C_STATE_RX_PROGRESS:
Rx_Idx = 0;
// disable acknoledge if only one byte has to be read
if(I2C0_Bus.RxBufferSize == 1) I2C_AcknowledgeConfig (I2C0, DISABLE);
break;
 
default: // unknown I2C state
// should never happen
I2C_GenerateSTOP (I2C0, ENABLE);
VIC_ITCmd(I2C0_ITLine, DISABLE);
I2C0_Bus.State = I2C_STATE_IDLE;
I2C0_Bus.Error = I2C_ERROR_UNKNOWN;
return;
break;
}
break;
 
// the master has transmitted a byte and slave has been acknowledged
case I2C_EVENT_MASTER_BYTE_TRANSMITTED:
 
// some bytes have to be transmitted
if(Tx_Idx < I2C0_Bus.TxBufferSize)
{
I2C_SendData(I2C0, I2C0_Bus.pData[Tx_Idx]);
Tx_Idx++;
}
else // last byte was send
{
// generate stop or repeated start condition
if (I2C0_Bus.RxBufferSize > 0) // is any answer byte expected?
{
I2C0_Bus.Direction = I2C_MODE_RECEIVER; // switch to master receiver after repeated start condition
I2C_GenerateStart(I2C0, ENABLE); // initiate repeated start condition on the bus
}
else
{ // stop communication
I2C_GenerateSTOP(I2C0, ENABLE); // generate stop condition to free the bus
VIC_ITCmd(I2C0_ITLine, DISABLE);
I2C0_Bus.State = I2C_STATE_IDLE; // ready for new actions
I2C0_Bus.Error = I2C_ERROR_NONE;
}
}
break;
 
// the master has received a byte from the slave
case I2C_EVENT_MASTER_BYTE_RECEIVED:
// some bytes have to be received
if ( Rx_Idx+1 < I2C0_Bus.RxBufferSize)
{ // copy received byte from the data register to the rx-buffer
I2C0_Bus.pData[Rx_Idx] = I2C_ReceiveData(I2C0);
}
else // if the last byte was received
{
// generate a STOP condition on the bus before reading data register
I2C_GenerateSTOP(I2C0, ENABLE);
I2C0_Bus.pData[Rx_Idx] = I2C_ReceiveData(I2C0);
// call the rx handler function to process recieved data
if(I2C0_Bus.pRxHandler != NULL) (*(I2C0_Bus.pRxHandler))(I2C0_Bus.pData, I2C0_Bus.RxBufferSize);
I2C0_Bus.Timeout = SetDelay(I2C_TIMEOUT);
DebugOut.Analog[15]++;
VIC_ITCmd(I2C0_ITLine, DISABLE);
I2C0_Bus.State = I2C_STATE_IDLE;
I2C0_Bus.Error = I2C_ERROR_NONE;
return;
}
Rx_Idx++;
// if the 2nd last byte was received disable acknowledge for the last one
if ( (Rx_Idx + 1) == I2C0_Bus.RxBufferSize )
{
I2C_AcknowledgeConfig(I2C0, DISABLE);
}
break;
 
default:// unknown event
// should never happen
I2C_GenerateSTOP (I2C0, ENABLE);
VIC_ITCmd(I2C0_ITLine, DISABLE);
I2C0_Bus.State = I2C_STATE_IDLE;
I2C0_Bus.Error = I2C_ERROR_UNKNOWN;
break;
}
}
//IDISABLE; // do not enable IRQ nesting for I2C!!!!
VIC1->VAR = 0xFF; // write any value to VIC1 Vector address register
}
 
//--------------------------------------------------------------
void I2C1_IRQHandler(void)
{
static u8 Rx_Idx = 0, Tx_Idx = 0;
u16 status;
u16 timeout = 500;
 
//IENABLE; // do not enable IRQ nesting for I2C!!!!
// detemine I2C State
status = I2C_GetLastEvent(I2C1);
 
if(status & (I2C_FLAG_AF|I2C_FLAG_BERR)) // if an acknowledge failure or bus error occured
{ // Set and subsequently clear the STOP bit while BTF is set.
while(I2C_GetFlagStatus (I2C1, I2C_FLAG_BTF) != RESET)
{
I2C_GenerateSTOP (I2C1, ENABLE); // free the bus
I2C_GenerateSTOP (I2C1, DISABLE); // free the bus
if(--timeout == 0)
{
DebugOut.Analog[14]++; // count I2C error
break;
}
}
I2C1_Bus.State = I2C_STATE_IDLE;
I2C1_Bus.Error = I2C_ERROR_NOACK;
VIC_ITCmd(I2C1_ITLine, DISABLE);
return;
}
else
{ // depending on current i2c state
switch(status)
{
// the start condition was initiated on the bus
case I2C_EVENT_MASTER_MODE_SELECT:
// update current bus state variable
// jump to rx state if there is nothing to send
switch(I2C1_Bus.Direction)
{
case I2C_MODE_TRANSMITTER:
I2C1_Bus.State = I2C_STATE_TX_PROGRESS;
break;
 
case I2C_MODE_RECEIVER:
if (I2C1_Bus.RxBufferSize == 0) // nothing to send?
{
I2C_GenerateSTOP (I2C1, ENABLE);
VIC_ITCmd(I2C1_ITLine, DISABLE);
I2C1_Bus.State = I2C_STATE_IDLE;
I2C1_Bus.Error = I2C_ERROR_NONE;
return;
}
else
{
I2C1_Bus.State = I2C_STATE_RX_PROGRESS;
}
break;
 
default: // invalid direction
I2C_GenerateSTOP (I2C1, ENABLE);
VIC_ITCmd(I2C1_ITLine, DISABLE);
I2C1_Bus.State = I2C_STATE_IDLE;
I2C1_Bus.Error = I2C_ERROR_UNKNOWN;
return;
}
// enable acknowledge
I2C_AcknowledgeConfig (I2C1, ENABLE);
// send address/direction byte on the bus
I2C_Send7bitAddress(I2C1, I2C1_Bus.SlaveAddr, I2C1_Bus.Direction);
break;
 
// the address byte was send
case I2C_EVENT_MASTER_MODE_SELECTED:
// Clear EV6 by set again the PE bit
I2C_Cmd(I2C1, ENABLE);
switch(I2C1_Bus.State)
{
case I2C_STATE_TX_PROGRESS:
// send 1st data byte
Tx_Idx = 0;
I2C_SendData(I2C1, I2C1_Bus.pData[Tx_Idx]);
Tx_Idx++;
// reset timeout
I2C1_Bus.Timeout = SetDelay(I2C_TIMEOUT); // after inactivity the I2C1 bus will be reset
break;
 
case I2C_STATE_RX_PROGRESS:
Rx_Idx = 0;
// disable acknoledge if only one byte has to be read
if(I2C1_Bus.RxBufferSize == 1) I2C_AcknowledgeConfig (I2C1, DISABLE);
break;
 
default: // unknown I2C state
// should never happen
I2C_GenerateSTOP (I2C1, ENABLE);
VIC_ITCmd(I2C1_ITLine, DISABLE);
I2C1_Bus.State = I2C_STATE_IDLE;
I2C1_Bus.Error = I2C_ERROR_UNKNOWN;
return;
break;
}
break;
 
// the master has transmitted a byte and slave has been acknowledged
case I2C_EVENT_MASTER_BYTE_TRANSMITTED:
 
// some bytes have to be transmitted
if(Tx_Idx < I2C1_Bus.TxBufferSize)
{
I2C_SendData(I2C1, I2C1_Bus.pData[Tx_Idx]);
Tx_Idx++;
}
else // last byte was send
{
// generate stop or repeated start condition
if (I2C1_Bus.RxBufferSize > 0) // is any answer byte expected?
{
I2C1_Bus.Direction = I2C_MODE_RECEIVER; // switch to master receiver after repeated start condition
I2C_GenerateStart(I2C1, ENABLE); // initiate repeated start condition on the bus
}
else
{ // stop communication
I2C_GenerateSTOP(I2C1, ENABLE); // generate stop condition to free the bus
VIC_ITCmd(I2C1_ITLine, DISABLE);
I2C1_Bus.State = I2C_STATE_IDLE; // ready for new actions
I2C1_Bus.Error = I2C_ERROR_NONE;
}
}
break;
 
// the master has received a byte from the slave
case I2C_EVENT_MASTER_BYTE_RECEIVED:
// some bytes have to be received
if ( Rx_Idx+1 < I2C1_Bus.RxBufferSize)
{ // copy received byte from the data register to the rx-buffer
I2C1_Bus.pData[Rx_Idx] = I2C_ReceiveData(I2C1);
}
else // if the last byte was received
{
// generate a STOP condition on the bus before reading data register
I2C_GenerateSTOP(I2C1, ENABLE);
I2C1_Bus.pData[Rx_Idx] = I2C_ReceiveData(I2C1);
// call the rx handler function to process recieved data
if(I2C1_Bus.pRxHandler != NULL) (*(I2C1_Bus.pRxHandler))(I2C1_Bus.pData, I2C1_Bus.RxBufferSize);
I2C1_Bus.Timeout = SetDelay(I2C_TIMEOUT);
DebugOut.Analog[15]++;
VIC_ITCmd(I2C1_ITLine, DISABLE);
I2C1_Bus.State = I2C_STATE_IDLE;
I2C1_Bus.Error = I2C_ERROR_NONE;
return;
}
Rx_Idx++;
// if the 2nd last byte was received disable acknowledge for the last one
if ( (Rx_Idx + 1) == I2C1_Bus.RxBufferSize )
{
I2C_AcknowledgeConfig(I2C1, DISABLE);
}
break;
 
default:// unknown event
// should never happen
DebugOut.Analog[14]++;
I2C_GenerateSTOP (I2C1, ENABLE);
VIC_ITCmd(I2C1_ITLine, DISABLE);
I2C1_Bus.State = I2C_STATE_IDLE;
I2C1_Bus.Error = I2C_ERROR_UNKNOWN;
break;
}
}
//IDISABLE; // do not enable IRQ nesting for I2C!!!!
VIC1->VAR = 0xFF; // write any value to VIC1 Vector address register
}
 
// ----------------------------------------------------------------------------------------
// wait for end of transmission
// returns 1 on success or 0 on timeout
u8 I2CBus_WaitForEndOfTransmission(I2C_TypeDef* I2Cx, u32 timeout)
{
volatile I2C_Bus_t *pBus = NULL;
u32 time = SetDelay(timeout);
 
if(I2Cx == I2C0) pBus = &I2C0_Bus;
if(I2Cx == I2C1) pBus = &I2C1_Bus;
if(pBus == NULL) return(0);
while(pBus->State != I2C_STATE_IDLE)
{
if(CheckDelay(time)) // Timeout
{
return(0);
}
}
return(1);
}
 
// ----------------------------------------------------------------------------------------
// try to get access to the transfer buffer within a timeout limit
// returs 1 on success and 0 on error/timeout
u8 I2CBus_LockBuffer(I2C_TypeDef* I2Cx, u32 timeout)
{
volatile I2C_Bus_t *pBus = NULL;
 
if(I2Cx == I2C0) pBus = &I2C0_Bus;
if(I2Cx == I2C1) pBus = &I2C1_Bus;
if(pBus == NULL) return(0);
if(I2CBus_WaitForEndOfTransmission(I2Cx, timeout))
{
pBus->State = I2C_STATE_BUFFBUSY;
pBus->Error = I2C_ERROR_UNKNOWN;
return(1);
}
else return(0);
}
// ----------------------------------------------------------------------------------------
// initate an i2c transmission
// before that function is called, the application has to call I2CBus_LockBuffer and has to fill the Buffer with data to be send
u8 I2CBus_Transmission(I2C_TypeDef* I2Cx, u8 SlaveAddr, u8* pTxData, u8 TxBytes, I2C_pRxHandler_t pRxHandler, u8 RxBytes)
{
u8 retval = 0;
volatile I2C_Bus_t *pBus = NULL;
 
if(I2Cx == I2C0) pBus = &I2C0_Bus;
if(I2Cx == I2C1) pBus = &I2C1_Bus;
if(pBus == NULL) return(0);
 
 
if(pBus->State == I2C_STATE_BUFFBUSY) // check for locked buffer
{
if((RxBytes > I2C_BUFFER_LEN) || (TxBytes > I2C_BUFFER_LEN))
{
pBus->State = I2C_STATE_IDLE;
return(retval);
}
pBus->RxBufferSize = RxBytes;
pBus->TxBufferSize = TxBytes;
// set direction to master transmitter
if( (pBus->TxBufferSize > 0) && (pBus->TxBufferSize < I2C_BUFFER_LEN) )
{
pBus->Direction = I2C_MODE_TRANSMITTER;
// copy data to send from source to tansfer buffer
if(pTxData) memcpy(pBus->pData, pTxData, pBus->TxBufferSize);
}
else if (( pBus->RxBufferSize > 0 ) && (pBus->RxBufferSize < I2C_BUFFER_LEN) )
{
pBus->Direction = I2C_MODE_RECEIVER;
}
else // nothing to send or receive
{
pBus->State = I2C_STATE_IDLE;
pBus->Error = I2C_ERROR_NONE;
pBus->TxBufferSize = 0;
pBus->RxBufferSize = 0;
return(retval);
}
// update slave address and rx data handler function pointer
pBus->SlaveAddr = SlaveAddr;
pBus->pRxHandler = pRxHandler;
// test on busy flag and clear it
I2C_ClearFlag(I2Cx, I2C_FLAG_BUSY);
// enable I2C IRQ
VIC_ITCmd(pBus->VIC_Source, ENABLE);
// initiate start condition on the bus
I2C_GenerateStart(I2Cx, ENABLE);
retval = 1;
}
return(retval);
}