Subversion Repositories NaviCtrl

Compare Revisions

Ignore whitespace Rev 403 → Rev 404

/tags/V0.28n/ncmag.c
0,0 → 1,1007
/*#######################################################################################*/
/* !!! THIS IS NOT FREE SOFTWARE !!! */
/*#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software Nutzungsbedingungen (english version: see below)
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand
// + des Mitverschuldens offen.
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
// + Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software LICENSING TERMS
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
// + The Software may only be used with the Licensor's products.
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
// + agreement shall be the property of the Licensor.
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
// + features that can be used to identify the program may not be altered or defaced by the customer.
// + The customer shall be responsible for taking reasonable precautions
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
// + #### END OF LICENSING TERMS ####
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "91x_lib.h"
#include "ncmag.h"
#include "i2c.h"
#include "timer1.h"
#include "led.h"
#include "uart1.h"
#include "eeprom.h"
#include "mymath.h"
#include "main.h"
 
u8 NCMAG_Present = 0;
u8 NCMAG_IsCalibrated = 0;
 
// supported magnetic sensor types
#define TYPE_NONE 0
#define TYPE_HMC5843 1
#define TYPE_LSM303DLH 2
#define TYPE_LSM303DLM 3
 
u8 NCMAG_SensorType = TYPE_NONE;
 
#define EEPROM_ADR_MAG_CALIBRATION 50
#define CALIBRATION_VERSION 1
#define MAG_CALIBRATION_COMPATIBLE 0xA2
 
#define NCMAG_MIN_RAWVALUE -2047
#define NCMAG_MAX_RAWVALUE 2047
#define NCMAG_INVALID_DATA -4096
 
typedef struct
{
s16 Range;
s16 Offset;
} __attribute__((packed)) Scaling_t;
 
typedef struct
{
Scaling_t MagX;
Scaling_t MagY;
Scaling_t MagZ;
u8 Version;
u8 crc;
} __attribute__((packed)) Calibration_t;
 
Calibration_t Calibration; // calibration data in RAM
volatile s16vec_t AccRawVector;
volatile s16vec_t MagRawVector;
 
// i2c MAG interface
#define MAG_SLAVE_ADDRESS 0x3C // i2C slave address mag. sensor registers
 
// register mapping
#define REG_MAG_CRA 0x00
#define REG_MAG_CRB 0x01
#define REG_MAG_MODE 0x02
#define REG_MAG_DATAX_MSB 0x03
#define REG_MAG_DATAX_LSB 0x04
#define REG_MAG_DATAY_MSB 0x05
#define REG_MAG_DATAY_LSB 0x06
#define REG_MAG_DATAZ_MSB 0x07
#define REG_MAG_DATAZ_LSB 0x08
#define REG_MAG_STATUS 0x09
 
#define REG_MAG_IDA 0x0A
#define REG_MAG_IDB 0x0B
#define REG_MAG_IDC 0x0C
#define REG_MAG_IDF 0x0F // WHO_AM_I _M = 0x03c when LSM303DLM is connected
 
// bit mask for configuration mode
#define CRA_MODE_MASK 0x03
#define CRA_MODE_NORMAL 0x00 //default
#define CRA_MODE_POSBIAS 0x01
#define CRA_MODE_NEGBIAS 0x02
#define CRA_MODE_SELFTEST 0x03
 
// bit mask for measurement mode
#define MODE_MASK 0xFF
#define MODE_CONTINUOUS 0x00
#define MODE_SINGLE 0x01 // default
#define MODE_IDLE 0x02
#define MODE_SLEEP 0x03
 
// bit mask for rate
#define CRA_RATE_MASK 0x1C
 
// bit mask for gain
#define CRB_GAIN_MASK 0xE0
 
// ids
#define MAG_IDA 0x48
#define MAG_IDB 0x34
#define MAG_IDC 0x33
#define MAG_IDF_LSM303DLM 0x3C
 
// the special HMC5843 interface
// bit mask for rate
#define HMC5843_CRA_RATE_0_5HZ 0x00
#define HMC5843_CRA_RATE_1HZ 0x04
#define HMC5843_CRA_RATE_2HZ 0x08
#define HMC5843_CRA_RATE_5HZ 0x0C
#define HMC5843_CRA_RATE_10HZ 0x10 //default
#define HMC5843_CRA_RATE_20HZ 0x14
#define HMC5843_CRA_RATE_50HZ 0x18
// bit mask for gain
#define HMC5843_CRB_GAIN_07GA 0x00
#define HMC5843_CRB_GAIN_10GA 0x20 //default
#define HMC5843_CRB_GAIN_15GA 0x40 // <--- we use this
#define HMC5843_CRB_GAIN_20GA 0x60
#define HMC5843_CRB_GAIN_32GA 0x80
#define HMC5843_CRB_GAIN_38GA 0xA0
#define HMC5843_CRB_GAIN_45GA 0xC0
#define HMC5843_CRB_GAIN_65GA 0xE0
// self test value
#define HMC5843_TEST_XSCALE 555
#define HMC5843_TEST_YSCALE 555
#define HMC5843_TEST_ZSCALE 555
// calibration range
#define HMC5843_CALIBRATION_RANGE 600
 
// the special LSM302DLH interface
// bit mask for rate
#define LSM303DLH_CRA_RATE_0_75HZ 0x00
#define LSM303DLH_CRA_RATE_1_5HZ 0x04
#define LSM303DLH_CRA_RATE_3_0HZ 0x08
#define LSM303DLH_CRA_RATE_7_5HZ 0x0C
#define LSM303DLH_CRA_RATE_15HZ 0x10 //default
#define LSM303DLH_CRA_RATE_30HZ 0x14
#define LSM303DLH_CRA_RATE_75HZ 0x18
 
// bit mask for gain
#define LSM303DLH_CRB_GAIN_XXGA 0x00
#define LSM303DLH_CRB_GAIN_13GA 0x20 //default
#define LSM303DLH_CRB_GAIN_19GA 0x40 // <--- we use this
#define LSM303DLH_CRB_GAIN_25GA 0x60
#define LSM303DLH_CRB_GAIN_40GA 0x80
#define LSM303DLH_CRB_GAIN_47GA 0xA0
#define LSM303DLH_CRB_GAIN_56GA 0xC0
#define LSM303DLH_CRB_GAIN_81GA 0xE0
 
typedef struct
{
u8 A;
u8 B;
u8 C;
} __attribute__((packed)) Identification_t;
volatile Identification_t NCMAG_Identification;
 
typedef struct
{
u8 Sub;
} __attribute__((packed)) Identification2_t;
volatile Identification2_t NCMAG_Identification2;
 
typedef struct
{
u8 cra;
u8 crb;
u8 mode;
} __attribute__((packed)) MagConfig_t;
 
volatile MagConfig_t MagConfig;
 
 
// self test value
#define LSM303DLH_TEST_XSCALE 495
#define LSM303DLH_TEST_YSCALE 495
#define LSM303DLH_TEST_ZSCALE 470
// clibration range
#define LSM303_CALIBRATION_RANGE 550
 
// the i2c ACC interface
#define ACC_SLAVE_ADDRESS 0x30 // i2c slave for acc. sensor registers
 
// multiple byte read/write mask
#define REG_ACC_MASK_AUTOINCREMENT 0x80
 
// register mapping
#define REG_ACC_CTRL1 0x20
#define REG_ACC_CTRL2 0x21
#define REG_ACC_CTRL3 0x22
#define REG_ACC_CTRL4 0x23
#define REG_ACC_CTRL5 0x24
#define REG_ACC_HP_FILTER_RESET 0x25
#define REG_ACC_REFERENCE 0x26
#define REG_ACC_STATUS 0x27
#define REG_ACC_X_LSB 0x28
#define REG_ACC_X_MSB 0x29
#define REG_ACC_Y_LSB 0x2A
#define REG_ACC_Y_MSB 0x2B
#define REG_ACC_Z_LSB 0x2C
#define REG_ACC_Z_MSB 0x2D
 
#define ACC_CRTL1_PM_DOWN 0x00
#define ACC_CRTL1_PM_NORMAL 0x20
#define ACC_CRTL1_PM_LOW_0_5HZ 0x40
#define ACC_CRTL1_PM_LOW_1HZ 0x60
#define ACC_CRTL1_PM_LOW_2HZ 0x80
#define ACC_CRTL1_PM_LOW_5HZ 0xA0
#define ACC_CRTL1_PM_LOW_10HZ 0xC0
// Output data rate in normal power mode
#define ACC_CRTL1_DR_50HZ 0x00
#define ACC_CRTL1_DR_100HZ 0x08
#define ACC_CRTL1_DR_400HZ 0x10
#define ACC_CRTL1_DR_1000HZ 0x18
// axis anable flags
#define ACC_CRTL1_XEN 0x01
#define ACC_CRTL1_YEN 0x02
#define ACC_CRTL1_ZEN 0x04
 
#define ACC_CRTL2_FILTER8 0x10
#define ACC_CRTL2_FILTER16 0x11
#define ACC_CRTL2_FILTER32 0x12
#define ACC_CRTL2_FILTER64 0x13
 
#define ACC_CTRL4_BDU 0x80 // Block data update, (0: continuos update; 1: output registers not updated between MSB and LSB reading)
#define ACC_CTRL4_BLE 0x40 // Big/little endian, (0: data LSB @ lower address; 1: data MSB @ lower address)
#define ACC_CTRL4_FS_2G 0x00
#define ACC_CTRL4_FS_4G 0x10
#define ACC_CTRL4_FS_8G 0x30
#define ACC_CTRL4_STSIGN_PLUS 0x00
#define ACC_CTRL4_STSIGN_MINUS 0x08
#define ACC_CTRL4_ST_ENABLE 0x02
 
#define ACC_CTRL5_STW_ON 0x03
#define ACC_CTRL5_STW_OFF 0x00
 
typedef struct
{
u8 ctrl_1;
u8 ctrl_2;
u8 ctrl_3;
u8 ctrl_4;
u8 ctrl_5;
} __attribute__((packed)) AccConfig_t;
 
volatile AccConfig_t AccConfig;
 
u8 NCMag_CalibrationWrite(void)
{
u8 i, crc = MAG_CALIBRATION_COMPATIBLE;
EEPROM_Result_t eres;
u8 *pBuff = (u8*)&Calibration;
 
Calibration.Version = CALIBRATION_VERSION;
for(i = 0; i<(sizeof(Calibration)-1); i++)
{
crc += pBuff[i];
}
Calibration.crc = ~crc;
eres = EEPROM_WriteBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration));
if(EEPROM_SUCCESS == eres) i = 1;
else i = 0;
return(i);
}
 
u8 NCMag_CalibrationRead(void)
{
u8 i, crc = MAG_CALIBRATION_COMPATIBLE;
u8 *pBuff = (u8*)&Calibration;
 
if(EEPROM_SUCCESS == EEPROM_ReadBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration)))
{
for(i = 0; i<(sizeof(Calibration)-1); i++)
{
crc += pBuff[i];
}
crc = ~crc;
if(Calibration.crc != crc) return(0); // crc mismatch
if(Calibration.Version == CALIBRATION_VERSION) return(1);
}
return(0);
}
 
 
void NCMAG_Calibrate(void)
{
u8 msg[64];
static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
static s16 X = 0, Y = 0, Z = 0;
static u8 OldCalState = 0;
s16 MinCalibration = 450;
 
X = (4*X + MagRawVector.X + 3)/5;
Y = (4*Y + MagRawVector.Y + 3)/5;
Z = (4*Z + MagRawVector.Z + 3)/5;
 
switch(Compass_CalState)
{
case 1:
// 1st step of calibration
// initialize ranges
// used to change the orientation of the NC in the horizontal plane
Xmin = 10000;
Xmax = -10000;
Ymin = 10000;
Ymax = -10000;
Zmin = 10000;
Zmax = -10000;
break;
case 2: // 2nd step of calibration
// find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
if(X < Xmin) { Xmin = X; BeepTime = 20;}
else if(X > Xmax) { Xmax = X; BeepTime = 20;}
if(Y < Ymin) { Ymin = Y; BeepTime = 60;}
else if(Y > Ymax) { Ymax = Y; BeepTime = 60;}
break;
 
case 3: // 3rd step of calibration
// used to change the orientation of the MK3MAG vertical to the horizontal plane
break;
 
case 4:
// find Min and Max of the Z-Sensor
if(Z < Zmin) { Zmin = Z; BeepTime = 80;}
else if(Z > Zmax) { Zmax = Z; BeepTime = 80;}
break;
case 5:
// Save values
if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
{
switch(NCMAG_SensorType)
{
case TYPE_HMC5843:
UART1_PutString("\r\nHMC5843 calibration\n\r");
MinCalibration = HMC5843_CALIBRATION_RANGE;
break;
 
case TYPE_LSM303DLH:
case TYPE_LSM303DLM:
UART1_PutString("\r\n\r\nLSM303 calibration\n\r");
MinCalibration = LSM303_CALIBRATION_RANGE;
break;
}
if(EarthMagneticStrengthTheoretic)
{
MinCalibration = (MinCalibration * EarthMagneticStrengthTheoretic) / 50;
sprintf(msg, "Earth field on your location should be: %iuT\r\n",EarthMagneticStrengthTheoretic);
UART1_PutString(msg);
}
else UART1_PutString("without GPS\n\r");
 
Calibration.MagX.Range = Xmax - Xmin;
Calibration.MagX.Offset = (Xmin + Xmax) / 2;
Calibration.MagY.Range = Ymax - Ymin;
Calibration.MagY.Offset = (Ymin + Ymax) / 2;
Calibration.MagZ.Range = Zmax - Zmin;
Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
if((Calibration.MagX.Range > MinCalibration) && (Calibration.MagY.Range > MinCalibration) && (Calibration.MagZ.Range > MinCalibration))
{
NCMAG_IsCalibrated = NCMag_CalibrationWrite();
BeepTime = 2500;
UART1_PutString("\r\n-> Calibration okay <-\n\r");
}
else
{
UART1_PutString("\r\nCalibration FAILED - Values too low: ");
if(Calibration.MagX.Range < MinCalibration) UART1_PutString("X! ");
if(Calibration.MagY.Range < MinCalibration) UART1_PutString("Y! ");
if(Calibration.MagZ.Range < MinCalibration) UART1_PutString("Z! ");
UART1_PutString("\r\n");
 
// restore old calibration data from eeprom
NCMAG_IsCalibrated = NCMag_CalibrationRead();
}
sprintf(msg, "X: (%i - %i = %i)\r\n",Xmax,Xmin,Xmax - Xmin);
UART1_PutString(msg);
sprintf(msg, "Y: (%i - %i = %i)\r\n",Ymax,Ymin,Ymax - Ymin);
UART1_PutString(msg);
sprintf(msg, "Z: (%i - %i = %i)\r\n",Zmax,Zmin,Zmax - Zmin);
UART1_PutString(msg);
sprintf(msg, "(Minimum ampilitude is: %i)\r\n",MinCalibration);
UART1_PutString(msg);
}
break;
default:
break;
}
OldCalState = Compass_CalState;
}
 
// ---------- call back handlers -----------------------------------------
 
// rx data handler for id info request
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
{ // if number of bytes are matching
if(RxBufferSize == sizeof(NCMAG_Identification) )
{
memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
}
}
 
void NCMAG_UpdateIdentification_Sub(u8* pRxBuffer, u8 RxBufferSize)
{ // if number of bytes are matching
if(RxBufferSize == sizeof(NCMAG_Identification2))
{
memcpy((u8 *)&NCMAG_Identification2, pRxBuffer, sizeof(NCMAG_Identification2));
}
}
 
// rx data handler for magnetic sensor raw data
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
{ // if number of bytes are matching
if(RxBufferSize == sizeof(MagRawVector) )
{ // byte order from big to little endian
s16 raw;
raw = pRxBuffer[0]<<8;
raw+= pRxBuffer[1];
if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
raw = pRxBuffer[2]<<8;
raw+= pRxBuffer[3];
if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
{
if(NCMAG_SensorType == TYPE_LSM303DLM) MagRawVector.Z = raw; // here Z and Y are exchanged
else MagRawVector.Y = raw;
}
raw = pRxBuffer[4]<<8;
raw+= pRxBuffer[5];
if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
{
if(NCMAG_SensorType == TYPE_LSM303DLM) MagRawVector.Y = raw; // here Z and Y are exchanged
else MagRawVector.Z = raw;
}
}
if(Compass_CalState || !NCMAG_IsCalibrated)
{ // mark out data invalid
MagVector.X = MagRawVector.X;
MagVector.Y = MagRawVector.Y;
MagVector.Z = MagRawVector.Z;
Compass_Heading = -1;
}
else
{
// update MagVector from MagRaw Vector by Scaling
MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
Compass_CalcHeading();
}
}
// rx data handler for acceleration raw data
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
{ // if number of byte are matching
static s32 filter_z;
if(RxBufferSize == sizeof(AccRawVector) )
{
memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
}
DebugOut.Analog[16] = AccRawVector.X;
DebugOut.Analog[17] = AccRawVector.Y;
filter_z = (filter_z * 7 + AccRawVector.Z) / 8;
 
DebugOut.Analog[18] = filter_z;
DebugOut.Analog[19] = AccRawVector.Z;
}
// rx data handler for reading magnetic sensor configuration
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
{ // if number of byte are matching
if(RxBufferSize == sizeof(MagConfig) )
{
memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
}
}
// rx data handler for reading acceleration sensor configuration
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
{ // if number of byte are matching
if(RxBufferSize == sizeof(AccConfig) )
{
memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
}
}
//----------------------------------------------------------------------
 
 
// ---------------------------------------------------------------------
u8 NCMAG_SetMagConfig(void)
{
u8 retval = 0;
// try to catch the i2c buffer within 100 ms timeout
if(I2C_LockBuffer(100))
{
u8 TxBytes = 0;
I2C_Buffer[TxBytes++] = REG_MAG_CRA;
memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
TxBytes += sizeof(MagConfig);
if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
{
if(I2C_WaitForEndOfTransmission(100))
{
if(I2C_Error == I2C_ERROR_NONE) retval = 1;
}
}
}
return(retval);
}
 
// ----------------------------------------------------------------------------------------
u8 NCMAG_GetMagConfig(void)
{
u8 retval = 0;
// try to catch the i2c buffer within 100 ms timeout
if(I2C_LockBuffer(100))
{
u8 TxBytes = 0;
I2C_Buffer[TxBytes++] = REG_MAG_CRA;
if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
{
if(I2C_WaitForEndOfTransmission(100))
{
if(I2C_Error == I2C_ERROR_NONE) retval = 1;
}
}
}
return(retval);
}
 
// ----------------------------------------------------------------------------------------
u8 NCMAG_SetAccConfig(void)
{
u8 retval = 0;
// try to catch the i2c buffer within 100 ms timeout
if(I2C_LockBuffer(100))
{
u8 TxBytes = 0;
I2C_Buffer[TxBytes++] = REG_ACC_CTRL1|REG_ACC_MASK_AUTOINCREMENT;
memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
TxBytes += sizeof(AccConfig);
if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
{
if(I2C_WaitForEndOfTransmission(100))
{
if(I2C_Error == I2C_ERROR_NONE) retval = 1;
}
}
}
return(retval);
}
 
// ----------------------------------------------------------------------------------------
u8 NCMAG_GetAccConfig(void)
{
u8 retval = 0;
// try to catch the i2c buffer within 100 ms timeout
if(I2C_LockBuffer(100))
{
u8 TxBytes = 0;
I2C_Buffer[TxBytes++] = REG_ACC_CTRL1|REG_ACC_MASK_AUTOINCREMENT;
if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
{
if(I2C_WaitForEndOfTransmission(100))
{
if(I2C_Error == I2C_ERROR_NONE) retval = 1;
}
}
}
return(retval);
}
 
// ----------------------------------------------------------------------------------------
u8 NCMAG_GetIdentification(void)
{
u8 retval = 0;
// try to catch the i2c buffer within 100 ms timeout
if(I2C_LockBuffer(100))
{
u16 TxBytes = 0;
NCMAG_Identification.A = 0xFF;
NCMAG_Identification.B = 0xFF;
NCMAG_Identification.C = 0xFF;
I2C_Buffer[TxBytes++] = REG_MAG_IDA;
// initiate transmission
if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
{
if(I2C_WaitForEndOfTransmission(100))
{
if(I2C_Error == I2C_ERROR_NONE) retval = 1;
}
}
}
return(retval);
}
 
u8 NCMAG_GetIdentification_Sub(void)
{
u8 retval = 0;
// try to catch the i2c buffer within 100 ms timeout
if(I2C_LockBuffer(100))
{
u16 TxBytes = 0;
NCMAG_Identification2.Sub = 0xFF;
I2C_Buffer[TxBytes++] = REG_MAG_IDF;
// initiate transmission
if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification_Sub, sizeof(NCMAG_Identification2)))
{
if(I2C_WaitForEndOfTransmission(100))
{
if(I2C_Error == I2C_ERROR_NONE) retval = 1;
}
}
}
return(retval);
}
 
 
// ----------------------------------------------------------------------------------------
void NCMAG_GetMagVector(void)
{
// try to catch the I2C buffer within 0 ms
if(I2C_LockBuffer(0))
{
u16 TxBytes = 0;
// set register pointer
I2C_Buffer[TxBytes++] = REG_MAG_DATAX_MSB;
// initiate transmission
I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
}
}
 
//----------------------------------------------------------------
void NCMAG_GetAccVector(void)
{
// try to catch the I2C buffer within 0 ms
if(I2C_LockBuffer(0))
{
u16 TxBytes = 0;
// set register pointer
I2C_Buffer[TxBytes++] = REG_ACC_X_LSB|REG_ACC_MASK_AUTOINCREMENT;
// initiate transmission
I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
}
}
 
//----------------------------------------------------------------
u8 InitNC_MagnetSensor(void)
{
u8 crb_gain, cra_rate;
 
switch(NCMAG_SensorType)
{
case TYPE_HMC5843:
crb_gain = HMC5843_CRB_GAIN_15GA;
cra_rate = HMC5843_CRA_RATE_50HZ;
break;
 
case TYPE_LSM303DLH:
case TYPE_LSM303DLM:
crb_gain = LSM303DLH_CRB_GAIN_19GA;
cra_rate = LSM303DLH_CRA_RATE_75HZ;
break;
 
default:
return(0);
}
 
MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
MagConfig.crb = crb_gain;
MagConfig.mode = MODE_CONTINUOUS;
return(NCMAG_SetMagConfig());
}
 
 
//----------------------------------------------------------------
u8 NCMAG_Init_ACCSensor(void)
{
AccConfig.ctrl_1 = ACC_CRTL1_PM_NORMAL|ACC_CRTL1_DR_50HZ|ACC_CRTL1_XEN|ACC_CRTL1_YEN|ACC_CRTL1_ZEN;
AccConfig.ctrl_2 = 0;//ACC_CRTL2_FILTER32;
AccConfig.ctrl_3 = 0x00;
AccConfig.ctrl_4 = ACC_CTRL4_BDU | ACC_CTRL4_FS_8G;
AccConfig.ctrl_5 = ACC_CTRL5_STW_OFF;
return(NCMAG_SetAccConfig());
}
// --------------------------------------------------------
void NCMAG_Update(void)
{
static u32 TimerUpdate = 0;
static u8 send_config = 0;
u32 delay = 20;
 
if( (I2C_State == I2C_STATE_OFF) || !NCMAG_Present )
{
Compass_Heading = -1;
DebugOut.Analog[14]++; // count I2C error
return;
}
if(CheckDelay(TimerUpdate))
{
if(Compass_Heading != -1) send_config = 0; // no re-configuration if value is valid
if(++send_config == 25) // 500ms
{
send_config = 0;
InitNC_MagnetSensor();
TimerUpdate = SetDelay(15); // back into the old time-slot
}
else
{
// static u8 s = 0;
// check for new calibration state
Compass_UpdateCalState();
if(Compass_CalState) NCMAG_Calibrate();
// in case of LSM303 type
switch(NCMAG_SensorType)
{
case TYPE_HMC5843:
NCMAG_GetMagVector();
delay = 20;
break;
case TYPE_LSM303DLH:
case TYPE_LSM303DLM:
NCMAG_GetMagVector();
delay = 20;
/* if(s){ NCMAG_GetMagVector(); s = 0;}
else { NCMAG_GetAccVector(); s = 1;}
delay = 10;
*/
break;
}
if(send_config == 24) TimerUpdate = SetDelay(5); // next event is the re-configuration
else TimerUpdate = SetDelay(delay); // every 20 ms are 50 Hz
}
}
}
 
 
// --------------------------------------------------------
u8 NCMAG_SelfTest(void)
{
u8 msg[64];
static u8 done = 0;
 
if(done) return(1); // just make it once
#define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
u32 time;
s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
s16 xscale, yscale, zscale, scale_min, scale_max;
u8 crb_gain, cra_rate;
u8 i = 0, retval = 1;
 
switch(NCMAG_SensorType)
{
case TYPE_HMC5843:
crb_gain = HMC5843_CRB_GAIN_15GA;
cra_rate = HMC5843_CRA_RATE_50HZ;
xscale = HMC5843_TEST_XSCALE;
yscale = HMC5843_TEST_YSCALE;
zscale = HMC5843_TEST_ZSCALE;
break;
 
case TYPE_LSM303DLH:
crb_gain = LSM303DLH_CRB_GAIN_19GA;
cra_rate = LSM303DLH_CRA_RATE_75HZ;
xscale = LSM303DLH_TEST_XSCALE;
yscale = LSM303DLH_TEST_YSCALE;
zscale = LSM303DLH_TEST_ZSCALE;
break;
 
case TYPE_LSM303DLM:
// does not support self test feature
done = retval;
return(retval);
break;
 
default:
return(0);
}
 
MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
MagConfig.crb = crb_gain;
MagConfig.mode = MODE_CONTINUOUS;
// activate positive bias field
NCMAG_SetMagConfig();
// wait for stable readings
time = SetDelay(50);
while(!CheckDelay(time));
// averaging
#define AVERAGE 20
for(i = 0; i<AVERAGE; i++)
{
NCMAG_GetMagVector();
time = SetDelay(20);
while(!CheckDelay(time));
XMax += MagRawVector.X;
YMax += MagRawVector.Y;
ZMax += MagRawVector.Z;
}
MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
// activate positive bias field
NCMAG_SetMagConfig();
// wait for stable readings
time = SetDelay(50);
while(!CheckDelay(time));
// averaging
for(i = 0; i < AVERAGE; i++)
{
NCMAG_GetMagVector();
time = SetDelay(20);
while(!CheckDelay(time));
XMin += MagRawVector.X;
YMin += MagRawVector.Y;
ZMin += MagRawVector.Z;
}
// setup final configuration
MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
// activate positive bias field
NCMAG_SetMagConfig();
// check scale for all axes
// prepare scale limits
LIMITS(xscale, scale_min, scale_max);
xscale = (XMax - XMin)/(2*AVERAGE);
if((xscale > scale_max) || (xscale < scale_min))
{
retval = 0;
sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
UART1_PutString(msg);
}
LIMITS(yscale, scale_min, scale_max);
yscale = (YMax - YMin)/(2*AVERAGE);
if((yscale > scale_max) || (yscale < scale_min))
{
retval = 0;
sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
UART1_PutString(msg);
}
LIMITS(zscale, scale_min, scale_max);
zscale = (ZMax - ZMin)/(2*AVERAGE);
if((zscale > scale_max) || (zscale < scale_min))
{
retval = 0;
sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
UART1_PutString(msg);
}
done = retval;
return(retval);
}
 
 
//----------------------------------------------------------------
u8 NCMAG_Init(void)
{
u8 msg[64];
u8 retval = 0;
u8 repeat;
 
NCMAG_Present = 0;
NCMAG_SensorType = TYPE_HMC5843; // assuming having an HMC5843
// polling for LSM302DLH/DLM option by ACC address ack
repeat = 0;
do
{
retval = NCMAG_GetAccConfig();
if(retval) break; // break loop on success
UART1_PutString(".");
repeat++;
}while(repeat < 3);
if(retval)
{
// initialize ACC sensor
NCMAG_Init_ACCSensor();
 
NCMAG_SensorType = TYPE_LSM303DLH;
// polling of sub identification
repeat = 0;
do
{
retval = NCMAG_GetIdentification_Sub();
if(retval) break; // break loop on success
UART1_PutString(".");
repeat++;
}while(repeat < 12);
if(retval)
{
if(NCMAG_Identification2.Sub == MAG_IDF_LSM303DLM) NCMAG_SensorType = TYPE_LSM303DLM;
}
}
// get id bytes
retval = 0;
do
{
retval = NCMAG_GetIdentification();
if(retval) break; // break loop on success
UART1_PutString(".");
repeat++;
}while(repeat < 12);
 
// if we got an answer to id request
if(retval)
{
u8 n1[] = "\n\r HMC5843";
u8 n2[] = "\n\r LSM303DLH";
u8 n3[] = "\n\r LSM303DLM";
u8* pn = n1;
switch(NCMAG_SensorType)
{
case TYPE_HMC5843:
pn = n1;
break;
case TYPE_LSM303DLH:
pn = n2;
break;
case TYPE_LSM303DLM:
pn = n3;
break;
}
 
sprintf(msg, " %s ID 0x%02x/%02x/%02x-%02x", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C,NCMAG_Identification2.Sub);
UART1_PutString(msg);
if ( (NCMAG_Identification.A == MAG_IDA)
&& (NCMAG_Identification.B == MAG_IDB)
&& (NCMAG_Identification.C == MAG_IDC))
{
NCMAG_Present = 1;
 
if(EEPROM_Init())
{
NCMAG_IsCalibrated = NCMag_CalibrationRead();
if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
}
else UART1_PutString("\r\n EEPROM data not available!!!!!!!!!!!!!!!");
// perform self test
if(!NCMAG_SelfTest())
{
UART1_PutString("\r\n Selftest failed!!!!!!!!!!!!!!!!!!!!\r\n");
LED_RED_ON;
NCMAG_IsCalibrated = 0;
}
else UART1_PutString("\r\n Selftest ok");
 
// initialize magnetic sensor configuration
InitNC_MagnetSensor();
}
else
{
UART1_PutString("\n\r Not compatible!");
UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
LED_RED_ON;
}
}
else // nothing found
{
NCMAG_SensorType = TYPE_NONE;
UART1_PutString("not found!");
}
return(NCMAG_Present);
}