Subversion Repositories NaviCtrl

Compare Revisions

Ignore whitespace Rev 400 → Rev 401

/tags/V0.28m/uart1.c
0,0 → 1,863
/*#######################################################################################*/
/* !!! THIS IS NOT FREE SOFTWARE !!! */
/*#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software Nutzungsbedingungen (english version: see below)
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand
// + des Mitverschuldens offen.
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
// + Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software LICENSING TERMS
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
// + The Software may only be used with the Licensor's products.
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
// + agreement shall be the property of the Licensor.
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
// + features that can be used to identify the program may not be altered or defaced by the customer.
// + The customer shall be responsible for taking reasonable precautions
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
// + #### END OF LICENSING TERMS ####
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
 
#include "91x_lib.h"
#include "main.h"
#include "config.h"
#include "menu.h"
#include "GPS.h"
#include "i2c.h"
#include "uart0.h"
#include "uart1.h"
#include "uart2.h"
#include "timer1.h"
#include "timer2.h"
#include "analog.h"
#include "compass.h"
#include "waypoints.h"
#include "mkprotocol.h"
#include "params.h"
#include "fifo.h"
#include "debug.h"
#include "spi_slave.h"
#include "ftphelper.h"
#include "led.h"
 
#define FALSE 0
#define TRUE 1
 
#define ABO_TIMEOUT 8000 // disable abo after 8 seconds
u32 UART1_AboTimeOut = 0;
 
u8 UART1_Request_VersionInfo = FALSE;
u8 UART1_Request_ExternalControl= FALSE;
u8 UART1_Request_Display = FALSE;
u8 UART1_Request_Display1 = FALSE;
u8 UART1_Request_DebugData = FALSE;
u8 UART1_Request_DebugLabel = 255;
u8 UART1_Request_NaviData = FALSE;
u8 UART1_Request_ErrorMessage = FALSE;
u8 UART1_Request_WritePoint = 0xFF;
u8 UART1_Request_ReadPoint = 0;
u8 UART1_Request_Data3D = FALSE;
u8 UART1_Request_MotorData = FALSE;
u8 UART1_Request_Echo = FALSE;
u8 UART1_Request_ParameterId = 0;
u8 UART1_Request_Parameter = FALSE;
u8 UART1_DisplayKeys = 0;
u8 UART1_DisplayLine = 0;
u8 UART1_ConfirmFrame = 0;
u8 UART1_Request_FTP = FALSE;
u8 LastTransmittedFCStatusFlags2 = 0;
u8 UART1_ExternalControlConfirmFrame = FALSE;
 
UART_TypeDef *DebugUART = UART1;
 
#ifdef FOLLOW_ME
#define FOLLOW_ME_INTERVAL 200 // 5 Hz
u32 UART1_FollowMe_Timer = 0;
Point_t FollowMe;
#endif
 
// the primary rx fifo
#define UART1_RX_FIFO_LEN 1024
u8 UART1_rxfifobuffer[UART1_RX_FIFO_LEN];
fifo_t UART1_rx_fifo;
 
// the rx buffer
#define UART1_RX_BUFFER_LEN 1024
u8 UART1_rbuffer[UART1_RX_BUFFER_LEN];
Buffer_t UART1_rx_buffer;
 
// the tx buffer
#define UART1_TX_BUFFER_LEN 1024
u8 UART1_tbuffer[UART1_TX_BUFFER_LEN];
Buffer_t UART1_tx_buffer;
 
volatile u8 SerialLinkOkay = 0;
 
u8 text[200];
 
const u8 ANALOG_LABEL[32][16] =
{
//1234567890123456
"AngleNick ", //0
"AngleRoll ",
"AccNick ",
"AccRoll ",
"OperatingRadius ",
"FC-Flags ", //5
"NC-Flags ",
"NickServo ",
"RollServo ",
"GPS Data ",
"CompassHeading ", //10
"GyroHeading ",
"SPI Error ",
"SPI Okay ",
"I2C Error ",
"I2C Okay ", //15
"16 ",
"17 ",
"18 ",
"19 ", // SD-Card-time
"EarthMagnet [%] ", //20
"Z_Speed ",
"N_Speed ",
"E_Speed ",
"Magnet X ",
"Magnet Y ", //25
"Magnet Z ",
"Distance N ",
"Distance E ",
"GPS_Nick ",
"GPS_Roll ", //30
"Used_Sats "
};
 
DebugOut_t DebugOut;
ExternControl_t ExternControl;
UART_VersionInfo_t UART_VersionInfo;
NaviData_t NaviData;
Data3D_t Data3D;
u16 Echo; // 2 bytes recieved will be sent back as echo
 
u32 UART1_DebugData_Timer = 0;
u32 UART1_DebugData_Interval = 0; // in ms
u32 UART1_NaviData_Timer = 0;
u32 UART1_NaviData_Interval = 0; // in ms
u32 UART1_Data3D_Timer = 0;
u32 UART1_Data3D_Interval = 0; // in ms
u32 UART1_MotorData_Timer = 0;
u32 UART1_MotorData_Interval = 0; // in ms
u32 UART1_Display_Timer = 0;
u32 UART1_Display_Interval = 0; // in ms
 
/********************************************************/
/* Initialization the UART1 */
/********************************************************/
void UART1_Init (void)
{
GPIO_InitTypeDef GPIO_InitStructure;
UART_InitTypeDef UART_InitStructure;
 
// initialize txd buffer
Buffer_Init(&UART1_tx_buffer, UART1_tbuffer, UART1_TX_BUFFER_LEN);
 
// initialize rxd buffer
Buffer_Init(&UART1_rx_buffer, UART1_rbuffer, UART1_RX_BUFFER_LEN);
 
// initialize the rx fifo, block UART IRQ geting a byte from fifo
fifo_init(&UART1_rx_fifo, UART1_rxfifobuffer, UART1_RX_FIFO_LEN, NO_ITLine, UART1_ITLine);
 
SCU_APBPeriphClockConfig(__UART1, ENABLE); // Enable the UART1 Clock
SCU_APBPeriphClockConfig(__GPIO3, ENABLE); // Enable the GPIO3 Clock
 
/*Configure UART1_Rx pin GPIO3.2*/
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinInput;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Type = GPIO_Type_PushPull;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Enable;
GPIO_InitStructure.GPIO_Alternate = GPIO_InputAlt1; // UART1_RxD
GPIO_Init(GPIO3, &GPIO_InitStructure);
 
/*Configure UART1_Tx pin GPIO3.3*/
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinOutput;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Type = GPIO_Type_PushPull;
GPIO_InitStructure.GPIO_Alternate = GPIO_OutputAlt2; // UART1_TX
GPIO_Init(GPIO3, &GPIO_InitStructure);
 
/* UART1 configured as follow:
- Word Length = 8 Bits
- One Stop Bit
- No parity
- BaudRate = 57600 baud
- Hardware flow control Disabled
- Receive and transmit enabled
- Receive and transmit FIFOs are Disabled
*/
UART_StructInit(&UART_InitStructure);
UART_InitStructure.UART_WordLength = UART_WordLength_8D;
UART_InitStructure.UART_StopBits = UART_StopBits_1;
UART_InitStructure.UART_Parity = UART_Parity_No ;
UART_InitStructure.UART_BaudRate = UART1_BAUD_RATE;
UART_InitStructure. UART_HardwareFlowControl = UART_HardwareFlowControl_None;
UART_InitStructure.UART_Mode = UART_Mode_Tx_Rx;
UART_InitStructure.UART_FIFO = UART_FIFO_Enable;
UART_InitStructure.UART_TxFIFOLevel = UART_FIFOLevel_1_2;
UART_InitStructure.UART_RxFIFOLevel = UART_FIFOLevel_1_2;
 
UART_DeInit(UART1); // reset uart 1 to default
UART_Init(UART1, &UART_InitStructure); // initialize uart 1
// enable uart 1 interrupts selective
UART_ITConfig(UART1, UART_IT_Receive | UART_IT_ReceiveTimeOut, ENABLE);
UART_Cmd(UART1, ENABLE); // enable uart 1
// configure the uart 1 interupt line
VIC_Config(UART1_ITLine, VIC_IRQ, PRIORITY_UART1);
// enable the uart 1 IRQ
VIC_ITCmd(UART1_ITLine, ENABLE);
 
// initialize the debug timer
UART1_DebugData_Timer = SetDelay(UART1_DebugData_Interval);
UART1_NaviData_Timer = SetDelay(UART1_NaviData_Interval)+500;
 
// Fill Version Info Structure
UART_VersionInfo.SWMajor = VERSION_MAJOR;
UART_VersionInfo.SWMinor = VERSION_MINOR;
UART_VersionInfo.SWPatch = VERSION_PATCH;
UART_VersionInfo.ProtoMajor = VERSION_SERIAL_MAJOR;
UART_VersionInfo.ProtoMinor = VERSION_SERIAL_MINOR;
 
NaviData.Version = NAVIDATA_VERSION;
 
UART1_PutString("\r\n UART1 init...ok");
}
 
 
/****************************************************************/
/* USART1 receiver ISR */
/****************************************************************/
void UART1_IRQHandler(void)
{
static u8 abortState = 0;
u8 c;
 
if((UART_GetITStatus(UART1, UART_IT_Receive) != RESET) || (UART_GetITStatus(UART1, UART_IT_ReceiveTimeOut) != RESET) )
{
// clear the pending bits!
UART_ClearITPendingBit(UART1, UART_IT_Receive);
UART_ClearITPendingBit(UART1, UART_IT_ReceiveTimeOut);
// if debug UART is not UART1
if (DebugUART != UART1)
{ // forward received data to the debug UART tx buffer
while(UART_GetFlagStatus(UART1, UART_FLAG_RxFIFOEmpty) != SET)
{
// move the byte from the rx buffer of UART1 to the tx buffer of DebugUART
c = UART_ReceiveData(UART1);
 
// check for abort condition (ESC ESC 0x55 0xAA 0x00)
switch (abortState)
{
case 0:
if (c == 27) abortState++;
break;
case 1:
if (c == 27) abortState++;
else abortState = 0;
break;
case 2:
if (c == 0x55) abortState++;
else abortState = 0;
break;
case 3:
if (c == 0xAA) abortState++;
else abortState = 0;
break;
case 4:
if (c == 0x00)
{
if(DebugUART == UART0)
{
UART0_Connect_to_MKGPS(UART0_BAUD_RATE);
TIMER2_Init(); // enbable servo outputs
fifo_purge(&UART1_rx_fifo); // flush the whole fifo init buffer
}
DebugUART = UART1;
}
abortState = 0;
break;
} // end switch abort state
// if the Debug uart is not UART1, redirect input to the Debug UART
if (DebugUART != UART1)
{
// wait for space in the tx buffer of the DebugUART
while(UART_GetFlagStatus(DebugUART, UART_FLAG_TxFIFOFull) == SET) {};
// move byte to the tx fifo of the debug uart
UART_SendData(DebugUART, c);
}
}
}
else // DebugUART == UART1 (normal operation)
{
while(UART_GetFlagStatus(UART1, UART_FLAG_RxFIFOEmpty) != SET)
{ // some byes in the hardware fifo
// get byte from hardware fifo
c = UART_ReceiveData(UART1);
// put into the software fifo
if(!fifo_put(&UART1_rx_fifo, c))
{ // fifo overflow
//fifo_purge(&UART1_rx_fifo); // flush the whole buffer
}
} // EOF while some byes in the hardware fifo
} // eof DebugUart = UART1
}
 
 
 
VIC1->VAR = 0xFF; // write any value to VIC1 Vector address register
}
 
/**************************************************************/
/* Process incomming data from debug uart */
/**************************************************************/
void UART1_ProcessRxData(void)
{
// return on forwarding uart or unlocked rx buffer
u8 c;
if(DebugUART != UART1) return;
// if rx buffer is not locked
if(UART1_rx_buffer.Locked == FALSE)
{
//collect data from primary rx fifo
while(fifo_get(&UART1_rx_fifo, &c))
{
// break if complete frame is collected
if(MKProtocol_CollectSerialFrame(&UART1_rx_buffer, c)) break;
}
}
if(UART1_rx_buffer.Locked == FALSE) return;
 
Point_t * pPoint = NULL;
SerialMsg_t SerialMsg;
 
// analyze header first
MKProtocol_DecodeSerialFrameHeader(&UART1_rx_buffer, &SerialMsg);
if( SerialMsg.Address == FC_ADDRESS )
{
switch(SerialMsg.CmdID)
{
// case 'v': // version
case 'b': // extern control
UART1_ExternalControlConfirmFrame = 1;
case 'y': // serial poti values
Buffer_Copy(&UART1_rx_buffer, &UART2_tx_buffer); //forward to FC
Buffer_Clear(&UART1_rx_buffer); // free rc buffer for next frame
return; //end process rx data
break;
}
}
 
MKProtocol_DecodeSerialFrameData(&UART1_rx_buffer, &SerialMsg); // decode serial frame in rxd buffer
if(SerialMsg.CmdID != 'z') SerialLinkOkay = 250; // reset SerialTimeout, but not in case of the "ping"
switch(SerialMsg.Address) // check for Slave Address
{
case NC_ADDRESS: // own Slave Address
switch(SerialMsg.CmdID)
{
case 'f': // ftp command
UART1_Request_FTP = SerialMsg.pData[0];
 
//if (UART1_Request_FTP == FTP_CMD_SET_CWD || UART1_Request_FTP == FTP_CMD_GET_FILE)
memcpy(&FTP_data, &SerialMsg.pData[1], sizeof(FTP_data)); // copy ftp parameter
break;
 
case 'z': // connection checker
memcpy(&Echo, SerialMsg.pData, sizeof(Echo)); // copy echo pattern
UART1_Request_Echo = TRUE;
break;
 
case 'e': // request for the text of the error status
UART1_Request_ErrorMessage = TRUE;
break;
 
case 's':// new target position
pPoint = (Point_t*)SerialMsg.pData;
if(pPoint->Position.Status == NEWDATA)
{
//if(!(FC.StatusFlags & FC_STATUS_FLY)) PointList_Clear(); // flush the list
//pPoint->Index = 1; // must be one after empty list
PointList_SetAt(pPoint);
if(FC.StatusFlags & FC_STATUS_FLY) PointList_WPActive(TRUE);
GPS_pWaypoint = PointList_WPBegin(); // updates POI index
if(GPS_pWaypoint != NULL) // if new WP exist
{ // update WP hold time stamp immediately!
/* if(GPS_pWaypoint->Heading > 0 && GPS_pWaypoint->Heading <= 360)
{
CAM_Orientation.Azimuth = GPS_pWaypoint->Heading;
CAM_Orientation.UpdateMask |= CAM_UPDATE_AZIMUTH;
}
*/
}
BeepTime = 50;
}
break;
 
case 'u': // redirect debug uart
switch(SerialMsg.pData[0])
{
case UART_FLIGHTCTRL:
UART2_Init(); // initialize UART2 to FC pins
fifo_purge(&UART1_rx_fifo);
TIMER2_Deinit(); // reduce irq load
DebugUART = UART2;
break;
case UART_MK3MAG:
if(FC.StatusFlags & FC_STATUS_MOTOR_RUN) break; // not if the motors are running
UART0_Connect_to_MK3MAG(); // mux UART0 to MK3MAG pins
GPSData.Status = INVALID;
fifo_purge(&UART1_rx_fifo);
DebugUART = UART0;
break;
case UART_MKGPS:
if(FC.StatusFlags & FC_STATUS_MOTOR_RUN) break; // not if the motors are running
TIMER2_Deinit(); // disable servo outputs to reduce irq load
UART0_Connect_to_MKGPS(UART0_BAUD_RATE); // connect UART0 to MKGPS pins
GPSData.Status = INVALID;
fifo_purge(&UART1_rx_fifo);
DebugUART = UART0;
break;
default:
break;
}
break;
 
case 'w':// Set point in list at index
{
pPoint = (Point_t*)SerialMsg.pData;
 
if((pPoint->Position.Status == INVALID) && (pPoint->Index == 0))
{
PointList_Clear();
GPS_pWaypoint = PointList_WPBegin();
UART1_Request_WritePoint = 0; // return new point count
}
else
{ // update WP in list at index
if(pPoint->Index > MaxNumberOfWaypoints)
{
UART1_Request_WritePoint = 254;
pPoint->Index = MaxNumberOfWaypoints;
}
else
UART1_Request_WritePoint = PointList_SetAt(pPoint);
if(FC.StatusFlags & FC_STATUS_FLY) PointList_WPActive(TRUE);
if(UART1_Request_WritePoint == pPoint->Index)
{
BeepTime = 500;
}
}
}
break;
 
case 'x':// Read Waypoint from List
UART1_Request_ReadPoint = SerialMsg.pData[0];
break;
 
case 'j':// Set/Get NC-Parameter
switch(SerialMsg.pData[0])
{
case 0: // get
break;
 
case 1: // set
{
s16 value;
value = SerialMsg.pData[2] + (s16)SerialMsg.pData[3] * 0x0100;
NCParams_SetValue(SerialMsg.pData[1], &value);
}
break;
 
default:
break;
}
UART1_Request_ParameterId = SerialMsg.pData[1];
UART1_Request_Parameter = TRUE;
break;
default:
// unsupported command recieved
break;
} // case NC_ADDRESS
// "break;" is missing here to fall thru to the common commands
 
default: // and any other Slave Address
 
switch(SerialMsg.CmdID) // check CmdID
{
case 'a':// request for the labels of the analog debug outputs
UART1_Request_DebugLabel = SerialMsg.pData[0];
if(UART1_Request_DebugLabel > 31) UART1_Request_DebugLabel = 31;
break;
/*
case 'b': // submit extern control
memcpy(&ExternControl, SerialMsg.pData, sizeof(ExternControl));
UART1_ConfirmFrame = ExternControl.Frame;
break;
*/
case 'd': // request for debug data;
UART1_DebugData_Interval = (u32) SerialMsg.pData[0] * 10;
if(UART1_DebugData_Interval > 0) UART1_Request_DebugData = TRUE;
UART1_AboTimeOut = SetDelay(ABO_TIMEOUT);
break;
 
case 'c': // request for 3D data;
UART1_Data3D_Interval = (u32) SerialMsg.pData[0] * 10;
if(UART1_Data3D_Interval > 0) UART1_Request_Data3D = TRUE;
UART1_AboTimeOut = SetDelay(ABO_TIMEOUT);
break;
 
case 'k': // request for Motor data;
UART1_MotorData_Interval = (u32) SerialMsg.pData[0] * 10;
if(UART1_MotorData_Interval > 0) UART1_Request_MotorData = TRUE;
UART1_AboTimeOut = SetDelay(ABO_TIMEOUT);
break;
 
case 'h':// reqest for display line
if((SerialMsg.pData[0]& 0x80) == 0x00)// old format
{
UART1_DisplayLine = 2;
UART1_Display_Interval = 0;
}
else
{
UART1_DisplayKeys |= ~SerialMsg.pData[0];
UART1_Display_Interval = (u32) SerialMsg.pData[1] * 10;
UART1_DisplayLine = 4;
UART1_AboTimeOut = SetDelay(ABO_TIMEOUT);
}
UART1_Request_Display = TRUE;
break;
 
case 'l':// reqest for display columns
MenuItem = SerialMsg.pData[0];
UART1_Request_Display1 = TRUE;
break;
 
case 'o': // request for navigation information
UART1_NaviData_Interval = (u32) SerialMsg.pData[0] * 10;
if(UART1_NaviData_Interval > 0) UART1_Request_NaviData = TRUE;
UART1_AboTimeOut = SetDelay(ABO_TIMEOUT);
break;
 
case 'v': // request for version info
UART1_Request_VersionInfo = TRUE;
break;
default:
// unsupported command recieved
break;
}
break; // default:
}
Buffer_Clear(&UART1_rx_buffer); // free rc buffer for next frame
}
 
 
/*****************************************************/
/* Send a character */
/*****************************************************/
s16 UART1_Putchar(char c)
{
u32 timeout = 10000;
if (c == '\n') UART1_Putchar('\r');
// wait until txd fifo is not full
while(UART_GetFlagStatus(UART1, UART_FLAG_TxFIFOFull) != RESET) if(--timeout == 0) return(0);
// transmit byte
UART_SendData(UART1, c);
#ifdef FOLLOW_ME
if(TransmitAlsoToFC) UART_SendData(UART2, c);
#endif
return (0);
}
 
/*****************************************************/
/* Send a string to the debug uart */
/*****************************************************/
void UART1_PutString(u8 *s)
{
if(s == NULL) return;
while (*s != '\0' && DebugUART == UART1)
{
UART1_Putchar(*s);
s ++;
}
}
 
 
/**************************************************************/
/* Transmit tx buffer via debug uart */
/**************************************************************/
void UART1_Transmit(void)
{
u8 tmp_tx;
if(DebugUART != UART1) return;
// if something has to be send and the txd fifo is not full
if(UART1_tx_buffer.Locked == TRUE)
{
// while there is some space in the tx fifo
while(UART_GetFlagStatus(UART1, UART_FLAG_TxFIFOFull) != SET)
{
tmp_tx = UART1_tx_buffer.pData[UART1_tx_buffer.Position++]; // read next byte from txd buffer
UART_SendData(UART1, tmp_tx); // put character to txd fifo
#ifdef FOLLOW_ME
if(TransmitAlsoToFC)
{
UART_SendData(UART2, tmp_tx); // put character to txd fifo
}
#endif
// if terminating character or end of txd buffer reached
if((tmp_tx == '\r') || (UART1_tx_buffer.Position == UART1_tx_buffer.DataBytes))
{
Buffer_Clear(&UART1_tx_buffer); // clear txd buffer
#ifdef FOLLOW_ME
TransmitAlsoToFC = 0;
#endif
break; // end while loop
}
}
}
}
 
 
/**************************************************************/
/* Send the answers to incomming commands at the debug uart */
/**************************************************************/
void UART1_TransmitTxData(void)
{
static u8 motorindex1 = 255, motorindex2 = 0;
if(DebugUART != UART1) return;
 
if(CheckDelay(UART1_AboTimeOut))
{
UART1_DebugData_Interval = 0;
UART1_NaviData_Interval = 0;
UART1_Data3D_Interval = 0;
UART1_Display_Interval = 0;
UART1_MotorData_Interval = 0;
}
 
UART1_Transmit(); // output pending bytes in tx buffer
if((UART1_tx_buffer.Locked == TRUE)) return;
 
if(UART1_Request_Parameter && (UART1_tx_buffer.Locked == FALSE))
{
s16 ParamValue;
NCParams_GetValue(UART1_Request_ParameterId, &ParamValue);
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'J', NC_ADDRESS, 2, &UART1_Request_ParameterId, sizeof(UART1_Request_ParameterId), &ParamValue, sizeof(ParamValue)); // answer the param request
UART1_Request_Parameter = FALSE;
}
else if(UART1_Request_Echo && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'Z', NC_ADDRESS, 1, &Echo, sizeof(Echo)); // answer the echo request
Echo = 0; // reset echo value
UART1_Request_Echo = FALSE;
}
else if(UART1_Request_FTP && (UART1_tx_buffer.Locked == FALSE))
{
CheckFTPCommand(UART1_Request_FTP);
UART1_Request_FTP = FALSE;
}
else if((UART1_Request_WritePoint!= 0xFF) && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'W', NC_ADDRESS, 1, &UART1_Request_WritePoint, sizeof(UART1_Request_WritePoint));
UART1_Request_WritePoint = 0xFF;
}
else if((UART1_Request_ReadPoint) && (UART1_tx_buffer.Locked == FALSE))
{
u8 PointCount = PointList_GetCount();
if (UART1_Request_ReadPoint <= PointCount)
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'X', NC_ADDRESS, 3, &PointCount, 1, &UART1_Request_ReadPoint, 1, PointList_GetAt(UART1_Request_ReadPoint), sizeof(Point_t));
}
else
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer,'X', NC_ADDRESS, 1, &PointCount, sizeof(PointCount));
}
UART1_Request_ReadPoint = 0;
}
else if((UART1_Request_DebugLabel != 0xFF) && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'A', NC_ADDRESS, 2, &UART1_Request_DebugLabel, sizeof(UART1_Request_DebugLabel), (u8 *) ANALOG_LABEL[UART1_Request_DebugLabel], 16);
UART1_Request_DebugLabel = 0xFF;
}
else if(UART1_ExternalControlConfirmFrame && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'B', NC_ADDRESS, 1,(u8 *)&UART1_ExternalControlConfirmFrame, sizeof(UART1_ExternalControlConfirmFrame));
UART1_ExternalControlConfirmFrame = 0;
}
else if(( ((UART1_NaviData_Interval > 0) && CheckDelay(UART1_NaviData_Timer) ) || UART1_Request_NaviData) && (UART1_tx_buffer.Locked == FALSE))
{
NaviData.Errorcode = ErrorCode;
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'O', NC_ADDRESS, 1 , (u8 *)&NaviData, sizeof(NaviData));
UART1_NaviData_Timer = SetDelay(UART1_NaviData_Interval);
UART1_Request_NaviData = FALSE;
LastTransmittedFCStatusFlags2 = NaviData.FCStatusFlags2;
}
else if( (( (UART1_DebugData_Interval > 0) && CheckDelay(UART1_DebugData_Timer)) || UART1_Request_DebugData) && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'D', NC_ADDRESS, 1,(u8 *)&DebugOut, sizeof(DebugOut));
UART1_DebugData_Timer = SetDelay(UART1_DebugData_Interval);
UART1_Request_DebugData = FALSE;
}
else if((( (UART1_Data3D_Interval > 0) && CheckDelay(UART1_Data3D_Timer) ) || UART1_Request_Data3D) && (UART1_tx_buffer.Locked == FALSE))
{
Data3D.StickNick = FC.StickNick;
Data3D.StickRoll = FC.StickRoll;
Data3D.StickYaw = FC.StickYaw;
Data3D.StickGas = FC.StickGas;
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'C', NC_ADDRESS, 1,(u8 *)&Data3D, sizeof(Data3D));
UART1_Data3D_Timer = SetDelay(UART1_Data3D_Interval);
UART1_Request_Data3D = FALSE;
}
else if((((UART1_MotorData_Interval > 0) && CheckDelay(UART1_MotorData_Timer) ) || UART1_Request_MotorData) && (UART1_tx_buffer.Locked == FALSE))
{
do
{
motorindex1++;
motorindex1%=12;
if(!motorindex1) {motorindex2++; motorindex2 %= 12;};
if(motorindex1 == motorindex2) break;
}
while((Motor[motorindex1].State & 0x80) != 0x80); // skip unused Motors
 
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'K', NC_ADDRESS, 2, &motorindex1, sizeof(motorindex1),(u8 *)&Motor[motorindex1], sizeof(Motor_t));
UART1_MotorData_Timer = SetDelay(UART1_MotorData_Interval);
UART1_Request_MotorData = FALSE;
}
/*
else if(UART1_ConfirmFrame && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'B', NC_ADDRESS, 1, &UART1_ConfirmFrame, sizeof(UART1_ConfirmFrame));
UART1_ConfirmFrame = 0;
}
*/
/*
else if(UART1_Request_ExternalControl && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'G', NC_ADDRESS, 1, (u8 *)&ExternControl, sizeof(ExternControl));
UART1_Request_ExternalControl = FALSE;
}
*/
else if( (( (UART1_Display_Interval > 0) && CheckDelay(UART1_Display_Timer)) || UART1_Request_Display) && (UART1_tx_buffer.Locked == FALSE))
{
if(UART1_DisplayLine > 3)
{
Menu_Update(UART1_DisplayKeys);
UART1_DisplayKeys = 0;
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'H', NC_ADDRESS, 1, (u8*)DisplayBuff, sizeof(DisplayBuff));
}
else
{
UART1_DisplayLine = 2;
sprintf(text,"!!! incompatible !!!");
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'H', NC_ADDRESS, 2, &UART1_DisplayLine, sizeof(UART1_DisplayLine), (u8*)&text, 20);
if(UART1_DisplayLine++ > 3) UART1_DisplayLine = 0;
}
UART1_Display_Timer = SetDelay(UART1_Display_Interval);
UART1_Request_Display = FALSE;
}
else if(UART1_Request_Display1 && (UART1_tx_buffer.Locked == FALSE))
{
Menu_Update(0);
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'L', NC_ADDRESS, 3, (u8*)&MenuItem, sizeof(MenuItem), (u8*)&MaxMenuItem, sizeof(MaxMenuItem),(u8*)DisplayBuff, sizeof(DisplayBuff));
UART1_Request_Display1 = FALSE;
}
else if(UART1_Request_VersionInfo && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'V', NC_ADDRESS,1, (u8 *)&UART_VersionInfo, sizeof(UART_VersionInfo));
UART1_Request_VersionInfo = FALSE;
}
else if(UART1_Request_ErrorMessage && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 'E', NC_ADDRESS, 1, (u8 *)&ErrorMSG, sizeof(ErrorMSG));
UART1_Request_ErrorMessage = FALSE;
}
#ifdef FOLLOW_ME
else if(CheckDelay(UART1_FollowMe_Timer) && (UART1_tx_buffer.Locked == FALSE))
{
if((GPSData.Status != INVALID) && (GPSData.SatFix == SATFIX_3D) && (GPSData.Flags & FLAG_GPSFIXOK) && (GPSData.NumOfSats >= 4))
{
TransmitAlsoToFC = 1;
// update FollowMe content
FollowMe.Position.Longitude = GPSData.Position.Longitude;
FollowMe.Position.Latitude = GPSData.Position.Latitude;
FollowMe.Position.Status = NEWDATA;
FollowMe.Position.Altitude = 1;
// 0 -> no Orientation
// 1-360 -> CompassCourse Setpoint
// -1 -> points to WP1 -> itself
FollowMe.Heading = -1;
FollowMe.ToleranceRadius = 1;
FollowMe.HoldTime = 60;
FollowMe.Event_Flag = 1;
FollowMe.Index = 1; // 0 = Delete List, 1 place at first entry in the list
FollowMe.Type = POINT_TYPE_WP;
FollowMe.WP_EventChannelValue = 100; // set servo value
FollowMe.AltitudeRate = 0; // do not change height
FollowMe.reserve[0] = 0; // reserve
FollowMe.reserve[1] = 0; // reserve
FollowMe.reserve[2] = 0; // reserve
FollowMe.reserve[3] = 0; // reserve
MKProtocol_CreateSerialFrame(&UART1_tx_buffer, 's', NC_ADDRESS, 1, (u8 *)&FollowMe, sizeof(FollowMe));
}
UART1_FollowMe_Timer = SetDelay(FOLLOW_ME_INTERVAL); // set new update time
}
#endif
#ifdef DEBUG // only include functions if DEBUG is defined
else if(SendDebugOutput && (UART1_tx_buffer.Locked == FALSE))
{
MKProtocol_CreateSerialFrame(&UART1_tx_buffer,'0', NC_ADDRESS, 1, (u8 *) &tDebug, sizeof(tDebug));
SendDebugOutput = 0;
}
#endif
UART1_Transmit(); // output pending bytes in tx buffer
}