Subversion Repositories MK3Mag

Compare Revisions

Ignore whitespace Rev 50 → Rev 51

/tags/V0.21b/main.c
0,0 → 1,492
/*#######################################################################################
MK3Mag 3D-Magnet sensor
!!! THIS IS NOT FREE SOFTWARE !!!
#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 05.2008 Holger Buss
// + Thanks to Ilja Fähnrich (P_Latzhalter)
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + AUSNAHME: Ein bei www.mikrokopter.de erworbener vorbestückter MK3Mag darf als Baugruppe auch in kommerziellen Systemen verbaut werden
// + Im Zweifelsfall bitte anfragen bei: info@mikrokopter.de
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// + * PORTING this software (or parts of it) to systems (other than hardware from www.mikrokopter.de) is NOT allowed
// + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// + from this software without specific prior written permission.
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + for non-commercial use (directly or indirectly)
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + with our written permission
// + Exception: A preassembled MK3Mag, purchased from www.mikrokopter.de may be used as a part of commercial systems
// + In case of doubt please contact: info@MikroKopter.de
// + * If sources or documentations are redistributet on other webpages, our webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// + POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <avr/interrupt.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
 
#include "main.h"
#include "timer0.h"
#include "twislave.h"
#include "led.h"
#include "analog.h"
#include "uart.h"
 
#define CALIBRATION_VERSION 1
 
AttitudeSource_t AttitudeSource = ATTITUDE_SOURCE_ACC;
Orientation_t Orientation = ORIENTATION_FC;
 
uint16_t Led_Timer = 0;
 
typedef struct
{
int16_t Range;
int16_t Offset;
} Scaling_t;
 
typedef struct
{
Scaling_t MagX;
Scaling_t MagY;
Scaling_t MagZ;
Scaling_t AccX;
Scaling_t AccY;
Scaling_t AccZ;
unsigned char Version;
} Calibration_t;
 
Calibration_t eeCalibration EEMEM; // calibration data in EEProm
Calibration_t Calibration; // calibration data in RAM
 
// magnet sensor variable
int16_t RawMagnet1a, RawMagnet1b; // raw magnet sensor data
int16_t RawMagnet2a, RawMagnet2b;
int16_t RawMagnet3a, RawMagnet3b;
int16_t UncalMagX, UncalMagY, UncalMagZ; // sensor signal difference without Scaling
int16_t MagX = 0, MagY = 0, MagZ = 0; // rescaled magnetic field readings
 
// acceleration sensor variables
int16_t RawAccX = 0, RawAccY = 0, RawAccZ = 0; // raw acceleration readings
int16_t AccX = 0, AccY = 0, AccZ = 0; // rescaled acceleration readings
int16_t AccAttitudeNick = 0, AccAttitudeRoll = 0; // nick and roll angle from acc
 
int16_t Heading = -1; // the current compass heading in deg
 
 
void CalcFields(void)
{
UncalMagX = (RawMagnet1a - RawMagnet1b);
UncalMagY = (RawMagnet3a - RawMagnet3b);
UncalMagZ = (RawMagnet2a - RawMagnet2b);
 
if(Calibration.MagX.Range != 0) MagX = (1024L * (int32_t)(UncalMagX - Calibration.MagX.Offset)) / (Calibration.MagX.Range);
else MagX = 0;
if(Calibration.MagY.Range != 0) MagY = (1024L * (int32_t)(UncalMagY - Calibration.MagY.Offset)) / (Calibration.MagY.Range);
else MagY = 0;
if(Calibration.MagY.Range != 0) MagZ = (1024L * (int32_t)(UncalMagZ - Calibration.MagZ.Offset)) / (Calibration.MagZ.Range);
else MagZ = 0;
 
if(AccPresent)
{
AccX = (RawAccX - Calibration.AccX.Offset);
AccY = (RawAccY - Calibration.AccY.Offset);
AccZ = (Calibration.AccZ.Offset - RawAccZ);
#if (BOARD == 10) // the hardware 1.0 has the LIS3L02AL
// acc mode assumes orientation like FC
if(AccX > 136) AccAttitudeNick = -800;
else
if(AccX < -136) AccAttitudeNick = 800;
else AccAttitudeNick = (int16_t)(-1800.0 * asin((double) AccX / 138.0) / M_PI);
 
 
if(AccY > 136) AccAttitudeRoll = 800;
else
if(AccY < -136) AccAttitudeRoll = -800;
else AccAttitudeRoll = (int16_t)( 1800.0 * asin((double) AccY / 138.0) / M_PI);
 
#else // the hardware 1.1 has the LIS344ALH with a different axis definition (X -> -Y, Y -> X, Z -> Z)
// acc mode assumes orientation like FC
if(AccY > 136) AccAttitudeNick = 800;
else
if(AccY < -136) AccAttitudeNick = -800;
else AccAttitudeNick = (int16_t)( 1800.0 * asin((double) AccY / 138.0) / M_PI);
 
 
if(AccX > 136) AccAttitudeRoll = 800;
else
if(AccX < -136) AccAttitudeRoll = -800;
else AccAttitudeRoll = (int16_t)( 1800.0 * asin((double) AccX / 138.0) / M_PI);
#endif
}
}
 
 
void CalcHeading(void)
{
double nick_rad, roll_rad, Hx, Hy, Cx = 0.0, Cy = 0.0, Cz = 0.0;
int16_t nick, roll;
int16_t heading = -1;
 
// blink code for normal operation
if(CheckDelay(Led_Timer))
{
if(Calibration.Version != CALIBRATION_VERSION) LED_GRN_TOGGLE;
else LED_GRN_ON;
Led_Timer = SetDelay(150);
}
switch(Orientation)
{
case ORIENTATION_NC:
Cx = MagX;
Cy = MagY;
Cz = MagZ;
break;
 
case ORIENTATION_FC:
// rotation of 90 deg compared to NC setup
Cx = MagY;
Cy = -MagX;
Cz = MagZ;
break;
}
 
// calculate nick and roll angle in rad
switch(AttitudeSource)
{
case ATTITUDE_SOURCE_I2C:
cli(); // stop interrupts
nick = I2C_WriteAttitude.Nick;
roll = I2C_WriteAttitude.Roll;
sei(); // start interrupts
break;
case ATTITUDE_SOURCE_UART:
cli(); // stop interrupts
nick = ExternData.Attitude[NICK];
roll = ExternData.Attitude[ROLL];
sei(); // start interrupts
break;
case ATTITUDE_SOURCE_ACC:
nick = AccAttitudeNick;
roll = AccAttitudeRoll;
break;
default:
nick = 0;
roll = 0;
break;
}
 
nick_rad = ((double)nick) * M_PI / (double)(1800.0);
roll_rad = ((double)roll) * M_PI / (double)(1800.0);
 
// calculate attitude correction
Hx = Cx * cos(nick_rad) - Cz * sin(nick_rad);
Hy = Cy * cos(roll_rad) + Cz * sin(roll_rad);
 
DebugOut.Analog[27] = (int16_t)Hx;
DebugOut.Analog[28] = (int16_t)Hy;
 
// calculate Heading
heading = (int16_t)((180.0 * atan2(Hy, Hx)) / M_PI);
// atan2 returns angular range from -180 deg to 180 deg in counter clockwise notation
// but the compass course is defined in a range from 0 deg to 360 deg clockwise notation.
if (heading < 0) heading = -heading;
else heading = 360 - heading;
 
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(Calibration.Version != CALIBRATION_VERSION) heading = -1; // Version of the calibration Data does not match
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
cli(); // stop interrupts
if(abs(heading) < 361) Heading = heading;
else (Heading = -1);
sei(); // start interrupts
 
}
 
void Calibrate(void)
{
uint8_t cal;
static uint8_t calold = 0;
static int16_t Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
static uint8_t blinkcount = 0;
static uint8_t invert_blinking = 0;
 
// check both sources of communication for calibration request
if(I2C_WriteCal.CalByte) cal = I2C_WriteCal.CalByte;
else cal = ExternData.CalState;
 
 
if(cal > 5) cal = 0;
// blink code for current calibration state
if(cal)
{
if(CheckDelay(Led_Timer) || (cal != calold))
{
if(blinkcount & 0x01) if(invert_blinking) LED_GRN_ON; else LED_GRN_OFF;
else if(invert_blinking) LED_GRN_OFF; else LED_GRN_ON;
 
// end of blinkcount sequence
if((blinkcount + 1 ) >= (2 * cal))
{
blinkcount = 0;
Led_Timer = SetDelay(1500);
}
else
{
blinkcount++;
Led_Timer = SetDelay(100);
}
}
}
else
{
if(invert_blinking) LED_GRN_ON; else LED_GRN_OFF;
}
// calibration state machine
switch(cal)
{
case 1: // 1st step of calibration
// initialize ranges
// used to change the orientation of the MK3MAG in the horizontal plane
Xmin = 10000;
Xmax = -10000;
Ymin = 10000;
Ymax = -10000;
Zmin = 10000;
Zmax = -10000;
Calibration.AccX.Offset = RawAccX;
Calibration.AccY.Offset = RawAccY;
Calibration.AccZ.Offset = RawAccZ;
invert_blinking = 0;
break;
 
case 2: // 2nd step of calibration
// find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
if(UncalMagX < Xmin) Xmin = UncalMagX;
if(UncalMagX > Xmax) Xmax = UncalMagX;
if(UncalMagY < Ymin) Ymin = UncalMagY;
if(UncalMagY > Ymax) Ymax = UncalMagY;
invert_blinking = 1;
break;
 
case 3: // 3rd step of calibration
// used to change the orientation of the MK3MAG vertical to the horizontal plane
invert_blinking = 0;
break;
 
case 4:
// find Min and Max of the Z-Sensor
if(UncalMagZ < Zmin) Zmin = UncalMagZ;
if(UncalMagZ > Zmax) Zmax = UncalMagZ;
invert_blinking = 1;
break;
 
case 5:
// Save values
if(cal != calold) // avoid continously writing of eeprom!
{
Calibration.MagX.Range = Xmax - Xmin;
Calibration.MagX.Offset = (Xmin + Xmax) / 2;
Calibration.MagY.Range = Ymax - Ymin;
Calibration.MagY.Offset = (Ymin + Ymax) / 2;
Calibration.MagZ.Range = Zmax - Zmin;
Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
if((Calibration.MagX.Range > 150) && (Calibration.MagY.Range > 150) && (Calibration.MagZ.Range > 150))
{
Calibration.Version = CALIBRATION_VERSION;
// indicate write process by setting the led off for 2 seconds
LED_GRN_OFF;
eeprom_write_block(&Calibration, &eeCalibration, sizeof(Calibration));
Led_Timer = SetDelay(2000);
// reset blinkcode
blinkcount = 0;
}
}
invert_blinking = 0;
break;
 
default:
break;
}
calold = cal;
}
 
 
void SetDebugValues(void)
{
DebugOut.Analog[0] = MagX;
DebugOut.Analog[1] = MagY;
DebugOut.Analog[2] = MagZ;
DebugOut.Analog[3] = UncalMagX;
DebugOut.Analog[4] = UncalMagY;
DebugOut.Analog[5] = UncalMagZ;
switch(AttitudeSource)
{
case ATTITUDE_SOURCE_ACC:
DebugOut.Analog[6] = AccAttitudeNick;
DebugOut.Analog[7] = AccAttitudeRoll;
break;
 
case ATTITUDE_SOURCE_UART:
DebugOut.Analog[6] = ExternData.Attitude[NICK];
DebugOut.Analog[7] = ExternData.Attitude[ROLL];
break;
 
 
case ATTITUDE_SOURCE_I2C:
DebugOut.Analog[6] = I2C_WriteAttitude.Nick;
DebugOut.Analog[7] = I2C_WriteAttitude.Roll;
break;
}
DebugOut.Analog[8] = Calibration.MagX.Offset;
DebugOut.Analog[9] = Calibration.MagX.Range;
DebugOut.Analog[10] = Calibration.MagY.Offset;
DebugOut.Analog[11] = Calibration.MagY.Range;
DebugOut.Analog[12] = Calibration.MagZ.Offset;
DebugOut.Analog[13] = Calibration.MagZ.Range;
if(I2C_WriteCal.CalByte) DebugOut.Analog[14] = I2C_WriteCal.CalByte;
else DebugOut.Analog[14] = ExternData.CalState;
DebugOut.Analog[15] = Heading;
DebugOut.Analog[16] = ExternData.UserParam[0];
DebugOut.Analog[17] = ExternData.UserParam[1];
DebugOut.Analog[18] = AccX;
DebugOut.Analog[19] = AccY;
DebugOut.Analog[20] = AccZ;
DebugOut.Analog[21] = RawAccX;
DebugOut.Analog[22] = RawAccY;
DebugOut.Analog[23] = RawAccZ;
DebugOut.Analog[24] = Calibration.AccX.Offset;
DebugOut.Analog[25] = Calibration.AccY.Offset;
DebugOut.Analog[26] = Calibration.AccZ.Offset;
DebugOut.Analog[29] = AttitudeSource;
}
 
void AccMeasurement(void)
{
if(AccPresent)
{
RawAccX = (RawAccX + (int16_t)ADC_GetValue(ACC_X))/2;
RawAccY = (RawAccY + (int16_t)ADC_GetValue(ACC_Y))/2;
RawAccZ = (RawAccZ + (int16_t)ADC_GetValue(ACC_Z))/2;
}
else
{
RawAccX = 0;
RawAccY = 0;
RawAccZ = 0;
}
}
 
int main (void)
{
// reset input pullup
DDRC &=~((1<<DDC6));
PORTC |= (1<<PORTC6);
 
LED_Init();
TIMER0_Init();
USART0_Init();
ADC_Init();
I2C_Init();
 
sei(); // enable globale interrupts
 
if(AccPresent)
{
USART0_Print("ACC present\n");
}
 
LED_GRN_ON;
 
Led_Timer = SetDelay(200);
 
// read calibration info from eeprom
eeprom_read_block(&Calibration, &eeCalibration, sizeof(Calibration));
 
ExternData.CalState = 0;
I2C_WriteCal.CalByte = 0;
 
 
// main loop
while (1)
{
FLIP_LOW;
Delay_ms(2);
RawMagnet1a = ADC_GetValue(MAG_X);
RawMagnet2a = -ADC_GetValue(MAG_Y);
RawMagnet3a = ADC_GetValue(MAG_Z);
AccMeasurement();
Delay_ms(1);
 
FLIP_HIGH;
Delay_ms(2);
RawMagnet1b = ADC_GetValue(MAG_X);
RawMagnet2b = -ADC_GetValue(MAG_Y);
RawMagnet3b = ADC_GetValue(MAG_Z);
AccMeasurement();
Delay_ms(1);
 
CalcFields();
 
if(ExternData.CalState || I2C_WriteCal.CalByte) Calibrate();
else CalcHeading();
 
// check data from USART
USART0_ProcessRxData();
 
if(NC_Connected) NC_Connected--;
if(FC_Connected) FC_Connected--;
// fall back to attitude estimation from acc sensor if NC or FC does'nt send attittude data
if(!FC_Connected && ! NC_Connected)
{
AttitudeSource = ATTITUDE_SOURCE_ACC;
Orientation = ORIENTATION_FC;
}
 
if(PC_Connected)
{
USART0_EnableTXD();
USART0_TransmitTxData();
PC_Connected--;
}
else
{
USART0_DisableTXD();
}
} // while(1)
}