Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 890 → Rev 891

/branches/MicroMag3_Nick666/V0.69k/compass.c
0,0 → 1,241
/*
 
Copyright 2007, Niklas Nold
 
This program (files compass.c and compass.h) is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
 
Please note: All the other files for the project "Mikrokopter" by H. Buss are under the license (license_buss.txt) published by www.mikrokopter.de
*/
 
#include "main.h"
 
struct MM3_calib_struct ee_calib EEMEM; // Reservierung im EEPROM
 
struct MM3_working_struct MM3;
struct MM3_calib_struct MM3_calib;
 
 
//############################################################################
// Initialisierung
void init_MM3(void)
//############################################################################
{
// SPI-Schnittstelle initialisieren
SPCR = (1<<SPIE)|(1<<SPE)|(1<<MSTR)|(1<<SPR1)|(1<<SPR0); // Interrupt an, Master, 156 kHz Oszillator
 
DDRB |= (1<<PB7)|(1<<PB5); // MOSI, SCK Ausgang
DDRC |= (1<<PC4)|(1<<PC5); // PC5 (RESET) und PC4 (SSNOT) als Ausgang
PORTC |= (1<<PC4); // PC4 (SSNOT) auf High -> MM3 passiv
PORTC &= ~(1<<PC5); // PC5 (RESET) auf Low
// Init Statemachine
MM3.AXIS = MM3_X;
MM3.STATE = MM3_RESET;
// Kalibrierung aus dem EEprom lesen
eeprom_read_block(&MM3_calib,&ee_calib,sizeof(struct MM3_calib_struct));
}
 
 
//############################################################################
// Wird in der SIGNAL (SIG_OVERFLOW0) aufgerufen
void timer0_MM3(void)
//############################################################################
{
switch (MM3.STATE)
{
case MM3_RESET:
PORTC &= ~(1<<PC4); // MM3 aktiv
PORTC |= (1<<PC5); // MM3 Reset
MM3.STATE = MM3_START_TRANSFER;
return;
case MM3_START_TRANSFER:
PORTC &= ~(1<<PC5); // PC5 auf Low (war ~125 µs auf High)
if (MM3.AXIS == MM3_X) SPDR = MM3_PERIOD_512 + MM3_X_AXIS; // Schreiben ins SPDR löst automatisch SPI-Übertragung (MOSI und MISO) aus
else if (MM3.AXIS == MM3_Y) SPDR = MM3_PERIOD_512 + MM3_Y_AXIS; // Micromag Period Select ist 256 (0x30)
else SPDR = MM3_PERIOD_512 + MM3_Z_AXIS; //if (MM3.AXIS == MM3_Z)
MM3.DRDY = SetDelay(10); // Laut Datenblatt max. Zeit bis Messung fertig (bei PS 512 eigentlich 8 ms)
MM3.STATE = MM3_WAIT_DRDY;
return;
case MM3_WAIT_DRDY:
if (CheckDelay(MM3.DRDY)) {SPDR = 0x00;MM3.STATE = MM3_DRDY;} // Irgendwas ins SPDR, damit Übertragung ausgelöst wird, wenn Wartezeit vorbei
return; // Jetzt gehts weiter in SIGNAL (SIG_SPI)
}
}
 
 
//############################################################################
// SPI byte ready
SIGNAL (SIG_SPI)
//############################################################################
{
static char tmp;
int value;
 
switch (MM3.STATE)
{
case MM3_DRDY: // 1. Byte ist da, zwischenspeichern
tmp = SPDR;
SPDR = 0x00; // Übertragung von 2. Byte auslösen
MM3.STATE = MM3_BYTE2;
return;
case MM3_BYTE2: // 2. Byte der entsprechenden Achse ist da
value = tmp;
value <<= 8; // 1. Byte an MSB-Stelle rücken
value |= SPDR; // 2. Byte dranpappen
if(abs(value) < Max_Axis_Value) // Spikes filtern. Zuweisung nur, wenn Max-Wert nicht überschritten
switch (MM3.AXIS)
{
case MM3_X:
MM3.x_axis = value;
MM3.AXIS = MM3_Y;
break;
case MM3_Y:
MM3.y_axis = value;
MM3.AXIS = MM3_Z;
break;
default: //case MM3_Z:
MM3.z_axis = value;
MM3.AXIS = MM3_X;
}
PORTC |= (1<<PC4); // MM3 passiv
MM3.STATE = MM3_RESET;
}
}
 
//############################################################################
// Kompass kalibrieren
void calib_MM3(void)
//############################################################################
{
int16_t x_min=0,x_max=0,y_min=0,y_max=0,z_min=0,z_max=0;
int16_t x_axis, y_axis, z_axis;
uint8_t measurement=50,beeper=0;
 
GRN_ON;
ROT_OFF;
while (measurement)
{
uint8_t tmp_sreg = SREG;
cli();
x_axis = MM3.x_axis;
y_axis = MM3.y_axis;
z_axis = MM3.z_axis;
SREG = tmp_sreg;
if (x_axis > x_max) x_max = x_axis;
else if (x_axis < x_min) x_min = x_axis;
if (y_axis > y_max) y_max = y_axis;
else if (y_axis < y_min) y_min = y_axis;
if (z_axis > z_max) z_max = z_axis;
else if (z_axis < z_min) z_min = z_axis;
if (!beeper)
{
ROT_FLASH;
GRN_FLASH;
}
beeper--;
 
// Schleife mit 100 Hz
Delay_ms(10);
// Wenn Gas zurück genommen wird, Kalibrierung mit 1/2 Sekunde Verzögerung beenden
if (PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] < 100) measurement--;
}
// Wertebereich der Achsen
MM3_calib.X_range = (x_max - x_min);
MM3_calib.Y_range = (y_max - y_min);
MM3_calib.Z_range = (z_max - z_min);
// Offset der Achsen
MM3_calib.X_off = (x_max + x_min) /2;
MM3_calib.Y_off = (y_max + y_min) /2;
MM3_calib.Z_off = (z_max + z_min) /2;
 
// und im EEProm abspeichern
eeprom_write_block(&MM3_calib,&ee_calib,sizeof(struct MM3_calib_struct));
}
 
 
//############################################################################
// Neigungskompensierung und Berechnung der Ausrichtung
int heading_MM3(void)
//############################################################################
{
int16_t sin_nick, cos_nick, sin_roll, cos_roll;
int16_t mm3_x_axis, mm3_y_axis, mm3_z_axis;
int32_t Hx, Hy, Hz, x_corr, y_corr;
int16_t heading;
int8_t tilt;
// 16bit-Werte lesen
uint8_t tmp_sreg = SREG;
cli();
mm3_x_axis = MM3.x_axis;
mm3_y_axis = MM3.y_axis;
mm3_z_axis = MM3.z_axis;
SREG = tmp_sreg;
int temp = Aktuell_az - acc_neutral.compass;
// Lage-Berechnung mittels Acc-Messwerte
tilt = atan2_i(temp,AdWertAccNick*64);
sin_nick = sin_i(tilt);
cos_nick = cos_i(tilt);
tilt = atan2_i(temp,AdWertAccRoll*64);
sin_roll = sin_i(tilt);
cos_roll = cos_i(tilt);
 
/*
// Lage-Berechnung mittels Gyro-Integral
uint16_t div_faktor;
div_faktor = (uint16_t)EE_Parameter.UserParam3 *8;
 
tilt = (IntegralNick /div_faktor);
sin_nick = sin_i(tilt);
cos_nick = cos_i(tilt);
 
tilt = (IntegralRoll /div_faktor);
sin_roll = sin_i(tilt);
cos_roll = cos_i(tilt);
*/
// Offset und Normalisierung
Hx = (((int32_t)(mm3_x_axis - MM3_calib.X_off)) *512) /MM3_calib.X_range;
Hy = (((int32_t)(mm3_y_axis - MM3_calib.Y_off)) *512) /MM3_calib.Y_range;
Hz = (((int32_t)(mm3_z_axis - MM3_calib.Z_off)) *512) /MM3_calib.Z_range;
 
// Neigungskompensierung
x_corr = Hx * cos_nick;
x_corr -= Hz * sin_nick;
x_corr /= 1024;
y_corr = Hy * cos_roll;
y_corr += Hz * sin_roll;
y_corr /= 16; // atan2_i erwartet y_corr *64. Deshalb /16 und nicht /1024
// Winkelberechnung
heading = atan2_i(x_corr, y_corr);
// Skalieren von +-180° auf 0-360°
if (heading < 0) heading = -heading;
else heading = 360 - heading;
 
return (heading);
}
/branches/MicroMag3_Nick666/V0.69k/compass.h
0,0 → 1,59
 
 
struct MM3_working_struct
{
uint8_t STATE;
uint8_t AXIS;
uint16_t DRDY;
int16_t x_axis;
int16_t y_axis;
int16_t z_axis;
};
 
 
struct MM3_calib_struct
{
int8_t X_off;
int8_t Y_off;
int8_t Z_off;
int16_t X_range;
int16_t Y_range;
int16_t Z_range;
};
 
extern struct MM3_working_struct MM3;
extern struct MM3_calib_struct MM3_calib;
 
void init_MM3(void);
void timer0_MM3(void);
void calib_MM3(void);
int heading_MM3(void);
 
// MM3-Konfiguration
#define MM3_X_AXIS 0x01
#define MM3_Y_AXIS 0x02
#define MM3_Z_AXIS 0x03
 
#define MM3_PERIOD_32 0x00
#define MM3_PERIOD_64 0x10
#define MM3_PERIOD_128 0x20
#define MM3_PERIOD_256 0x30
#define MM3_PERIOD_512 0x40
#define MM3_PERIOD_1024 0x50
#define MM3_PERIOD_2048 0x60
#define MM3_PERIOD_4096 0x70
 
// Spikes Filtern
#define Max_Axis_Value 500
 
// Die Werte der Statemachine
#define MM3_RESET 0
#define MM3_START_TRANSFER 1
#define MM3_WAIT_DRDY 2
#define MM3_DRDY 3
#define MM3_BYTE2 4
#define MM3_X 5
#define MM3_Y 6
#define MM3_Z 7
#define MM3_TILT 8
#define MM3_IDLE 9
/branches/MicroMag3_Nick666/V0.69k/fc.c
71,9 → 71,12
long Mess_Integral_Gier = 0,Mess_Integral_Gier2 = 0;
long MittelIntegralNick,MittelIntegralRoll,MittelIntegralNick2,MittelIntegralRoll2;
volatile long Mess_Integral_Hoch = 0;
volatile int KompassValue = 0;
volatile int KompassStartwert = 0;
volatile int KompassRichtung = 0;
 
int KompassValue = 0;
int KompassStartwert = 0;
int KompassRichtung = 0;
uint8_t updKompass;
 
unsigned int KompassSignalSchlecht = 500;
unsigned char MAX_GAS,MIN_GAS;
unsigned char Notlandung = 0;
158,6 → 161,12
acc_neutral.Y = abs(Mittelwert_AccRoll) / ACC_AMPLIFY;
acc_neutral.Z = Aktuell_az;
Piep(2);
while (PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > -100) //Warten, bis Benutzer den Kopter neu ausgerichtet hat
Delay_ms_Mess(100);
acc_neutral.compass = Aktuell_az;
eeprom_write_block(&acc_neutral,&ee_acc_neutral,sizeof(struct acc_neutral_struct));
}
 
987,44 → 996,50
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//DebugOut.Analog[29] = (MaxStickNick + MaxStickRoll);
 
if(KompassValue && (EE_Parameter.GlobalConfig & CFG_KOMPASS_AKTIV))
{
int w,v,r,fehler,korrektur;
w = abs(IntegralNick /512); // mit zunehmender Neigung den Einfluss drosseln
v = abs(IntegralRoll /512);
if(v > w) w = v; // grösste Neigung ermitteln
korrektur = w / 8 + 1;
if(w < 25 && NeueKompassRichtungMerken && !KompassSignalSchlecht)
{
beeptime = 200;
// KompassStartwert = KompassValue;
KompassStartwert = (ErsatzKompass/GIER_GRAD_FAKTOR);
NeueKompassRichtungMerken = 0;
}
fehler = ((540 + KompassValue - (ErsatzKompass/GIER_GRAD_FAKTOR)) % 360) - 180;
ErsatzKompass += (fehler * 8) / korrektur;
w = (w * Parameter_KompassWirkung) / 64; // auf die Wirkung normieren
w = Parameter_KompassWirkung - w; // Wirkung ggf drosseln
if(w > 0)
{
if(!KompassSignalSchlecht)
{
GierGyroFehler += fehler;
v = 64 + ((MaxStickNick + MaxStickRoll)) / 8;
r = ((540 + (ErsatzKompass/GIER_GRAD_FAKTOR) - KompassStartwert) % 360) - 180;
// r = KompassRichtung;
v = (r * w) / v; // nach Kompass ausrichten
w = 3 * Parameter_KompassWirkung;
if(v > w) v = w; // Begrenzen
else
if(v < -w) v = -w;
Mess_Integral_Gier += v;
}
if(KompassSignalSchlecht) KompassSignalSchlecht--;
}
if(EE_Parameter.GlobalConfig & CFG_KOMPASS_AKTIV)
{
int w,v,r,fehler,korrektur;
if (!updKompass--) // Aufruf mit ~20 Hz
{
updKompass = 25;
KompassValue = heading_MM3();
KompassRichtung = ((540 + KompassValue - KompassStartwert) % 360) - 180;
}
w = abs(IntegralNick /512); // mit zunehmender Neigung den Einfluss drosseln
v = abs(IntegralRoll /512);
if(v > w) w = v; // grösste Neigung ermitteln
korrektur = w / 8 + 1;
if(w < 25 && NeueKompassRichtungMerken && !KompassSignalSchlecht)
{
beeptime = 200;
//KompassStartwert = KompassValue;
KompassStartwert = (ErsatzKompass/GIER_GRAD_FAKTOR);
NeueKompassRichtungMerken = 0;
}
fehler = ((540 + KompassValue - (ErsatzKompass/GIER_GRAD_FAKTOR)) % 360) - 180;
ErsatzKompass += (fehler * 8) / korrektur;
w = (w * Parameter_KompassWirkung) / 64; // auf die Wirkung normieren
w = Parameter_KompassWirkung - w; // Wirkung ggf drosseln
if(w > 0)
{
if(!KompassSignalSchlecht)
{
GierGyroFehler += fehler;
v = 64 + ((MaxStickNick + MaxStickRoll)) / 8;
r = ((540 + (ErsatzKompass/GIER_GRAD_FAKTOR) - KompassStartwert) % 360) - 180;
//r = KompassRichtung;
v = (r * w) / v; // nach Kompass ausrichten
w = 3 * Parameter_KompassWirkung;
if(v > w) v = w; // Begrenzen
else if(v < -w) v = -w;
Mess_Integral_Gier += v;
}
if(KompassSignalSchlecht) KompassSignalSchlecht--;
}
else KompassSignalSchlecht = 250; // so lange das Signal taub stellen --> ca. 0,5 sek
}
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
/branches/MicroMag3_Nick666/V0.69k/fc.h
16,9 → 16,11
extern long IntegralAccNick,IntegralAccRoll;
extern volatile long Mess_Integral_Hoch;
extern long Integral_Gier,Mess_Integral_Gier,Mess_Integral_Gier2;
extern volatile int KompassValue;
extern volatile int KompassStartwert;
extern volatile int KompassRichtung;
 
extern int KompassValue;
extern int KompassStartwert;
extern int KompassRichtung;
 
extern long ErsatzKompass;
extern int ErsatzKompassInGrad; // Kompasswert in Grad
extern int HoehenWert;
59,6 → 61,7
int X;
int Y;
float Z;
int compass;
};
 
extern struct acc_neutral_struct acc_neutral;
/branches/MicroMag3_Nick666/V0.69k/flight.pnproj
1,0 → 0,0
<Project name="Flight-Ctrl"><File path="uart.h"></File><File path="main.c"></File><File path="main.h"></File><File path="makefile"></File><File path="uart.c"></File><File path="printf_P.h"></File><File path="printf_P.c"></File><File path="timer0.c"></File><File path="timer0.h"></File><File path="old_macros.h"></File><File path="twimaster.c"></File><File path="version.txt"></File><File path="twimaster.h"></File><File path="rc.c"></File><File path="rc.h"></File><File path="fc.h"></File><File path="fc.c"></File><File path="menu.h"></File><File path="menu.c"></File><File path="_Settings.h"></File><File path="analog.c"></File><File path="analog.h"></File><File path="GPS.c"></File><File path="gps.h"></File><File path="License.txt"></File><File path="eeprom.c"></File><File path="spi.h"></File><File path="spi.c"></File></Project>
<Project name="Flight-Ctrl"><File path="uart.h"></File><File path="main.c"></File><File path="main.h"></File><File path="makefile"></File><File path="uart.c"></File><File path="printf_P.h"></File><File path="printf_P.c"></File><File path="timer0.c"></File><File path="timer0.h"></File><File path="old_macros.h"></File><File path="twimaster.c"></File><File path="version.txt"></File><File path="twimaster.h"></File><File path="rc.c"></File><File path="rc.h"></File><File path="fc.h"></File><File path="fc.c"></File><File path="menu.h"></File><File path="menu.c"></File><File path="_Settings.h"></File><File path="analog.c"></File><File path="analog.h"></File><File path="GPS.c"></File><File path="gps.h"></File><File path="License.txt"></File><File path="eeprom.c"></File><File path="spi.h"></File><File path="spi.c"></File><File path="mymath.h"></File><File path="compass.c"></File><File path="compass.h"></File><File path="mymath.c"></File></Project>
/branches/MicroMag3_Nick666/V0.69k/main.c
147,7 → 147,8
rc_sum_init();
ADC_Init();
i2c_init();
SPI_MasterInit();
init_MM3();
//SPI_MasterInit();
sei();
 
181,6 → 182,13
//kurze Wartezeit (sonst reagiert die "Kompass kalibrieren?"-Abfrage nicht
Delay_ms(500);
 
//Kompass kalibrieren?
if(PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] > 100 && PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] > 100)
{
printf("\n\rKalibriere Kompass");
calib_MM3();
}
//Neutrallage kalibrieren?
if(PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] > 100 && PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] < -100)
{
275,7 → 283,7
}
else SPI_StartTransmitPacket(SPI_CMD_VALUE);//#
*/
SPI_StartTransmitPacket();//#
//SPI_StartTransmitPacket();//#
 
SendSPI = 4;
timer = SetDelay(20);
282,7 → 290,7
}
//if(UpdateMotor) DebugOut.Analog[26]++;
}
if(!SendSPI) { SPI_TransmitByte(); }
//if(!SendSPI) { SPI_TransmitByte(); }
}
return (1);
}
/branches/MicroMag3_Nick666/V0.69k/main.h
76,9 → 76,10
#include "rc.h"
#include "fc.h"
#include "gps.h"
#include "spi.h"
// #include "spi.h"
#include "compass.h"
#include "mymath.h"
 
 
#ifndef EEMEM
#define EEMEM __attribute__ ((section (".eeprom")))
#endif
/branches/MicroMag3_Nick666/V0.69k/makefile
84,7 → 84,7
##########################################################################################################
# List C source files here. (C dependencies are automatically generated.)
SRC = main.c uart.c printf_P.c timer0.c analog.c menu.c
SRC += twimaster.c rc.c fc.c GPS.c spi.c
SRC += twimaster.c rc.c fc.c GPS.c compass.c mymath.c
 
##########################################################################################################
 
/branches/MicroMag3_Nick666/V0.69k/menu.c
27,7 → 27,7
 
void Menu(void)
{
static unsigned char MaxMenue = 11,MenuePunkt=0;
static unsigned char MaxMenue = 13,MenuePunkt=0;
if(RemoteTasten & KEY1) { if(MenuePunkt) MenuePunkt--; else MenuePunkt = MaxMenue; LcdClear(); RemotePollDisplayLine = -1; }
if(RemoteTasten & KEY2) { MenuePunkt++; LcdClear(); RemotePollDisplayLine = -1;}
125,6 → 125,18
LCD_printfxy(0,2,"Gs:%4i Gi:%4i ",ExternControl.Gas,ExternControl.Gier);
LCD_printfxy(0,3,"Hi:%4i Cf:%4i ",ExternControl.Hight,ExternControl.Config);
break;
case 12:
LCD_printfxy(0,0,"MM3 Off");
LCD_printfxy(0,1,"X_Offset: %3i",MM3_calib.X_off);
LCD_printfxy(0,2,"Y_Offset: %3i",MM3_calib.Y_off);
LCD_printfxy(0,3,"Z_Offset: %3i",MM3_calib.Z_off);
break;
case 13:
LCD_printfxy(0,0,"MM3 Range");
LCD_printfxy(0,1,"X_Range: %4i",MM3_calib.X_range);
LCD_printfxy(0,2,"Y_Range: %4i",MM3_calib.Y_range);
LCD_printfxy(0,3,"Z_Range: %4i",MM3_calib.Z_range);
break;
default: MaxMenue = MenuePunkt - 1;
MenuePunkt = 0;
break;
/branches/MicroMag3_Nick666/V0.69k/mymath.c
0,0 → 1,111
/*
 
Copyright 2007, Niklas Nold
 
This program (files math.c and math.h) is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
 
Please note: All the other files for the project "Mikrokopter" by H. Buss are under the license (license_buss.txt) published by www.mikrokopter.de
*/
 
#include "main.h"
 
 
const uint8_t pgm_atan[346] PROGMEM = {0,1,2,3,4,4,5,6,7,8,9,10,11,11,12,13,14,15,16,17,17,18,19,20,21,21,22,23,24,24,25,26,27,27,28,29,29,30,31,31,32,33,33,34,35,35,36,36,37,37,38,39,39,40,40,41,41,42,42,43,43,44,44,45,45,45,46,46,47,47,48,48,48,49,49,50,50,50,51,51,51,52,52,52,53,53,53,54,54,54,55,55,55,55,56,56,56,57,57,57,57,58,58,58,58,59,59,59,59,60,60,60,60,60,61,61,61,61,62,62,62,62,62,63,63,63,63,63,63,64,64,64,64,64,64,65,65,65,65,65,65,66,66,66,66,66,66,66,67,67,67,67,67,67,67,68,68,68,68,68,68,68,68,69,69,69,69,69,69,69,69,69,70,70,70,70,70,70,70,70,70,71,71,71,71,71,71,71,71,71,71,71,72,72,72,72,72,72,72,72,72,72,72,73,73,73,73,73,73,73,73,73,73,73,73,73,73,74,74,74,74,74,74,74,74,74,74,74,74,74,74,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79};
 
//############################################################################
// Arkustangens2 im Gradmaß
signed int atan2_i(signed int x, signed int y)
//############################################################################
{
int16_t angle;
uint16_t i;
int8_t m;
if (!x && !y) return 0; //atan2 = 0 für x und y = 0
if (y < 0) m=-1;
else m=1;
if (!x) return (90*m); // atan2 = 90° für x = 0
i = abs(y / x); // Berechne i für die Lookup table (Schrittweite atan(x) ist 0,015625 -> y *64)
 
if (i<346) angle = pgm_read_byte(&pgm_atan[i]); // Lookup für 1° bis 79°
else if (i>7334) angle = 90; // Grenzwert ist 90°
else if (i>2444) angle = 89; // 89° bis 80° über Wertebereiche
else if (i>1465) angle = 88;
else if (i>1046) angle = 87;
else if (i>813) angle = 86;
else if (i>664) angle = 85;
else if (i>561) angle = 84;
else if (i>486) angle = 83;
else if (i>428) angle = 82;
else if (i>382) angle = 81;
else angle = 80; // (i>345)
if (x > 0) return (angle*m); // Quadrant I und IV
else if ((x < 0) && (m > 0)) return (-angle + 180); // Quadrant II
else return (angle - 180); // x < 0 && y < 0 Quadrant III
}
 
 
const uint16_t pgm_sinus_i[91] PROGMEM = {0,18,36,54,71,89,107,125,143,160,178,195,213,230,248,265,282,299,316,333,350,367,384,400,416,433,449,465,481,496,512,527,543,558,573,587,602,616,630,644,658,672,685,698,711,724,737,749,761,773,784,796,807,818,828,839,849,859,868,878,887,896,904,912,920,928,935,943,949,956,962,968,974,979,984,989,994,998,1002,1005,1008,1011,1014,1016,1018,1020,1022,1023,1023,1024,1024};
//############################################################################
// Kosinusfunktion im Gradmaß
signed int cos_i(signed int winkel)
//############################################################################
{
return (sin_i(90-winkel));
}
 
//############################################################################
// Sinusfunktion im Gradmaß
signed int sin_i(signed int winkel)
//############################################################################
{
short int m,n;
signed int sinus;
if (winkel < 0)
{
m = -1;
winkel = abs(winkel);
}
else m = +1;
// Quadranten auswerten
if (winkel <= 90) n=1;
else if ((winkel > 90) && (winkel <= 180)) {winkel = 180 - winkel; n = 1;}
else if ((winkel > 180) && (winkel <= 270)) {winkel = winkel - 180; n = -1;}
else {winkel = 360 - winkel; n = -1;} //if ((winkel > 270) && (winkel <= 360))
 
sinus = pgm_read_word(&pgm_sinus_i[winkel]);
 
return (sinus*m*n);
}
 
/*
const uint8_t pgm_asin[201] PROGMEM = {0,0,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5,5,5,5,6,6,6,7,7,7,7,8,8,8,9,9,9,9,10,10,10,11,11,11,12,12,12,12,13,13,13,14,14,14,14,15,15,15,16,16,16,17,17,17,17,18,18,18,19,19,19,20,20,20,20,21,21,21,22,22,22,23,23,23,24,24,24,25,25,25,25,26,26,26,27,27,27,28,28,28,29,29,29,30,30,30,31,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,37,37,37,38,38,38,39,39,39,40,40,41,41,41,42,42,42,43,43,44,44,44,45,45,46,46,46,47,47,48,48,49,49,49,50,50,51,51,52,52,53,53,54,54,55,55,56,56,57,57,58,58,59,59,60,60,61,62,62,63,64,64,65,66,66,67,68,68,69,70,71,72,73,74,75,76,77,79,80,82,84,90};
 
//############################################################################
// Akurssinusfunktion im Gradmaß
int8_t asin_i(signed int i)
//############################################################################
{
signed char m;
if (i < 0) {m=-1;i=abs(i);}
else m=1;
i %= 200;
return (pgm_read_byte(&pgm_asin[i]) * m);
}
*/
/branches/MicroMag3_Nick666/V0.69k/mymath.h
0,0 → 1,8
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#include "main.h"
 
extern signed int atan2_i(signed int x, signed int y);
extern signed int cos_i(signed int winkel);
extern signed int sin_i(signed int winkel);
//extern int8_t asin_i(signed int i);
/branches/MicroMag3_Nick666/V0.69k/timer0.c
3,7 → 3,6
volatile unsigned int CountMilliseconds = 0;
volatile static unsigned int tim_main;
volatile unsigned char UpdateMotor = 0;
volatile unsigned int cntKompass = 0;
volatile unsigned int beeptime = 0;
volatile unsigned char SendSPI = 0;
 
64,25 → 63,7
else PORTC &= ~(1<<7);
}
if(EE_Parameter.GlobalConfig & CFG_KOMPASS_AKTIV)
{
if(PINC & 0x10)
{
cntKompass++;
}
else
{
if((cntKompass) && (cntKompass < 362))
{
cntKompass += cntKompass / 41;
if(cntKompass > 10) KompassValue = cntKompass - 10; else KompassValue = 0;
}
// if(cntKompass < 10) cntKompass = 10;
// KompassValue = (unsigned long)((unsigned long)(cntKompass-10)*720L + 1L) / 703L;
KompassRichtung = ((540 + KompassValue - KompassStartwert) % 360) - 180;
cntKompass = 0;
}
}
if(EE_Parameter.GlobalConfig & CFG_KOMPASS_AKTIV) timer0_MM3(); // Kompass auslesen
}
 
 
/branches/MicroMag3_Nick666/V0.69k/timer0.h
11,7 → 11,6
extern volatile unsigned int CountMilliseconds;
extern volatile unsigned char UpdateMotor;
extern volatile unsigned int beeptime;
extern volatile unsigned int cntKompass;
extern int ServoValue;
extern unsigned int BeepMuster;
extern volatile unsigned char SendSPI;