Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1756 → Rev 1757

/branches/V0.80g_ACC-HH_MartinR_HR/uart.c
0,0 → 1,683
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) Holger Buss, Ingo Busker
// + only for non-profit use
// + www.MikroKopter.com
// + see the File "License.txt" for further Informations
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <stdarg.h>
#include <string.h>
#include <avr/pgmspace.h>
#include "main.h"
#include "uart.h"
#include "libfc.h"
#include "eeprom.h"
 
 
 
#define FC_ADDRESS 1
#define NC_ADDRESS 2
#define MK3MAG_ADDRESS 3
#define BL_CTRL_ADDRESS 5
 
#define ABO_TIMEOUT 4000 // disable abo after 4 seconds
#define MAX_SENDE_BUFF 160
#define MAX_EMPFANGS_BUFF 160
 
 
#define BLPARAM_REVISION 1
#define MASK_SET_PWM_SCALING 0x01
#define MASK_SET_CURRENT_LIMIT 0x02
#define MASK_SET_TEMP_LIMIT 0x04
#define MASK_SET_CURRENT_SCALING 0x08
#define MASK_SET_BITCONFIG 0x10
#define MASK_RESET_CAPCOUNTER 0x20
#define MASK_SET_DEFAULT_PARAMS 0x40
#define MASK_SET_SAVE_EEPROM 0x80
 
typedef struct
{
unsigned char Revision; // revision of parameter structure
unsigned char Address; // target address
unsigned char PwmScaling; // maximum value of pwm setpoint
unsigned char CurrentLimit; // current limit in 1A steps
unsigned char TemperatureLimit; // in °C
unsigned char CurrentScaling; // scaling factor for current measurement
unsigned char BitConfig; // see defines above
unsigned char SetMask; // filter for active paramters
unsigned char Checksum; // checksum for parameter sturcture
} __attribute__((packed)) BLParameter_t;
 
 
unsigned char GetExternalControl = 0,DebugDisplayAnforderung1 = 0, DebugDisplayAnforderung = 0,DebugDataAnforderung = 0,GetVersionAnforderung = 0, GetPPMChannelAnforderung = 0;
unsigned char DisplayLine = 0;
unsigned volatile char SioTmp = 0;
unsigned volatile char NeuerDatensatzEmpfangen = 0;
unsigned volatile char NeueKoordinateEmpfangen = 0;
unsigned volatile char UebertragungAbgeschlossen = 1;
unsigned volatile char CntCrcError = 0;
unsigned volatile char AnzahlEmpfangsBytes = 0;
unsigned volatile char TxdBuffer[MAX_SENDE_BUFF];
unsigned volatile char RxdBuffer[MAX_EMPFANGS_BUFF];
 
unsigned char *pRxData = 0;
unsigned char RxDataLen = 0;
unsigned volatile char PC_DebugTimeout = 0;
unsigned volatile char PC_MotortestActive = 0;
unsigned char DebugTextAnforderung = 255;
 
unsigned char PcZugriff = 100;
unsigned char MotorTest[16];
unsigned char MeineSlaveAdresse = 1; // Flight-Ctrl
unsigned char ConfirmFrame;
struct str_DebugOut DebugOut;
struct str_ExternControl ExternControl;
struct str_VersionInfo VersionInfo;
struct str_WinkelOut WinkelOut;
struct str_Data3D Data3D;
 
int Display_Timer, Debug_Timer,Kompass_Timer,Timer3D;
unsigned int DebugDataIntervall = 0, Intervall3D = 0, Display_Interval = 0;
unsigned int AboTimeOut = 0;
 
const unsigned char ANALOG_TEXT[32][16] PROGMEM =
{
//1234567890123456
"AngleNick ", //0
"AngleRoll ",
"AccNick ",
"AccRoll ",
"YawGyro ",
"Height Value ", //5
"AccZ ",
"Gas ",
"Compass Value ",
"Voltage [0.1V] ",
"Receiver Level ", //10
"Gyro Compass ",
"Motor 1 ",
"Motor 2 ",
"Motor 3 ",
"Motor 4 ", //15
"16 ",
"17 ",
"18 ",
"19 ",
"Servo ", //20
"Hovergas ",
"Current [0.1A] ",
"Capacity [mAh] ",
"24 ",
"25 ", //25
"26 ",
"27 ",
"I2C-Error ",
"BL Limit ",
"GPS_Nick ", //30
"GPS_Roll "
};
 
 
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//++ Sende-Part der Datenübertragung
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
ISR(USART0_TX_vect)
{
static unsigned int ptr = 0;
unsigned char tmp_tx;
if(!UebertragungAbgeschlossen)
{
ptr++; // die [0] wurde schon gesendet
tmp_tx = TxdBuffer[ptr];
if((tmp_tx == '\r') || (ptr == MAX_SENDE_BUFF))
{
ptr = 0;
UebertragungAbgeschlossen = 1;
}
UDR0 = tmp_tx;
}
else ptr = 0;
}
 
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//++ Empfangs-Part der Datenübertragung, incl. CRC-Auswertung
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
ISR(USART0_RX_vect)
{
static unsigned int crc;
static unsigned char crc1,crc2,buf_ptr;
static unsigned char UartState = 0;
unsigned char CrcOkay = 0;
 
SioTmp = UDR0;
if(buf_ptr >= MAX_SENDE_BUFF) UartState = 0;
if(SioTmp == '\r' && UartState == 2)
{
UartState = 0;
crc -= RxdBuffer[buf_ptr-2];
crc -= RxdBuffer[buf_ptr-1];
crc %= 4096;
crc1 = '=' + crc / 64;
crc2 = '=' + crc % 64;
CrcOkay = 0;
if((crc1 == RxdBuffer[buf_ptr-2]) && (crc2 == RxdBuffer[buf_ptr-1])) CrcOkay = 1; else { CrcOkay = 0; CntCrcError++;};
if(!NeuerDatensatzEmpfangen && CrcOkay) // Datensatz schon verarbeitet
{
NeuerDatensatzEmpfangen = 1;
AnzahlEmpfangsBytes = buf_ptr + 1;
RxdBuffer[buf_ptr] = '\r';
if(RxdBuffer[2] == 'R')
{
LcdClear();
wdt_enable(WDTO_250MS); // Reset-Commando
ServoActive = 0;
 
}
}
}
else
switch(UartState)
{
case 0:
if(SioTmp == '#' && !NeuerDatensatzEmpfangen) UartState = 1; // Startzeichen und Daten schon verarbeitet
buf_ptr = 0;
RxdBuffer[buf_ptr++] = SioTmp;
crc = SioTmp;
break;
case 1: // Adresse auswerten
UartState++;
RxdBuffer[buf_ptr++] = SioTmp;
crc += SioTmp;
break;
case 2: // Eingangsdaten sammeln
RxdBuffer[buf_ptr] = SioTmp;
if(buf_ptr < MAX_EMPFANGS_BUFF) buf_ptr++;
else UartState = 0;
crc += SioTmp;
break;
default:
UartState = 0;
break;
}
}
 
 
// --------------------------------------------------------------------------
void AddCRC(unsigned int wieviele)
{
unsigned int tmpCRC = 0,i;
for(i = 0; i < wieviele;i++)
{
tmpCRC += TxdBuffer[i];
}
tmpCRC %= 4096;
TxdBuffer[i++] = '=' + tmpCRC / 64;
TxdBuffer[i++] = '=' + tmpCRC % 64;
TxdBuffer[i++] = '\r';
UebertragungAbgeschlossen = 0;
UDR0 = TxdBuffer[0];
}
 
 
 
// --------------------------------------------------------------------------
void SendOutData(unsigned char cmd,unsigned char address, unsigned char BufferAnzahl, ...) //unsigned char *snd, unsigned char len)
{
va_list ap;
unsigned int pt = 0;
unsigned char a,b,c;
unsigned char ptr = 0;
 
unsigned char *snd = 0;
int len = 0;
 
TxdBuffer[pt++] = '#'; // Startzeichen
TxdBuffer[pt++] = 'a' + address; // Adresse (a=0; b=1,...)
TxdBuffer[pt++] = cmd; // Commando
 
va_start(ap, BufferAnzahl);
if(BufferAnzahl)
{
snd = va_arg(ap, unsigned char*);
len = va_arg(ap, int);
ptr = 0;
BufferAnzahl--;
}
while(len)
{
if(len)
{
a = snd[ptr++];
len--;
if((!len) && BufferAnzahl)
{
snd = va_arg(ap, unsigned char*);
len = va_arg(ap, int);
ptr = 0;
BufferAnzahl--;
}
}
else a = 0;
if(len)
{
b = snd[ptr++];
len--;
if((!len) && BufferAnzahl)
{
snd = va_arg(ap, unsigned char*);
len = va_arg(ap, int);
ptr = 0;
BufferAnzahl--;
}
}
else b = 0;
if(len)
{
c = snd[ptr++];
len--;
if((!len) && BufferAnzahl)
{
snd = va_arg(ap, unsigned char*);
len = va_arg(ap, int);
ptr = 0;
BufferAnzahl--;
}
}
else c = 0;
TxdBuffer[pt++] = '=' + (a >> 2);
TxdBuffer[pt++] = '=' + (((a & 0x03) << 4) | ((b & 0xf0) >> 4));
TxdBuffer[pt++] = '=' + (((b & 0x0f) << 2) | ((c & 0xc0) >> 6));
TxdBuffer[pt++] = '=' + ( c & 0x3f);
}
va_end(ap);
AddCRC(pt);
}
 
// --------------------------------------------------------------------------
void Decode64(void) // die daten werden im rx buffer dekodiert, das geht nur, weil aus 4 byte immer 3 gemacht werden.
{
unsigned char a,b,c,d;
unsigned char x,y,z;
unsigned char ptrIn = 3; // start at begin of data block
unsigned char ptrOut = 3;
unsigned char len = AnzahlEmpfangsBytes - 6; // von der Gesamtbytezahl eines Frames gehen 3 Bytes des Headers ('#',Addr, Cmd) und 3 Bytes des Footers (CRC1, CRC2, '\r') ab.
 
while(len)
{
a = RxdBuffer[ptrIn++] - '=';
b = RxdBuffer[ptrIn++] - '=';
c = RxdBuffer[ptrIn++] - '=';
d = RxdBuffer[ptrIn++] - '=';
 
x = (a << 2) | (b >> 4);
y = ((b & 0x0f) << 4) | (c >> 2);
z = ((c & 0x03) << 6) | d;
 
if(len--) RxdBuffer[ptrOut++] = x; else break;
if(len--) RxdBuffer[ptrOut++] = y; else break;
if(len--) RxdBuffer[ptrOut++] = z; else break;
}
pRxData = (unsigned char*)&RxdBuffer[3]; // decodierte Daten beginnen beim 4. Byte
RxDataLen = ptrOut - 3; // wie viele Bytes wurden dekodiert?
 
}
 
// --------------------------------------------------------------------------
void BearbeiteRxDaten(void)
{
if(!NeuerDatensatzEmpfangen) return;
 
unsigned char tempchar1, tempchar2;
Decode64(); // dekodiere datenblock im Empfangsbuffer
switch(RxdBuffer[1]-'a') // check for Slave Address
{
case FC_ADDRESS: // FC special commands
switch(RxdBuffer[2])
{
case 'K':// Kompasswert
memcpy((unsigned char *)&KompassValue , (unsigned char *)pRxData, sizeof(KompassValue));
KompassRichtung = ((540 + KompassValue - KompassStartwert) % 360) - 180;
break;
case 't':// Motortest
if(AnzahlEmpfangsBytes > 20) memcpy(&MotorTest[0], (unsigned char *)pRxData, sizeof(MotorTest));
else memcpy(&MotorTest[0], (unsigned char *)pRxData, 4);
PC_MotortestActive = 240;
//while(!UebertragungAbgeschlossen);
//SendOutData('T', MeineSlaveAdresse, 0);
PcZugriff = 255;
break;
 
case 'n':// "Get Mixer
while(!UebertragungAbgeschlossen);
SendOutData('N', FC_ADDRESS, 1, (unsigned char *) &Mixer, sizeof(Mixer) - 1);
Debug("Mixer lesen");
break;
 
case 'm':// "Write Mixer
if(pRxData[0] == EEMIXER_REVISION)
{
memcpy(&Mixer, (unsigned char *)pRxData, sizeof(Mixer) - 1);
MixerTable_WriteToEEProm();
tempchar1 = 1;
VersionInfo.HardwareError[1] &= ~DEFEKT_MIXER_ERR;
}
else
{
tempchar1 = 0;
}
while(!UebertragungAbgeschlossen);
SendOutData('M', FC_ADDRESS, 1, &tempchar1, sizeof(tempchar1));
break;
 
case 'p': // get PPM Channels
GetPPMChannelAnforderung = 1;
PcZugriff = 255;
break;
 
case 'q':// "Get"-Anforderung für Settings
// Bei Get werden die vom PC einstellbaren Werte vom PC zurückgelesen
if(pRxData[0] == 0xFF)
{
pRxData[0] = GetActiveParamSet();
}
// limit settings range
if(pRxData[0] < 1) pRxData[0] = 1; // limit to 5
else if(pRxData[0] > 5) pRxData[0] = 5; // limit to 5
// load requested parameter set
ParamSet_ReadFromEEProm(pRxData[0]);
tempchar1 = pRxData[0];
while(!UebertragungAbgeschlossen);
SendOutData('Q', FC_ADDRESS, 2, &tempchar1, sizeof(tempchar1), (unsigned char *) &EE_Parameter, sizeof(EE_Parameter) - 1);
Debug("Lese Setting %d", tempchar1);
 
break;
 
case 's': // Parametersatz speichern
if((1 <= pRxData[0]) && (pRxData[0] <= 5) && (pRxData[1] == EEPARAM_REVISION)) // check for setting to be in range
{
memcpy(&EE_Parameter, (uint8_t*)&pRxData[1], sizeof(EE_Parameter) - 1);
ParamSet_WriteToEEProm(pRxData[0]);
Umschlag180Nick = (long) EE_Parameter.WinkelUmschlagNick * 2500L;
Umschlag180Roll = (long) EE_Parameter.WinkelUmschlagRoll * 2500L;
tempchar1 = GetActiveParamSet();
}
else
{
tempchar1 = 0; // mark in response an invlid setting
}
while(!UebertragungAbgeschlossen);
SendOutData('S', FC_ADDRESS, 1, &tempchar1, sizeof(tempchar1));
if(!MotorenEin) Piep(tempchar1,110);
LipoDetection(0);
LIBFC_ReceiverInit(EE_Parameter.Receiver);
break;
case 'f': // auf anderen Parametersatz umschalten
if((1 <= pRxData[0]) && (pRxData[0] <= 5)) ParamSet_ReadFromEEProm(pRxData[0]);
tempchar1 = GetActiveParamSet();
while(!UebertragungAbgeschlossen);
SendOutData('F', FC_ADDRESS, 1, &tempchar1, sizeof(tempchar1));
if(!MotorenEin) Piep(tempchar1,110);
LipoDetection(0);
LIBFC_ReceiverInit(EE_Parameter.Receiver);
break;
case 'y':// serial Potis
PPM_in[13] = (signed char) pRxData[0]; PPM_in[14] = (signed char) pRxData[1]; PPM_in[15] = (signed char) pRxData[2]; PPM_in[16] = (signed char) pRxData[3];
PPM_in[17] = (signed char) pRxData[4]; PPM_in[18] = (signed char) pRxData[5]; PPM_in[19] = (signed char) pRxData[6]; PPM_in[20] = (signed char) pRxData[7];
PPM_in[21] = (signed char) pRxData[8]; PPM_in[22] = (signed char) pRxData[9]; PPM_in[23] = (signed char) pRxData[10]; PPM_in[24] = (signed char) pRxData[11];
break;
 
case 'u': // request BL parameter
Debug("Reading BL %d", pRxData[0]);
// try to read BL configuration
tempchar2 = I2C_ReadBLConfig(pRxData[0]);
if(tempchar2 == BLCONFIG_SUCCESS) tempchar1 = 1;
else tempchar1 = 0;
while(!UebertragungAbgeschlossen); // wait for previous frame to be sent
SendOutData('U', FC_ADDRESS, 4, &tempchar1, sizeof(tempchar1), &tempchar2, sizeof(tempchar2), &pRxData[0], 1, &BLConfig, sizeof(BLConfig_t));
break;
 
case 'w': // write BL parameter
Debug("Writing BL %d", pRxData[0]);
if(RxDataLen >= 1+sizeof(BLConfig_t))
{
memcpy(&BLConfig, (uint8_t*)(&pRxData[1]), sizeof(BLConfig_t));
tempchar2 = I2C_WriteBLConfig(pRxData[0]);
if(tempchar2 == BLCONFIG_SUCCESS) tempchar1 = 1;
else tempchar1 = 0; // indicate error
while(!UebertragungAbgeschlossen); // wait for previous frame to be sent
SendOutData('W', FC_ADDRESS,2, &tempchar1, sizeof(tempchar1), &tempchar2, sizeof(tempchar2));
}
break;
 
} // case FC_ADDRESS:
 
default: // any Slave Address
 
switch(RxdBuffer[2])
{
// 't' comand placed here only for compatibility to BL
case 't':// Motortest
if(AnzahlEmpfangsBytes >= sizeof(MotorTest)) memcpy(&MotorTest[0], (unsigned char *)pRxData, sizeof(MotorTest));
else memcpy(&MotorTest[0], (unsigned char *)pRxData, 4);
while(!UebertragungAbgeschlossen);
SendOutData('T', MeineSlaveAdresse, 0);
PC_MotortestActive = 250;
PcZugriff = 255;
AboTimeOut = SetDelay(ABO_TIMEOUT);
break;
// 'K' comand placed here only for compatibility to old MK3MAG software, that does not send the right Slave Address
case 'K':// Kompasswert
memcpy((unsigned char *)&KompassValue , (unsigned char *)pRxData, sizeof(KompassValue));
KompassRichtung = ((540 + KompassValue - KompassStartwert) % 360) - 180;
break;
case 'a':// Texte der Analogwerte
DebugTextAnforderung = pRxData[0];
if (DebugTextAnforderung > 31) DebugTextAnforderung = 31;
PcZugriff = 255;
break;
case 'b':
memcpy((unsigned char *)&ExternControl, (unsigned char *)pRxData, sizeof(ExternControl));
ConfirmFrame = ExternControl.Frame;
PcZugriff = 255;
break;
case 'c': // Poll the 3D-Data
if(!Intervall3D) { if(pRxData[0]) Timer3D = SetDelay(pRxData[0] * 10);}
Intervall3D = pRxData[0] * 10;
AboTimeOut = SetDelay(ABO_TIMEOUT);
break;
case 'd': // Poll the debug data
PcZugriff = 255;
DebugDataIntervall = (unsigned int)pRxData[0] * 10;
if(DebugDataIntervall > 0) DebugDataAnforderung = 1;
AboTimeOut = SetDelay(ABO_TIMEOUT);
break;
 
case 'h':// x-1 Displayzeilen
PcZugriff = 255;
if((pRxData[0] & 0x80) == 0x00) // old format
{
DisplayLine = 2;
Display_Interval = 0;
}
else // new format
{
RemoteKeys |= ~pRxData[0];
Display_Interval = (unsigned int)pRxData[1] * 10;
DisplayLine = 4;
AboTimeOut = SetDelay(ABO_TIMEOUT);
}
DebugDisplayAnforderung = 1;
break;
 
case 'l':// x-1 Displayzeilen
PcZugriff = 255;
MenuePunkt = pRxData[0];
DebugDisplayAnforderung1 = 1;
break;
case 'v': // Version-Anforderung und Ausbaustufe
GetVersionAnforderung = 1;
break;
 
case 'g'://
GetExternalControl = 1;
break;
 
default:
//unsupported command received
break;
}
break; // default:
}
NeuerDatensatzEmpfangen = 0;
pRxData = 0;
RxDataLen = 0;
}
 
//############################################################################
//Routine für die Serielle Ausgabe
void uart_putchar (char c)
//############################################################################
{
//Warten solange bis Zeichen gesendet wurde
loop_until_bit_is_set(UCSR0A, UDRE0);
//Ausgabe des Zeichens
UDR0 = c;
}
 
 
//############################################################################
//INstallation der Seriellen Schnittstelle
void UART_Init (void)
//############################################################################
{
unsigned int ubrr = (unsigned int) ((unsigned long) F_CPU/(8 * USART0_BAUD) - 1);
 
//Enable TXEN im Register UCR TX-Data Enable & RX Enable
UCSR0B = (1 << TXEN0) | (1 << RXEN0);
// UART Double Speed (U2X)
UCSR0A |= (1 << U2X0);
// RX-Interrupt Freigabe
UCSR0B |= (1 << RXCIE0);
// TX-Interrupt Freigabe
UCSR0B |= (1 << TXCIE0);
// USART0 Baud Rate Register
// set clock divider
UBRR0H = (uint8_t)(ubrr >> 8);
UBRR0L = (uint8_t)ubrr;
 
Debug_Timer = SetDelay(DebugDataIntervall);
Kompass_Timer = SetDelay(220);
 
VersionInfo.SWMajor = VERSION_MAJOR;
VersionInfo.SWMinor = VERSION_MINOR;
VersionInfo.SWPatch = VERSION_PATCH;
VersionInfo.ProtoMajor = VERSION_SERIAL_MAJOR;
VersionInfo.ProtoMinor = VERSION_SERIAL_MINOR;
 
pRxData = 0;
RxDataLen = 0;
}
 
//---------------------------------------------------------------------------------------------
void DatenUebertragung(void)
{
if(!UebertragungAbgeschlossen) return;
 
if(CheckDelay(AboTimeOut))
{
Display_Interval = 0;
DebugDataIntervall = 0;
Intervall3D = 0;
}
 
if(((Display_Interval>0 && CheckDelay(Display_Timer)) || DebugDisplayAnforderung) && UebertragungAbgeschlossen)
{
if(DisplayLine > 3)// new format
{
Menu();
SendOutData('H', FC_ADDRESS, 1, (uint8_t *)DisplayBuff, 80);
}
else // old format
{
LCD_printfxy(0,0,"!!! INCOMPATIBLE !!!");
SendOutData('H', FC_ADDRESS, 2, &DisplayLine, sizeof(DisplayLine), (uint8_t *)DisplayBuff, 20);
if(DisplayLine++ > 3) DisplayLine = 0;
}
Display_Timer = SetDelay(Display_Interval);
DebugDisplayAnforderung = 0;
}
if(DebugDisplayAnforderung1 && UebertragungAbgeschlossen)
{
Menu();
SendOutData('L', FC_ADDRESS, 3, &MenuePunkt, sizeof(MenuePunkt), &MaxMenue, sizeof(MaxMenue), DisplayBuff, sizeof(DisplayBuff));
DebugDisplayAnforderung1 = 0;
}
if(GetVersionAnforderung && UebertragungAbgeschlossen)
{
SendOutData('V', FC_ADDRESS, 1, (unsigned char *) &VersionInfo, sizeof(VersionInfo));
GetVersionAnforderung = 0;
Debug_OK("Version gesendet");
}
 
if(GetExternalControl && UebertragungAbgeschlossen) // Bei Get werden die vom PC einstellbaren Werte vom PC zurückgelesen
{
SendOutData('G',MeineSlaveAdresse, 1, (unsigned char *) &ExternControl, sizeof(ExternControl));
GetExternalControl = 0;
}
if((CheckDelay(Kompass_Timer)) && UebertragungAbgeschlossen)
{
WinkelOut.Winkel[0] = (int) (IntegralNick / (EE_Parameter.GyroAccFaktor * 4)); // etwa in 0.1 Grad
WinkelOut.Winkel[1] = (int) (IntegralRoll / (EE_Parameter.GyroAccFaktor * 4)); // etwa in 0.1 Grad
WinkelOut.UserParameter[0] = Parameter_UserParam1;
WinkelOut.UserParameter[1] = Parameter_UserParam2;
SendOutData('k', MK3MAG_ADDRESS, 1, (unsigned char *) &WinkelOut,sizeof(WinkelOut));
if(WinkelOut.CalcState > 4) WinkelOut.CalcState = 6; // wird dann in SPI auf Null gesetzt
Kompass_Timer = SetDelay(99);
}
if(((DebugDataIntervall>0 && CheckDelay(Debug_Timer)) || DebugDataAnforderung) && UebertragungAbgeschlossen)
{
CopyDebugValues();
SendOutData('D', FC_ADDRESS, 1, (unsigned char *) &DebugOut,sizeof(DebugOut));
DebugDataAnforderung = 0;
if(DebugDataIntervall>0) Debug_Timer = SetDelay(DebugDataIntervall);
}
if(Intervall3D > 0 && CheckDelay(Timer3D) && UebertragungAbgeschlossen)
{
Data3D.Winkel[0] = (int) (IntegralNick / (EE_Parameter.GyroAccFaktor * 4)); // etwa in 0.1 Grad
Data3D.Winkel[1] = (int) (IntegralRoll / (EE_Parameter.GyroAccFaktor * 4)); // etwa in 0.1 Grad
Data3D.Winkel[2] = (int) ((10 * ErsatzKompass) / GIER_GRAD_FAKTOR);
Data3D.Centroid[0] = SummeNick >> 9;
Data3D.Centroid[1] = SummeRoll >> 9;
Data3D.Centroid[2] = Mess_Integral_Gier >> 9;
SendOutData('C', FC_ADDRESS, 1, (unsigned char *) &Data3D,sizeof(Data3D));
Timer3D = SetDelay(Intervall3D);
}
if(DebugTextAnforderung != 255) // Texte für die Analogdaten
{
unsigned char label[16]; // local sram buffer
memcpy_P(label, ANALOG_TEXT[DebugTextAnforderung], 16); // read lable from flash to sra
SendOutData('A', FC_ADDRESS, 2, (unsigned char *)&DebugTextAnforderung, sizeof(DebugTextAnforderung),label, 16);
DebugTextAnforderung = 255;
}
if(ConfirmFrame && UebertragungAbgeschlossen) // Datensatz bestätigen
{
SendOutData('B', FC_ADDRESS, 1, (uint8_t*)&ConfirmFrame, sizeof(ConfirmFrame));
ConfirmFrame = 0;
}
 
if(GetPPMChannelAnforderung && UebertragungAbgeschlossen)
{
SendOutData('P', FC_ADDRESS, 1, (unsigned char *) &PPM_in, sizeof(PPM_in));
GetPPMChannelAnforderung = 0;
}
 
#ifdef DEBUG // only include functions if DEBUG is defined
if(SendDebugOutput && UebertragungAbgeschlossen)
{
SendOutData('0', FC_ADDRESS, 1, (unsigned char *) &tDebug, sizeof(tDebug));
SendDebugOutput = 0;
}
#endif
 
}