Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 2169 → Rev 2170

/branches/Proxy sensor - tempolo/FC/fc.c
0,0 → 1,1928
/*#######################################################################################
Flight Control
#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software Nutzungsbedingungen (english version: see below)
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand
// + des Mitverschuldens offen.
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
// + Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software LICENSING TERMS
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
// + The Software may only be used with the Licensor's products.
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
// + agreement shall be the property of the Licensor.
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
// + features that can be used to identify the program may not be altered or defaced by the customer.
// + The customer shall be responsible for taking reasonable precautions
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
// + #### END OF LICENSING TERMS ####
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#include "main.h"
#include "mymath.h"
#include "isqrt.h"
 
unsigned char h,m,s;
unsigned int BaroExpandActive = 0;
int MesswertNick,MesswertRoll,MesswertGier,MesswertGierBias, RohMesswertNick,RohMesswertRoll;
int TrimNick, TrimRoll;
int AdNeutralNick = 0,AdNeutralRoll = 0,AdNeutralGier = 0,StartNeutralRoll = 0,StartNeutralNick = 0;
int Mittelwert_AccNick, Mittelwert_AccRoll;
unsigned int NeutralAccX=0, NeutralAccY=0;
int NaviAccNick, NaviAccRoll,NaviCntAcc = 0;
int NeutralAccZ = 0;
unsigned char ControlHeading = 0;// in 2°
long IntegralNick = 0,IntegralNick2 = 0;
long IntegralRoll = 0,IntegralRoll2 = 0;
long IntegralAccNick = 0,IntegralAccRoll = 0,IntegralAccZ = 0;
long Integral_Gier = 0;
long Mess_IntegralNick = 0,Mess_IntegralNick2 = 0;
long Mess_IntegralRoll = 0,Mess_IntegralRoll2 = 0;
long Mess_Integral_Gier = 0,Mess_Integral_Gier2 = 0;
long MittelIntegralNick,MittelIntegralRoll,MittelIntegralNick2,MittelIntegralRoll2;
long SummeNick=0,SummeRoll=0;
volatile long Mess_Integral_Hoch = 0;
int KompassValue = -1;
int KompassSollWert = 0;
//int KompassRichtung = 0;
char CalculateCompassTimer = 100;
unsigned char KompassFusion = 32;
unsigned int KompassSignalSchlecht = 50;
unsigned char MAX_GAS,MIN_GAS;
unsigned char HoehenReglerAktiv = 0;
unsigned char TrichterFlug = 0;
long Umschlag180Nick = 250000L, Umschlag180Roll = 250000L;
long ErsatzKompass;
int ErsatzKompassInGrad; // Kompasswert in Grad
int GierGyroFehler = 0;
char GyroFaktor,GyroFaktorGier;
char IntegralFaktor,IntegralFaktorGier;
int DiffNick,DiffRoll;
int StickGasHover = 120, HoverGasMin = 0, HoverGasMax = 1023;
int StickNick = 0,StickRoll = 0,StickGier = 0,StickGas = 0;
//int Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0, Poti5 = 0, Poti6 = 0, Poti7 = 0, Poti8 = 0;
unsigned char Poti[9] = {0,0,0,0,0,0,0,0};
volatile unsigned char SenderOkay = 0;
char MotorenEin = 0,StartTrigger = 0;
long HoehenWert = 0;
long SollHoehe = 0;
signed int AltitudeSetpointTrimming = 0;
long FromNC_AltitudeSetpoint = 0;
unsigned char FromNC_AltitudeSpeed = 0;
unsigned char carefree_old = 50; // to make the Beep when switching
signed char WaypointTrimming = 0;
int CompassGierSetpoint = 0;
unsigned char CalibrationDone = 0;
char NeueKompassRichtungMerken = 0;
int LageKorrekturRoll = 0,LageKorrekturNick = 0, HoverGas = 0;
//float Ki = FAKTOR_I;
int Ki = 10300 / 33;
unsigned char Looping_Nick = 0,Looping_Roll = 0;
unsigned char Looping_Links = 0, Looping_Rechts = 0, Looping_Unten = 0, Looping_Oben = 0;
 
unsigned char Parameter_Luftdruck_D = 48; // Wert : 0-250
unsigned char Parameter_HoehenSchalter = 251; // Wert : 0-250
unsigned char Parameter_Hoehe_P = 16; // Wert : 0-32
unsigned char Parameter_Hoehe_ACC_Wirkung = 58; // Wert : 0-250
unsigned char Parameter_KompassWirkung = 64; // Wert : 0-250
unsigned char Parameter_Hoehe_GPS_Z = 64; // Wert : 0-250
unsigned char Parameter_Gyro_D = 8; // Wert : 0-250
unsigned char Parameter_Gyro_P = 150; // Wert : 10-250
unsigned char Parameter_Gyro_I = 150; // Wert : 0-250
unsigned char Parameter_Gyro_Gier_P = 150; // Wert : 10-250
unsigned char Parameter_Gyro_Gier_I = 150; // Wert : 10-250
unsigned char Parameter_Gier_P = 2; // Wert : 1-20
unsigned char Parameter_I_Faktor = 10; // Wert : 1-20
unsigned char Parameter_UserParam1 = 0;
unsigned char Parameter_UserParam2 = 0;
unsigned char Parameter_UserParam3 = 0;
unsigned char Parameter_UserParam4 = 0;
unsigned char Parameter_UserParam5 = 0;
unsigned char Parameter_UserParam6 = 0;
unsigned char Parameter_UserParam7 = 0;
unsigned char Parameter_UserParam8 = 0;
unsigned char Parameter_ServoNickControl = 100;
unsigned char Parameter_ServoRollControl = 100;
unsigned char Parameter_LoopGasLimit = 70;
unsigned char Parameter_AchsKopplung1 = 90;
unsigned char Parameter_AchsKopplung2 = 65;
unsigned char Parameter_CouplingYawCorrection = 64;
//unsigned char Parameter_AchsGegenKopplung1 = 0;
unsigned char Parameter_DynamicStability = 100;
unsigned char Parameter_J16Bitmask; // for the J16 Output
unsigned char Parameter_J16Timing; // for the J16 Output
unsigned char Parameter_J17Bitmask; // for the J17 Output
unsigned char Parameter_J17Timing; // for the J17 Output
unsigned char Parameter_NaviGpsModeControl; // Parameters for the Naviboard
unsigned char Parameter_NaviGpsGain;
unsigned char Parameter_NaviGpsP;
unsigned char Parameter_NaviGpsI;
unsigned char Parameter_NaviGpsD;
unsigned char Parameter_NaviGpsACC;
unsigned char Parameter_NaviOperatingRadius;
unsigned char Parameter_NaviWindCorrection;
unsigned char Parameter_NaviSpeedCompensation;
unsigned char Parameter_ExternalControl;
unsigned char Parameter_GlobalConfig;
unsigned char Parameter_ExtraConfig;
unsigned char Parameter_MaximumAltitude;
unsigned char Parameter_Servo3,Parameter_Servo4,Parameter_Servo5;
unsigned char CareFree = 0;
const signed char sintab[31] = { 0, 2, 4, 6, 7, 8, 8, 8, 7, 6, 4, 2, 0, -2, -4, -6, -7, -8, -8, -8, -7, -6, -4, -2, 0, 2, 4, 6, 7, 8, 8}; // 15° steps
 
signed int ExternStickNick = 0,ExternStickRoll = 0,ExternStickGier = 0, ExternHoehenValue = -20;
int MaxStickNick = 0,MaxStickRoll = 0;
unsigned int modell_fliegt = 0;
volatile unsigned char FC_StatusFlags = 0, FC_StatusFlags2 = 0;
long GIER_GRAD_FAKTOR = 1291;
signed int KopplungsteilNickRoll,KopplungsteilRollNick;
signed int tmp_motorwert[MAX_MOTORS];
char VarioCharacter = ' ';
unsigned int HoverGasEmergencyPercent = 0; // The gas value for Emergency landing
 
static int HoehenRegelung(int GasMischanteil);
 
#define LIMIT_MIN(value, min) {if(value <= min) value = min;}
#define LIMIT_MAX(value, max) {if(value >= max) value = max;}
#define LIMIT_MIN_MAX(value, min, max) {if(value <= min) value = min; else if(value >= max) value = max;}
 
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Debugwerte zuordnen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void CopyDebugValues(void)
{
DebugOut.Analog[0] = IntegralNick / (EE_Parameter.GyroAccFaktor * 4);
DebugOut.Analog[1] = IntegralRoll / (EE_Parameter.GyroAccFaktor * 4);
DebugOut.Analog[2] = Mittelwert_AccNick / 4;
DebugOut.Analog[3] = Mittelwert_AccRoll / 4;
DebugOut.Analog[4] = (signed int) AdNeutralGier - AdWertGier;
DebugOut.Analog[5] = HoehenWert/5;
DebugOut.Analog[6] = AdWertAccHoch;//(Mess_Integral_Hoch / 512);// Aktuell_az;
DebugOut.Analog[8] = KompassValue;
DebugOut.Analog[9] = UBat;
DebugOut.Analog[10] = SenderOkay;
DebugOut.Analog[11] = ErsatzKompassInGrad;
DebugOut.Analog[12] = Motor[0].SetPoint;
DebugOut.Analog[13] = Motor[1].SetPoint;
DebugOut.Analog[14] = Motor[2].SetPoint;
DebugOut.Analog[15] = Motor[3].SetPoint;
DebugOut.Analog[20] = ServoNickValue;
DebugOut.Analog[22] = Capacity.ActualCurrent;
DebugOut.Analog[23] = Capacity.UsedCapacity;
DebugOut.Analog[24] = SollHoehe/5;
// DebugOut.Analog[22] = FromNaviCtrl_Value.GpsZ;
// DebugOut.Analog[29] = FromNaviCtrl_Value.SerialDataOkay;
DebugOut.Analog[27] = KompassSollWert;
DebugOut.Analog[29] = Capacity.MinOfMaxPWM;
DebugOut.Analog[30] = GPS_Nick;
DebugOut.Analog[31] = GPS_Roll;
if(VersionInfo.HardwareError[0] || VersionInfo.HardwareError[1]) DebugOut.Status[1] |= 1; else DebugOut.Status[1] &= 0xfe;
}
 
 
 
void Piep(unsigned char Anzahl, unsigned int dauer)
{
if(MotorenEin) return; //auf keinen Fall im Flug!
GRN_OFF;
while(Anzahl--)
{
beeptime = dauer;
while(beeptime);
Delay_ms(dauer * 2);
}
GRN_ON;
}
 
//############################################################################
// Messwerte beim Ermitteln der Nullage
void CalibrierMittelwert(void)
//############################################################################
{
unsigned char i;
if(PlatinenVersion == 13) SucheGyroOffset();
// ADC auschalten, damit die Werte sich nicht während der Berechnung ändern
ANALOG_OFF;
MesswertNick = AdWertNick;
MesswertRoll = AdWertRoll;
MesswertGier = AdWertGier;
Mittelwert_AccNick = ACC_AMPLIFY * AdWertAccNick;
Mittelwert_AccRoll = ACC_AMPLIFY * AdWertAccRoll;
// ADC einschalten
ANALOG_ON;
for(i=0;i<8;i++)
{
int tmp;
tmp = PPM_in[EE_Parameter.Kanalbelegung[K_POTI1 + i]] + 127;
LIMIT_MIN_MAX(tmp, 0, 255);
if(Poti[i] > tmp) Poti[i]--; else if(Poti[i] < tmp) Poti[i]++;
}
Umschlag180Nick = (long) EE_Parameter.WinkelUmschlagNick * 2500L;
Umschlag180Roll = (long) EE_Parameter.WinkelUmschlagRoll * 2500L;
}
 
//############################################################################
// Nullwerte ermitteln
void SetNeutral(unsigned char AccAdjustment)
//############################################################################
{
unsigned char i;
unsigned int gier_neutral=0, nick_neutral=0, roll_neutral=0;
VersionInfo.HardwareError[0] = 0;
// HEF4017Reset_ON;
NeutralAccX = 0;
NeutralAccY = 0;
NeutralAccZ = 0;
AdNeutralNick = 0;
AdNeutralRoll = 0;
AdNeutralGier = 0;
Parameter_AchsKopplung1 = 0;
Parameter_AchsKopplung2 = 0;
ExpandBaro = 0;
CalibrierMittelwert();
Delay_ms_Mess(100);
CalibrierMittelwert();
if((EE_Parameter.GlobalConfig & CFG_HOEHENREGELUNG)) // Höhenregelung aktiviert?
{
if((MessLuftdruck > 950) || (MessLuftdruck < 750)) SucheLuftruckOffset();
}
#define NEUTRAL_FILTER 32
for(i=0; i<NEUTRAL_FILTER; i++)
{
Delay_ms_Mess(10);
gier_neutral += AdWertGier;
nick_neutral += AdWertNick;
roll_neutral += AdWertRoll;
}
AdNeutralNick= (nick_neutral+NEUTRAL_FILTER/2) / (NEUTRAL_FILTER / 8);
AdNeutralRoll= (roll_neutral+NEUTRAL_FILTER/2) / (NEUTRAL_FILTER / 8);
AdNeutralGier= (gier_neutral+NEUTRAL_FILTER/2) / (NEUTRAL_FILTER);
StartNeutralRoll = AdNeutralRoll;
StartNeutralNick = AdNeutralNick;
if(AccAdjustment)
{
NeutralAccX = abs(Mittelwert_AccNick) / (2*ACC_AMPLIFY);
NeutralAccY = abs(Mittelwert_AccRoll) / (2*ACC_AMPLIFY);
NeutralAccZ = Aktuell_az;
// Save ACC neutral settings to eeprom
SetParamWord(PID_ACC_NICK, (uint16_t)NeutralAccX);
SetParamWord(PID_ACC_ROLL, (uint16_t)NeutralAccY);
SetParamWord(PID_ACC_TOP, (uint16_t)NeutralAccZ);
}
else
{
// restore from eeprom
NeutralAccX = (int16_t)GetParamWord(PID_ACC_NICK);
NeutralAccY = (int16_t)GetParamWord(PID_ACC_ROLL);
NeutralAccZ = (int16_t)GetParamWord(PID_ACC_TOP);
// strange settings?
if(((unsigned int) NeutralAccX > 2048) || ((unsigned int) NeutralAccY > 2048) || ((unsigned int) NeutralAccZ > 1024))
{
printf("\n\rACC not calibrated!\r\n");
NeutralAccX = abs(Mittelwert_AccNick) / (2*ACC_AMPLIFY);
NeutralAccY = abs(Mittelwert_AccRoll) / (2*ACC_AMPLIFY);
NeutralAccZ = Aktuell_az;
}
}
MesswertNick = 0;
MesswertRoll = 0;
MesswertGier = 0;
Delay_ms_Mess(100);
Mittelwert_AccNick = ACC_AMPLIFY * AdWertAccNick;
Mittelwert_AccRoll = ACC_AMPLIFY * AdWertAccRoll;
IntegralNick = EE_Parameter.GyroAccFaktor * (long)Mittelwert_AccNick;
IntegralRoll = EE_Parameter.GyroAccFaktor * (long)Mittelwert_AccRoll;
Mess_IntegralNick = IntegralNick;
Mess_IntegralRoll = IntegralRoll;
Mess_Integral_Gier = 0;
StartLuftdruck = Luftdruck;
VarioMeter = 0;
Mess_Integral_Hoch = 0;
KompassSollWert = KompassValue;
KompassSignalSchlecht = 100;
beeptime = 50;
Umschlag180Nick = ((long) EE_Parameter.WinkelUmschlagNick * 2500L) + 15000L;
Umschlag180Roll = ((long) EE_Parameter.WinkelUmschlagRoll * 2500L) + 15000L;
ExternHoehenValue = 0;
ErsatzKompass = KompassValue * GIER_GRAD_FAKTOR;
GierGyroFehler = 0;
LED_Init();
FC_StatusFlags |= FC_STATUS_CALIBRATE;
FromNaviCtrl_Value.Kalman_K = -1;
FromNaviCtrl_Value.Kalman_MaxDrift = 0;
FromNaviCtrl_Value.Kalman_MaxFusion = 32;
for(i=0;i<8;i++)
{
Poti[i] = PPM_in[EE_Parameter.Kanalbelegung[K_POTI1 + i]] + 127;
}
SenderOkay = 100;
if(ServoActive)
{
// HEF4017Reset_ON;
DDRD |=0x80; // enable J7 -> Servo signal
}
if((AdNeutralNick < 150 * 16) || (AdNeutralNick > 850 * 16)) { VersionInfo.HardwareError[0] |= FC_ERROR0_GYRO_NICK; };
if((AdNeutralRoll < 150 * 16) || (AdNeutralRoll > 850 * 16)) { VersionInfo.HardwareError[0] |= FC_ERROR0_GYRO_ROLL; };
if((AdNeutralGier < 150 * 2) || (AdNeutralGier > 850 * 2)) { VersionInfo.HardwareError[0] |= FC_ERROR0_GYRO_YAW; };
if((NeutralAccX < 300) || (NeutralAccX > 750)) { VersionInfo.HardwareError[0] |= FC_ERROR0_ACC_NICK; };
if((NeutralAccY < 300) || (NeutralAccY > 750)) { VersionInfo.HardwareError[0] |= FC_ERROR0_ACC_ROLL; };
if((NeutralAccZ < 512) || (NeutralAccZ > 850)) { VersionInfo.HardwareError[0] |= FC_ERROR0_ACC_TOP; };
carefree_old = 70;
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
LIBFC_HoTT_Clear();
#endif
}
 
 
//############################################################################
// Bearbeitet die Messwerte
void Mittelwert(void)
//############################################################################
{
static signed long tmpl,tmpl2,tmpl3,tmpl4;
static signed int oldNick, oldRoll, d2Roll, d2Nick;
signed long winkel_nick, winkel_roll;
MesswertGier = (signed int) AdNeutralGier - AdWertGier;
MesswertNick = (signed int) AdWertNickFilter / 8;
MesswertRoll = (signed int) AdWertRollFilter / 8;
RohMesswertNick = MesswertNick;
RohMesswertRoll = MesswertRoll;
// Beschleunigungssensor ++++++++++++++++++++++++++++++++++++++++++++++++
Mittelwert_AccNick = (Mittelwert_AccNick * 3 + ((ACC_AMPLIFY * AdWertAccNick))) / 4L;
Mittelwert_AccRoll = (Mittelwert_AccRoll * 3 + ((ACC_AMPLIFY * AdWertAccRoll))) / 4L;
IntegralAccNick += ACC_AMPLIFY * AdWertAccNick;
IntegralAccRoll += ACC_AMPLIFY * AdWertAccRoll;
NaviAccNick += AdWertAccNick;
NaviAccRoll += AdWertAccRoll;
NaviCntAcc++;
IntegralAccZ += Aktuell_az - NeutralAccZ;
//++++++++++++++++++++++++++++++++++++++++++++++++
// ADC einschalten
ANALOG_ON;
AdReady = 0;
//++++++++++++++++++++++++++++++++++++++++++++++++
if(Mess_IntegralRoll > 93000L) winkel_roll = 93000L;
else if(Mess_IntegralRoll <-93000L) winkel_roll = -93000L;
else winkel_roll = Mess_IntegralRoll;
if(Mess_IntegralNick > 93000L) winkel_nick = 93000L;
else if(Mess_IntegralNick <-93000L) winkel_nick = -93000L;
else winkel_nick = Mess_IntegralNick;
// Gier ++++++++++++++++++++++++++++++++++++++++++++++++
Mess_Integral_Gier += MesswertGier;
ErsatzKompass += MesswertGier;
// Kopplungsanteil +++++++++++++++++++++++++++++++++++++
if(!Looping_Nick && !Looping_Roll && (Parameter_GlobalConfig & CFG_ACHSENKOPPLUNG_AKTIV))
{
tmpl3 = (MesswertRoll * winkel_nick) / 2048L;
tmpl3 *= Parameter_AchsKopplung2; //65
tmpl3 /= 4096L;
tmpl4 = (MesswertNick * winkel_roll) / 2048L;
tmpl4 *= Parameter_AchsKopplung2; //65
tmpl4 /= 4096L;
KopplungsteilNickRoll = tmpl3;
KopplungsteilRollNick = tmpl4;
tmpl4 -= tmpl3;
ErsatzKompass += tmpl4;
if(!Parameter_CouplingYawCorrection) Mess_Integral_Gier -= tmpl4/2; // Gier nachhelfen
tmpl = ((MesswertGier + tmpl4) * winkel_nick) / 2048L;
tmpl *= Parameter_AchsKopplung1; // 90
tmpl /= 4096L;
tmpl2 = ((MesswertGier + tmpl4) * winkel_roll) / 2048L;
tmpl2 *= Parameter_AchsKopplung1;
tmpl2 /= 4096L;
if(abs(MesswertGier) > 64) if(labs(tmpl) > 128 || labs(tmpl2) > 128) TrichterFlug = 1;
//MesswertGier += (Parameter_CouplingYawCorrection * tmpl4) / 256;
}
else tmpl = tmpl2 = KopplungsteilNickRoll = KopplungsteilRollNick = 0;
TrimRoll = tmpl - tmpl2 / 100L;
TrimNick = -tmpl2 + tmpl / 100L;
// Kompasswert begrenzen ++++++++++++++++++++++++++++++++++++++++++++++++
if(ErsatzKompass >= (360L * GIER_GRAD_FAKTOR)) ErsatzKompass -= 360L * GIER_GRAD_FAKTOR; // 360° Umschlag
if(ErsatzKompass < 0) ErsatzKompass += 360L * GIER_GRAD_FAKTOR;
// Roll ++++++++++++++++++++++++++++++++++++++++++++++++
Mess_IntegralRoll2 += MesswertRoll + TrimRoll;
Mess_IntegralRoll += MesswertRoll + TrimRoll - LageKorrekturRoll;
if(Mess_IntegralRoll > Umschlag180Roll)
{
Mess_IntegralRoll = -(Umschlag180Roll - 25000L);
Mess_IntegralRoll2 = Mess_IntegralRoll;
}
if(Mess_IntegralRoll <-Umschlag180Roll)
{
Mess_IntegralRoll = (Umschlag180Roll - 25000L);
Mess_IntegralRoll2 = Mess_IntegralRoll;
}
// Nick ++++++++++++++++++++++++++++++++++++++++++++++++
Mess_IntegralNick2 += MesswertNick + TrimNick;
Mess_IntegralNick += MesswertNick + TrimNick - LageKorrekturNick;
if(Mess_IntegralNick > Umschlag180Nick)
{
Mess_IntegralNick = -(Umschlag180Nick - 25000L);
Mess_IntegralNick2 = Mess_IntegralNick;
}
if(Mess_IntegralNick <-Umschlag180Nick)
{
Mess_IntegralNick = (Umschlag180Nick - 25000L);
Mess_IntegralNick2 = Mess_IntegralNick;
}
Integral_Gier = Mess_Integral_Gier;
IntegralNick = Mess_IntegralNick;
IntegralRoll = Mess_IntegralRoll;
IntegralNick2 = Mess_IntegralNick2;
IntegralRoll2 = Mess_IntegralRoll2;
#define D_LIMIT 128
MesswertNick = HiResNick / 8;
MesswertRoll = HiResRoll / 8;
if(AdWertNick < 15) MesswertNick = -1000; if(AdWertNick < 7) MesswertNick = -2000;
if(PlatinenVersion == 10) { if(AdWertNick > 1010) MesswertNick = +1000; if(AdWertNick > 1017) MesswertNick = +2000; }
else { if(AdWertNick > 2000) MesswertNick = +1000; if(AdWertNick > 2015) MesswertNick = +2000; }
if(AdWertRoll < 15) MesswertRoll = -1000; if(AdWertRoll < 7) MesswertRoll = -2000;
if(PlatinenVersion == 10) { if(AdWertRoll > 1010) MesswertRoll = +1000; if(AdWertRoll > 1017) MesswertRoll = +2000; }
else { if(AdWertRoll > 2000) MesswertRoll = +1000; if(AdWertRoll > 2015) MesswertRoll = +2000; }
if(Parameter_Gyro_D)
{
d2Nick = HiResNick - oldNick;
oldNick = (oldNick + HiResNick)/2;
if(d2Nick > D_LIMIT) d2Nick = D_LIMIT;
else if(d2Nick < -D_LIMIT) d2Nick = -D_LIMIT;
d2Roll = HiResRoll - oldRoll;
oldRoll = (oldRoll + HiResRoll)/2;
if(d2Roll > D_LIMIT) d2Roll = D_LIMIT;
else if(d2Roll < -D_LIMIT) d2Roll = -D_LIMIT;
MesswertNick += (d2Nick * (signed int) Parameter_Gyro_D) / 16;
MesswertRoll += (d2Roll * (signed int) Parameter_Gyro_D) / 16;
HiResNick += (d2Nick * (signed int) Parameter_Gyro_D);
HiResRoll += (d2Roll * (signed int) Parameter_Gyro_D);
}
if(RohMesswertRoll > 0) TrimRoll += ((long) abs(KopplungsteilNickRoll) * Parameter_CouplingYawCorrection) / 64L;
else TrimRoll -= ((long) abs(KopplungsteilNickRoll) * Parameter_CouplingYawCorrection) / 64L;
if(RohMesswertNick > 0) TrimNick += ((long) abs(KopplungsteilRollNick) * Parameter_CouplingYawCorrection) / 64L;
else TrimNick -= ((long) abs(KopplungsteilRollNick) * Parameter_CouplingYawCorrection) / 64L;
if(Parameter_GlobalConfig & CFG_DREHRATEN_BEGRENZER && !Looping_Nick && !Looping_Roll)
{
if(RohMesswertNick > 256) MesswertNick += 1 * (RohMesswertNick - 256);
else if(RohMesswertNick < -256) MesswertNick += 1 * (RohMesswertNick + 256);
if(RohMesswertRoll > 256) MesswertRoll += 1 * (RohMesswertRoll - 256);
else if(RohMesswertRoll < -256) MesswertRoll += 1 * (RohMesswertRoll + 256);
}
}
 
//############################################################################
// Senden der Motorwerte per I2C-Bus
void SendMotorData(void)
//############################################################################
{
unsigned char i;
if(!MotorenEin)
{
FC_StatusFlags &= ~(FC_STATUS_MOTOR_RUN | FC_STATUS_FLY);
for(i=0;i<MAX_MOTORS;i++)
{
if(!PC_MotortestActive) MotorTest[i] = 0;
Motor[i].SetPoint = MotorTest[i];
Motor[i].SetPointLowerBits = 0;
/*
Motor[i].SetPoint = MotorTest[i] / 4; // testing the high resolution
Motor[i].SetPointLowerBits = MotorTest[i] % 4;
*/
}
if(PC_MotortestActive) PC_MotortestActive--;
}
else FC_StatusFlags |= FC_STATUS_MOTOR_RUN;
if(I2C_TransferActive)
{
I2C_TransferActive = 0; // enable for the next time
}
else
{
motor_write = 0;
I2C_Start(TWI_STATE_MOTOR_TX); //Start I2C Interrupt Mode
}
}
 
 
 
//############################################################################
// Trägt ggf. das Poti als Parameter ein
void ParameterZuordnung(void)
//############################################################################
{
unsigned char tmp,i;
for(i=0;i<8;i++)
{
int tmp2;
tmp = EE_Parameter.Kanalbelegung[K_POTI1 + i];
tmp2 = PPM_in[tmp] + 127;
if(tmp2 > 255) tmp2 = 255; else if(tmp2 < 0) tmp2 = 0;
if(tmp == 25) Poti[i] = tmp2; // 25 = WaypointEvent channel -> no filter
else
if(tmp2 != Poti[i])
{
Poti[i] += (tmp2 - Poti[i]) / 4;
if(Poti[i] > tmp2) Poti[i]--;
else Poti[i]++;
}
}
CHK_POTI_MM(Parameter_Luftdruck_D,EE_Parameter.Luftdruck_D,0,100);
CHK_POTI_MM(Parameter_Hoehe_P,EE_Parameter.Hoehe_P,0,100);
CHK_POTI_MM(Parameter_Gyro_P,EE_Parameter.Gyro_P,10,255);
CHK_POTI_MM(Parameter_J16Timing,EE_Parameter.J16Timing,5,255);
CHK_POTI_MM(Parameter_J17Timing,EE_Parameter.J17Timing,5,255);
if(EE_Parameter.Servo3 == 247) { if(PORTC & (1<<PORTC2)) Parameter_Servo3 = 140; else Parameter_Servo3 = 70;} // Out1 (J16)
else if(EE_Parameter.Servo3 == 246) { if(PORTC & (1<<PORTC3)) Parameter_Servo3 = 140; else Parameter_Servo3 = 70;}
else CHK_POTI(Parameter_Servo3,EE_Parameter.Servo3);
if(EE_Parameter.Servo4 == 247) { if(PORTC & (1<<PORTC2)) Parameter_Servo4 = 140; else Parameter_Servo4 = 70;}
else if(EE_Parameter.Servo4 == 246) { if(PORTC & (1<<PORTC3)) Parameter_Servo4 = 140; else Parameter_Servo4 = 70;} // Out2 (J17)
else CHK_POTI(Parameter_Servo4,EE_Parameter.Servo4);
CHK_POTI(Parameter_Servo5,EE_Parameter.Servo5);
CHK_POTI(Parameter_HoehenSchalter,EE_Parameter.MaxHoehe);
CHK_POTI(Parameter_Hoehe_ACC_Wirkung,EE_Parameter.Hoehe_ACC_Wirkung);
CHK_POTI(Parameter_Hoehe_GPS_Z,EE_Parameter.Hoehe_GPS_Z);
CHK_POTI(Parameter_KompassWirkung,EE_Parameter.KompassWirkung);
CHK_POTI(Parameter_Gyro_I,EE_Parameter.Gyro_I);
CHK_POTI(Parameter_Gyro_D,EE_Parameter.Gyro_D);
CHK_POTI(Parameter_Gyro_Gier_P,EE_Parameter.Gyro_Gier_P);
CHK_POTI(Parameter_Gyro_Gier_I,EE_Parameter.Gyro_Gier_I);
CHK_POTI(Parameter_I_Faktor,EE_Parameter.I_Faktor);
CHK_POTI(Parameter_UserParam1,EE_Parameter.UserParam1);
CHK_POTI(Parameter_UserParam2,EE_Parameter.UserParam2);
CHK_POTI(Parameter_UserParam3,EE_Parameter.UserParam3);
CHK_POTI(Parameter_UserParam4,EE_Parameter.UserParam4);
CHK_POTI(Parameter_UserParam5,EE_Parameter.UserParam5);
CHK_POTI(Parameter_UserParam6,EE_Parameter.UserParam6);
CHK_POTI(Parameter_UserParam7,EE_Parameter.UserParam7);
CHK_POTI(Parameter_UserParam8,EE_Parameter.UserParam8);
CHK_POTI(Parameter_ServoNickControl,EE_Parameter.ServoNickControl);
CHK_POTI(Parameter_ServoRollControl,EE_Parameter.ServoRollControl);
CHK_POTI(Parameter_LoopGasLimit,EE_Parameter.LoopGasLimit);
CHK_POTI(Parameter_AchsKopplung1,EE_Parameter.AchsKopplung1);
CHK_POTI(Parameter_AchsKopplung2,EE_Parameter.AchsKopplung2);
CHK_POTI(Parameter_CouplingYawCorrection,EE_Parameter.CouplingYawCorrection);
CHK_POTI(Parameter_MaximumAltitude,EE_Parameter.MaxAltitude);
if((NC_To_FC_MaxAltitude && NC_To_FC_MaxAltitude < Parameter_MaximumAltitude) || Parameter_MaximumAltitude == 0) Parameter_MaximumAltitude = NC_To_FC_MaxAltitude;
Parameter_GlobalConfig = EE_Parameter.GlobalConfig;
Parameter_ExtraConfig = EE_Parameter.ExtraConfig;
// CHK_POTI(Parameter_AchsGegenKopplung1,EE_Parameter.AchsGegenKopplung1,0,255);
CHK_POTI(Parameter_DynamicStability,EE_Parameter.DynamicStability);
CHK_POTI(Parameter_ExternalControl,EE_Parameter.ExternalControl);
Ki = 10300 / (Parameter_I_Faktor + 1);
MAX_GAS = EE_Parameter.Gas_Max;
MIN_GAS = EE_Parameter.Gas_Min;
tmp = EE_Parameter.CareFreeModeControl;
if(tmp > 50)
{
CareFree = 1;
if(tmp >= 248 && Poti[255 - tmp] < 50) CareFree = 0;
if(carefree_old != CareFree)
{
if(carefree_old < 3)
{
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
if(CareFree)
{ beeptime = 1500; if(!SpeakHoTT) SpeakHoTT = SPEAK_CF_ON; }
else
{ beeptime = 200; if(!SpeakHoTT) SpeakHoTT = SPEAK_CF_OFF; }
#else
if(CareFree)
beeptime = 1500;
else
beeptime = 200;
#endif
NeueKompassRichtungMerken = 5;
carefree_old = CareFree;
} else carefree_old--;
}
if(FromNaviCtrl.CompassValue < 0 && CareFree) VersionInfo.HardwareError[0] |= FC_ERROR0_CAREFREE; //else VersionInfo.HardwareError[0] &= ~FC_ERROR0_CAREFREE;
}
else
{
CareFree = 0;
carefree_old = 10;
}
if(FromNaviCtrl.CompassValue < 0 && MotorenEin && CareFree && BeepMuster == 0xffff) // ungültiger Kompasswert
{
beeptime = 15000;
BeepMuster = 0xA400;
CareFree = 0;
}
if(CareFree) { FC_StatusFlags2 |= FC_STATUS2_CAREFREE; if(Parameter_AchsKopplung1 < 210) Parameter_AchsKopplung1 += 30;} else FC_StatusFlags2 &= ~FC_STATUS2_CAREFREE;
}
 
//############################################################################
//
void MotorRegler(void)
//############################################################################
{
int pd_ergebnis_nick,pd_ergebnis_roll;
int GierMischanteil,GasMischanteil;
static long sollGier = 0;
static long IntegralFehlerNick = 0;
static long IntegralFehlerRoll = 0;
static unsigned int RcLostTimer;
static unsigned char delay_neutral = 0;
static unsigned char delay_einschalten = 0,delay_ausschalten = 0;
static signed char move_safety_switch = 0;
static long ausgleichNick, ausgleichRoll;
int IntegralNickMalFaktor,IntegralRollMalFaktor;
unsigned char i;
Mittelwert();
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gaswert ermitteln
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(EE_Parameter.GlobalConfig3 & CFG3_VARIO_FAILSAFE)
{
if(HoverGas && HoverGas < 150 * STICK_GAIN)
{
HoverGasEmergencyPercent = (HoverGas/(STICK_GAIN) * EE_Parameter.NotGas) / 100; // i.e. 80% of Hovergas
}
else HoverGasEmergencyPercent = 45; // default if the Hovergas was could not calculated yet
} else HoverGasEmergencyPercent = EE_Parameter.NotGas;
GasMischanteil = StickGas;
if(GasMischanteil < MIN_GAS + 10) GasMischanteil = MIN_GAS + 10;
 
if(SenderOkay < 100 && !(FC_StatusFlags2 & FC_STATUS2_RC_FAILSAVE_ACTIVE))
{
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Empfang schlecht
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(RcLostTimer) RcLostTimer--;
else
{
MotorenEin = 0;
modell_fliegt = 0;
FC_StatusFlags &= ~(FC_STATUS_EMERGENCY_LANDING | FC_STATUS_FLY);
}
ROT_ON;
if(modell_fliegt > 1000 && Capacity.MinOfMaxPWM > 100) // wahrscheinlich in der Luft --> langsam absenken
{
GasMischanteil = HoverGasEmergencyPercent;
FC_StatusFlags |= FC_STATUS_EMERGENCY_LANDING;
PPM_diff[EE_Parameter.Kanalbelegung[K_NICK]] = 0;
PPM_diff[EE_Parameter.Kanalbelegung[K_ROLL]] = 0;
PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] = 0;
PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] = 0;
PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] = 0;
}
else
{
MotorenEin = 0;
}
}
else
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Emfang gut
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(SenderOkay > 140)
{
FC_StatusFlags &= ~FC_STATUS_EMERGENCY_LANDING;
RcLostTimer = EE_Parameter.NotGasZeit * 50;
if(GasMischanteil > 40 && MotorenEin)
{
if(modell_fliegt < 0xffff) modell_fliegt++;
}
if((modell_fliegt < 256))
{
SummeNick = 0;
SummeRoll = 0;
sollGier = 0;
Mess_Integral_Gier = 0;
} else
FC_StatusFlags |= FC_STATUS_FLY;
if((PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] > 80) && MotorenEin == 0)
{
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// auf Nullwerte kalibrieren
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] > 75) // Neutralwerte
{
if(++delay_neutral > 200) // nicht sofort
{
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
SpeakHoTT = SPEAK_CALIBRATE;
#endif
delay_neutral = 0;
modell_fliegt = 0;
if(PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > 70 || abs(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]]) > 70)
{
unsigned char setting=1;
if(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] > 70 && PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < 70) setting = 1;
if(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] > 70 && PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > 70) setting = 2;
if(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] < 70 && PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > 70) setting = 3;
if(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] <-70 && PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > 70) setting = 4;
if(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] <-70 && PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < 70) setting = 5;
SetActiveParamSet(setting); // aktiven Datensatz merken
}
if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]]) < 30 && PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < -70)
{
WinkelOut.CalcState = 1;
CalibrationDone = 0;
beeptime = 1000;
}
else
{
ParamSet_ReadFromEEProm(GetActiveParamSet());
LipoDetection(0);
LIBFC_ReceiverInit(EE_Parameter.Receiver);
if((Parameter_GlobalConfig & CFG_HOEHENREGELUNG)) // Höhenregelung aktiviert?
{
if((MessLuftdruck > 950) || (MessLuftdruck < 750)) SucheLuftruckOffset();
}
// ServoActive = 0;
SetNeutral(0);
CalibrationDone = 1;
ServoActive = 1;
DDRD |=0x80; // enable J7 -> Servo signal
Piep(GetActiveParamSet(),120);
}
}
}
else
if(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] < -75) // ACC Neutralwerte speichern
{
if(++delay_neutral > 200) // nicht sofort
{
MotorenEin = 0;
delay_neutral = 0;
modell_fliegt = 0;
SetNeutral(1);
CalibrationDone = 1;
Piep(GetActiveParamSet(),120);
}
}
else delay_neutral = 0;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gas ist unten
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] < 35-120)
{
if(PPM_diff[EE_Parameter.MotorSafetySwitch & 127] > 5) move_safety_switch = 100;
else
if(PPM_diff[EE_Parameter.MotorSafetySwitch & 127] < -5) move_safety_switch = -100;
// Motoren Starten
if(!MotorenEin)
{
if((((PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] < -75) && ((!(EE_Parameter.GlobalConfig3 & CFG3_MOTOR_SWITCH_MODE) && PPM_in[EE_Parameter.MotorSafetySwitch] < -75) || EE_Parameter.MotorSafetySwitch == 0)))
|| (((EE_Parameter.GlobalConfig3 & CFG3_MOTOR_SWITCH_MODE) && PPM_in[EE_Parameter.MotorSafetySwitch] > -10 && move_safety_switch == 100)))
{
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Einschalten
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(CalibrationDone) FC_StatusFlags |= FC_STATUS_START;
if(++delay_einschalten > 253)
{
delay_einschalten = 0;
if(!VersionInfo.HardwareError[0] && CalibrationDone && !NC_ErrorCode)
{
modell_fliegt = 1;
MotorenEin = 1;
sollGier = 0;
Mess_Integral_Gier = 0;
Mess_Integral_Gier2 = 0;
Mess_IntegralNick = EE_Parameter.GyroAccFaktor * (long)Mittelwert_AccNick;
Mess_IntegralRoll = EE_Parameter.GyroAccFaktor * (long)Mittelwert_AccRoll;
Mess_IntegralNick2 = IntegralNick;
Mess_IntegralRoll2 = IntegralRoll;
SummeNick = 0;
SummeRoll = 0;
// ControlHeading = (((int) EE_Parameter.OrientationAngle * 15 + KompassValue) % 360) / 2;
NeueKompassRichtungMerken = 100; // 2 sekunden
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
SpeakHoTT = SPEAK_STARTING;
#endif
}
else
{
beeptime = 1500; // indicate missing calibration
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
if(!CalibrationDone) SpeakHoTT = SPEAK_ERR_CALIBARTION;
#endif
}
}
}
else delay_einschalten = 0;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Auschalten
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
else // only if motors are running
{
// if((PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] > 75) && (PPM_in[EE_Parameter.MotorSafetySwitch] < -75 || EE_Parameter.MotorSafetySwitch == 0))
if((((PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] > 75) && ((!(EE_Parameter.GlobalConfig3 & CFG3_MOTOR_SWITCH_MODE) && PPM_in[EE_Parameter.MotorSafetySwitch] < -75) || EE_Parameter.MotorSafetySwitch == 0)))
|| (((EE_Parameter.GlobalConfig3 & CFG3_MOTOR_SWITCH_MODE) && PPM_in[EE_Parameter.MotorSafetySwitch] < -50 && move_safety_switch == -100)))
{
if(++delay_ausschalten > 250) // nicht sofort
{
MotorenEin = 0;
delay_ausschalten = 0;
modell_fliegt = 0;
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
SpeakHoTT = SPEAK_MK_OFF;
#endif
}
}
else delay_ausschalten = 0;
}
}
else // gas not at minimum
move_safety_switch = 0;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// neue Werte von der Funke
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!NewPpmData-- || (FC_StatusFlags & FC_STATUS_EMERGENCY_LANDING))
{
static int stick_nick,stick_roll;
unsigned char stick_p;
ParameterZuordnung();
stick_p = EE_Parameter.Stick_P;
stick_nick = (stick_nick * 3 + PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] * stick_p) / 4;
stick_nick += PPM_diff[EE_Parameter.Kanalbelegung[K_NICK]] * EE_Parameter.Stick_D;
stick_roll = (stick_roll * 3 + PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] * stick_p) / 4;
stick_roll += PPM_diff[EE_Parameter.Kanalbelegung[K_ROLL]] * EE_Parameter.Stick_D;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// CareFree und freie Wahl der vorderen Richtung
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(CareFree)
{
signed int nick, roll;
nick = stick_nick / 4;
roll = stick_roll / 4;
StickNick = ((FromNC_Rotate_C * nick) + (FromNC_Rotate_S * roll)) / (32 / 4);
StickRoll = ((FromNC_Rotate_C * roll) - (FromNC_Rotate_S * nick)) / (32 / 4);
}
else
{
FromNC_Rotate_C = sintab[EE_Parameter.OrientationAngle + 6];
FromNC_Rotate_S = sintab[EE_Parameter.OrientationAngle];
StickNick = ((FromNC_Rotate_C * stick_nick) + (FromNC_Rotate_S * stick_roll)) / 8;
StickRoll = ((FromNC_Rotate_C * stick_roll) - (FromNC_Rotate_S * stick_nick)) / 8;
}
StickGier = -PPM_in[EE_Parameter.Kanalbelegung[K_GIER]];
if(StickGier > 4) StickGier -= 4; else
if(StickGier < -4) StickGier += 4; else StickGier = 0;
if(GPS_Aid_StickMultiplikator) // in that case the GPS controls stronger
{
StickNick = (GPS_Aid_StickMultiplikator * (StickNick / 8)) / 16;
StickRoll = (GPS_Aid_StickMultiplikator * (StickRoll / 8)) / 16;
}
StickNick -= GPS_Nick;
StickRoll -= GPS_Roll;
StickGas = PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] + 127;
GyroFaktor = (Parameter_Gyro_P + 10.0);
IntegralFaktor = Parameter_Gyro_I;
GyroFaktorGier = (Parameter_Gyro_Gier_P + 10.0);
IntegralFaktorGier = Parameter_Gyro_Gier_I;
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//+ Analoge Steuerung per Seriell
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(ExternControl.Config & 0x01 && Parameter_ExternalControl > 128)
{
StickNick += (int) ExternControl.Nick * (int) EE_Parameter.Stick_P;
StickRoll += (int) ExternControl.Roll * (int) EE_Parameter.Stick_P;
StickGier += ExternControl.Gier;
ExternHoehenValue = (int) ExternControl.Hight * (int)EE_Parameter.Hoehe_Verstaerkung;
if(ExternControl.Gas < StickGas) StickGas = ExternControl.Gas;
}
if(StickGas < 0) StickGas = 0;
if(Parameter_GlobalConfig & CFG_HEADING_HOLD) IntegralFaktor = 0;
if(abs(StickNick/STICK_GAIN) > MaxStickNick)
{
MaxStickNick = abs(StickNick)/STICK_GAIN;
if(MaxStickNick > 100) MaxStickNick = 100;
}
else MaxStickNick--;
if(abs(StickRoll/STICK_GAIN) > MaxStickRoll)
{
MaxStickRoll = abs(StickRoll)/STICK_GAIN;
if(MaxStickRoll > 100) MaxStickRoll = 100;
}
else MaxStickRoll--;
if(FC_StatusFlags & FC_STATUS_EMERGENCY_LANDING) {MaxStickNick = 0; MaxStickRoll = 0;}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Looping?
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if((PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] > EE_Parameter.LoopThreshold) && EE_Parameter.BitConfig & CFG_LOOP_LINKS) Looping_Links = 1;
else
{
{
if((PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] < (EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese))) Looping_Links = 0;
}
}
if((PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] < -EE_Parameter.LoopThreshold) && EE_Parameter.BitConfig & CFG_LOOP_RECHTS) Looping_Rechts = 1;
else
{
if(Looping_Rechts) // Hysterese
{
if(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] > -(EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese)) Looping_Rechts = 0;
}
}
if((PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > EE_Parameter.LoopThreshold) && EE_Parameter.BitConfig & CFG_LOOP_OBEN) Looping_Oben = 1;
else
{
if(Looping_Oben) // Hysterese
{
if((PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < (EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese))) Looping_Oben = 0;
}
}
if((PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < -EE_Parameter.LoopThreshold) && EE_Parameter.BitConfig & CFG_LOOP_UNTEN) Looping_Unten = 1;
else
{
if(Looping_Unten) // Hysterese
{
if(PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > -(EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese)) Looping_Unten = 0;
}
}
if(Looping_Links || Looping_Rechts) Looping_Roll = 1; else Looping_Roll = 0;
if(Looping_Oben || Looping_Unten) { Looping_Nick = 1; Looping_Roll = 0; Looping_Links = 0; Looping_Rechts = 0;} else Looping_Nick = 0;
} // Ende neue Funken-Werte
if(Looping_Roll || Looping_Nick)
{
if(GasMischanteil > EE_Parameter.LoopGasLimit) GasMischanteil = EE_Parameter.LoopGasLimit;
TrichterFlug = 1;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Bei Empfangsausfall im Flug
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(FC_StatusFlags2 & FC_STATUS2_RC_FAILSAVE_ACTIVE)
{
StickNick = -GPS_Nick;
StickRoll = -GPS_Roll;
StickGas = StickGasHover;
Parameter_GlobalConfig &= ~(CFG_HEADING_HOLD | CFG_DREHRATEN_BEGRENZER);
Parameter_GlobalConfig |= CFG_HOEHENREGELUNG | CFG_ACHSENKOPPLUNG_AKTIV | CFG_KOMPASS_AKTIV | CFG_GPS_AKTIV | CFG_HOEHEN_SCHALTER | CFG_GPS_AKTIV;
Parameter_ExtraConfig &= ~(CFG2_HEIGHT_LIMIT | CFG_LEARNABLE_CAREFREE | CFG2_VARIO_BEEP);
Parameter_HoehenSchalter = 200; // switch on
}
else if(FC_StatusFlags & FC_STATUS_EMERGENCY_LANDING)
{
StickGier = 0;
StickNick = 0;
StickRoll = 0;
GyroFaktor = 90;
IntegralFaktor = 120;
GyroFaktorGier = 90;
IntegralFaktorGier = 120;
Looping_Roll = 0;
Looping_Nick = 0;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Integrale auf ACC-Signal abgleichen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#define ABGLEICH_ANZAHL 256L
MittelIntegralNick += IntegralNick; // Für die Mittelwertbildung aufsummieren
MittelIntegralRoll += IntegralRoll;
MittelIntegralNick2 += IntegralNick2;
MittelIntegralRoll2 += IntegralRoll2;
if(Looping_Nick || Looping_Roll)
{
IntegralAccNick = 0;
IntegralAccRoll = 0;
MittelIntegralNick = 0;
MittelIntegralRoll = 0;
MittelIntegralNick2 = 0;
MittelIntegralRoll2 = 0;
Mess_IntegralNick2 = Mess_IntegralNick;
Mess_IntegralRoll2 = Mess_IntegralRoll;
ZaehlMessungen = 0;
LageKorrekturNick = 0;
LageKorrekturRoll = 0;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!Looping_Nick && !Looping_Roll && (Aktuell_az > 512 || MotorenEin))
{
long tmp_long, tmp_long2;
if(FromNaviCtrl_Value.Kalman_K > 0 /*&& !TrichterFlug*/)
{
tmp_long = (long)(IntegralNick / EE_Parameter.GyroAccFaktor - (long)(Mittelwert_AccNick - FromNaviCtrl.AccErrorN));
tmp_long2 = (long)(IntegralRoll / EE_Parameter.GyroAccFaktor - (long)(Mittelwert_AccRoll - FromNaviCtrl.AccErrorR));
tmp_long = (tmp_long * FromNaviCtrl_Value.Kalman_K) / (32 * 16);
tmp_long2 = (tmp_long2 * FromNaviCtrl_Value.Kalman_K) / (32 * 16);
if((MaxStickNick > 64) || (MaxStickRoll > 64))
{
tmp_long /= 2;
tmp_long2 /= 2;
}
if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]]) > 25)
{
tmp_long /= 3;
tmp_long2 /= 3;
}
if(tmp_long > (long) FromNaviCtrl_Value.Kalman_MaxFusion) tmp_long = (long) FromNaviCtrl_Value.Kalman_MaxFusion;
if(tmp_long < (long)-FromNaviCtrl_Value.Kalman_MaxFusion) tmp_long = (long)-FromNaviCtrl_Value.Kalman_MaxFusion;
if(tmp_long2 > (long) FromNaviCtrl_Value.Kalman_MaxFusion) tmp_long2 = (long) FromNaviCtrl_Value.Kalman_MaxFusion;
if(tmp_long2 < (long)-FromNaviCtrl_Value.Kalman_MaxFusion) tmp_long2 = (long)-FromNaviCtrl_Value.Kalman_MaxFusion;
}
else
{
tmp_long = (long)(IntegralNick / EE_Parameter.GyroAccFaktor - (long)Mittelwert_AccNick);
tmp_long2 = (long)(IntegralRoll / EE_Parameter.GyroAccFaktor - (long)Mittelwert_AccRoll);
tmp_long /= 16;
tmp_long2 /= 16;
if((MaxStickNick > 64) || (MaxStickRoll > 64))
{
tmp_long /= 3;
tmp_long2 /= 3;
}
if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]]) > 25)
{
tmp_long /= 3;
tmp_long2 /= 3;
}
KompassFusion = 25;
#define AUSGLEICH 32
if(tmp_long > AUSGLEICH) tmp_long = AUSGLEICH;
if(tmp_long < -AUSGLEICH) tmp_long =-AUSGLEICH;
if(tmp_long2 > AUSGLEICH) tmp_long2 = AUSGLEICH;
if(tmp_long2 <-AUSGLEICH) tmp_long2 =-AUSGLEICH;
}
Mess_IntegralNick -= tmp_long;
Mess_IntegralRoll -= tmp_long2;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(ZaehlMessungen >= ABGLEICH_ANZAHL)
{
static int cnt = 0;
static char last_n_p,last_n_n,last_r_p,last_r_n;
static long MittelIntegralNick_Alt,MittelIntegralRoll_Alt;
if(!Looping_Nick && !Looping_Roll && !TrichterFlug && EE_Parameter.Driftkomp)
{
MittelIntegralNick /= ABGLEICH_ANZAHL;
MittelIntegralRoll /= ABGLEICH_ANZAHL;
IntegralAccNick = (EE_Parameter.GyroAccFaktor * IntegralAccNick) / ABGLEICH_ANZAHL;
IntegralAccRoll = (EE_Parameter.GyroAccFaktor * IntegralAccRoll) / ABGLEICH_ANZAHL;
IntegralAccZ = IntegralAccZ / ABGLEICH_ANZAHL;
#define MAX_I 0
// Nick ++++++++++++++++++++++++++++++++++++++++++++++++
IntegralFehlerNick = (long)(MittelIntegralNick - (long)IntegralAccNick);
ausgleichNick = IntegralFehlerNick / EE_Parameter.GyroAccAbgleich;
// Roll ++++++++++++++++++++++++++++++++++++++++++++++++
IntegralFehlerRoll = (long)(MittelIntegralRoll - (long)IntegralAccRoll);
ausgleichRoll = IntegralFehlerRoll / EE_Parameter.GyroAccAbgleich;
LageKorrekturNick = ausgleichNick / ABGLEICH_ANZAHL;
LageKorrekturRoll = ausgleichRoll / ABGLEICH_ANZAHL;
if(((MaxStickNick > 64) || (MaxStickRoll > 64) || (abs(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]]) > 25)) && (FromNaviCtrl_Value.Kalman_K == -1))
{
LageKorrekturNick /= 2;
LageKorrekturRoll /= 2;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gyro-Drift ermitteln
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
MittelIntegralNick2 /= ABGLEICH_ANZAHL;
MittelIntegralRoll2 /= ABGLEICH_ANZAHL;
long tmp_long = IntegralNick2 - IntegralNick;
long tmp_long2 = IntegralRoll2 - IntegralRoll;
IntegralFehlerNick = tmp_long;
IntegralFehlerRoll = tmp_long2;
Mess_IntegralNick2 -= IntegralFehlerNick;
Mess_IntegralRoll2 -= IntegralFehlerRoll;
if(EE_Parameter.Driftkomp)
{
if(GierGyroFehler > ABGLEICH_ANZAHL/2) { AdNeutralGier++; }
if(GierGyroFehler <-ABGLEICH_ANZAHL/2) { AdNeutralGier--; }
}
GierGyroFehler = 0;
#define FEHLER_LIMIT (ABGLEICH_ANZAHL / 2)
#define FEHLER_LIMIT1 (ABGLEICH_ANZAHL * 2) //4
#define FEHLER_LIMIT2 (ABGLEICH_ANZAHL * 16) //16
#define BEWEGUNGS_LIMIT 20000
// Nick +++++++++++++++++++++++++++++++++++++++++++++++++
cnt = 1;// + labs(IntegralFehlerNick) / 4096;
if(labs(IntegralFehlerNick) > FEHLER_LIMIT1) cnt = 4;
if(labs(MittelIntegralNick_Alt - MittelIntegralNick) < BEWEGUNGS_LIMIT || (FromNaviCtrl_Value.Kalman_MaxDrift > 3*8))
{
if(IntegralFehlerNick > FEHLER_LIMIT2)
{
if(last_n_p)
{
cnt += labs(IntegralFehlerNick) / (FEHLER_LIMIT2 / 8);
ausgleichNick = IntegralFehlerNick / 8;
if(ausgleichNick > 5000) ausgleichNick = 5000;
LageKorrekturNick += ausgleichNick / ABGLEICH_ANZAHL;
}
else last_n_p = 1;
} else last_n_p = 0;
if(IntegralFehlerNick < -FEHLER_LIMIT2)
{
if(last_n_n)
{
cnt += labs(IntegralFehlerNick) / (FEHLER_LIMIT2 / 8);
ausgleichNick = IntegralFehlerNick / 8;
if(ausgleichNick < -5000) ausgleichNick = -5000;
LageKorrekturNick += ausgleichNick / ABGLEICH_ANZAHL;
}
else last_n_n = 1;
} else last_n_n = 0;
}
else
{
cnt = 0;
KompassSignalSchlecht = 100;
}
if(cnt > EE_Parameter.Driftkomp) cnt = EE_Parameter.Driftkomp;
if(FromNaviCtrl_Value.Kalman_MaxDrift) if(cnt > FromNaviCtrl_Value.Kalman_MaxDrift) cnt = FromNaviCtrl_Value.Kalman_MaxDrift;
if(IntegralFehlerNick > FEHLER_LIMIT) AdNeutralNick += cnt;
if(IntegralFehlerNick < -FEHLER_LIMIT) AdNeutralNick -= cnt;
// Roll +++++++++++++++++++++++++++++++++++++++++++++++++
cnt = 1;// + labs(IntegralFehlerRoll) / 4096;
if(labs(IntegralFehlerRoll) > FEHLER_LIMIT1) cnt = 4;
if(labs(MittelIntegralRoll_Alt - MittelIntegralRoll) < BEWEGUNGS_LIMIT || (FromNaviCtrl_Value.Kalman_MaxDrift > 3*8))
{
if(IntegralFehlerRoll > FEHLER_LIMIT2)
{
if(last_r_p)
{
cnt += labs(IntegralFehlerRoll) / (FEHLER_LIMIT2 / 8);
ausgleichRoll = IntegralFehlerRoll / 8;
if(ausgleichRoll > 5000) ausgleichRoll = 5000;
LageKorrekturRoll += ausgleichRoll / ABGLEICH_ANZAHL;
}
else last_r_p = 1;
} else last_r_p = 0;
if(IntegralFehlerRoll < -FEHLER_LIMIT2)
{
if(last_r_n)
{
cnt += labs(IntegralFehlerRoll) / (FEHLER_LIMIT2 / 8);
ausgleichRoll = IntegralFehlerRoll / 8;
if(ausgleichRoll < -5000) ausgleichRoll = -5000;
LageKorrekturRoll += ausgleichRoll / ABGLEICH_ANZAHL;
}
else last_r_n = 1;
} else last_r_n = 0;
} else
{
cnt = 0;
KompassSignalSchlecht = 100;
}
if(cnt > EE_Parameter.Driftkomp) cnt = EE_Parameter.Driftkomp;
if(FromNaviCtrl_Value.Kalman_MaxDrift) if(cnt > FromNaviCtrl_Value.Kalman_MaxDrift) cnt = FromNaviCtrl_Value.Kalman_MaxDrift;
if(IntegralFehlerRoll > FEHLER_LIMIT) AdNeutralRoll += cnt;
if(IntegralFehlerRoll < -FEHLER_LIMIT) AdNeutralRoll -= cnt;
}
else
{
LageKorrekturRoll = 0;
LageKorrekturNick = 0;
TrichterFlug = 0;
}
if(!IntegralFaktor) { LageKorrekturRoll = 0; LageKorrekturNick = 0;} // z.B. bei HH
// +++++++++++++++++++++++++++++++++++++++++++++++++++++
MittelIntegralNick_Alt = MittelIntegralNick;
MittelIntegralRoll_Alt = MittelIntegralRoll;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++
IntegralAccNick = 0;
IntegralAccRoll = 0;
IntegralAccZ = 0;
MittelIntegralNick = 0;
MittelIntegralRoll = 0;
MittelIntegralNick2 = 0;
MittelIntegralRoll2 = 0;
ZaehlMessungen = 0;
} // ZaehlMessungen >= ABGLEICH_ANZAHL
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gieren
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(abs(StickGier) > 3) // war 15
{
// KompassSignalSchlecht = 1000;
if(!(Parameter_GlobalConfig & CFG_KOMPASS_FIX))
{
NeueKompassRichtungMerken = 50; // eine Sekunde zum Einloggen
};
}
int tmp_int = (long) EE_Parameter.StickGier_P * ((long)StickGier * abs(StickGier)) / 512L; // expo y = ax + bx²
tmp_int += (EE_Parameter.StickGier_P * StickGier) / 4;
tmp_int += CompassGierSetpoint;
sollGier = tmp_int;
Mess_Integral_Gier -= tmp_int;
if(Mess_Integral_Gier > 50000) Mess_Integral_Gier = 50000; // begrenzen
if(Mess_Integral_Gier <-50000) Mess_Integral_Gier =-50000;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Kompass
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(KompassValue >= 0 && (Parameter_GlobalConfig & CFG_KOMPASS_AKTIV))
{
if(CalculateCompassTimer-- == 1)
{
int w,v,r,fehler,korrektur; // wird von der SPI-Routine auf 1 gesetzt
CalculateCompassTimer = 13; // falls keine Navi-Daten
// max. Korrekturwert schätzen
w = abs(IntegralNick /512); // mit zunehmender Neigung den Einfluss drosseln
v = abs(IntegralRoll /512);
if(v > w) w = v; // grösste Neigung ermitteln
// korrektur = w / 4 + 1;
korrektur = w / 8 + 2;
ErsatzKompassInGrad = ErsatzKompass/GIER_GRAD_FAKTOR;
// Kompassfehlerwert bestimmen
fehler = ((540 + KompassValue - ErsatzKompassInGrad) % 360) - 180;
// GIER_GRAD_FAKTOR ist ca. 1200
// Kompasswert einloggen
if(KompassSignalSchlecht) KompassSignalSchlecht--;
else
if(w < 25)
{
GierGyroFehler += fehler;
if(NeueKompassRichtungMerken)
{
if(--NeueKompassRichtungMerken == 0)
{
KompassSollWert = ErsatzKompassInGrad;
}
}
}
// Kompass fusionieren
if(!KompassSignalSchlecht) ErsatzKompass += (fehler * KompassFusion) / korrektur;
// MK Gieren
if(!NeueKompassRichtungMerken)
{
r = ((540 + (KompassSollWert - ErsatzKompassInGrad)) % 360) - 180;
v = r * (Parameter_KompassWirkung/2); // nach Kompass ausrichten
CompassGierSetpoint = v / 16;
}
else CompassGierSetpoint = 0;
} // CalculateCompassTimer
}
else CompassGierSetpoint = 0;
//DebugOut.Analog[16] = KompassFusion;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Drehgeschwindigkeit und -winkel zu einem Istwert zusammenfassen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(TrichterFlug) { SummeRoll = 0; SummeNick = 0;};
if(!Looping_Nick) IntegralNickMalFaktor = (IntegralNick * IntegralFaktor) / (44000 / STICK_GAIN); else IntegralNickMalFaktor = 0;
if(!Looping_Roll) IntegralRollMalFaktor = (IntegralRoll * IntegralFaktor) / (44000 / STICK_GAIN); else IntegralRollMalFaktor = 0;
#define TRIM_MAX 200
if(TrimNick > TRIM_MAX) TrimNick = TRIM_MAX; else if(TrimNick <-TRIM_MAX) TrimNick =-TRIM_MAX;
if(TrimRoll > TRIM_MAX) TrimRoll = TRIM_MAX; else if(TrimRoll <-TRIM_MAX) TrimRoll =-TRIM_MAX;
MesswertNick = IntegralNickMalFaktor + (long)((long)MesswertNick * GyroFaktor + (long)TrimNick * 128L) / (256L / STICK_GAIN);
MesswertRoll = IntegralRollMalFaktor + (long)((long)MesswertRoll * GyroFaktor + (long)TrimRoll * 128L) / (256L / STICK_GAIN);
MesswertGier = (long)(MesswertGier * 2 * (long)GyroFaktorGier) / (256L / STICK_GAIN) + (long)(Integral_Gier * IntegralFaktorGier) / (2 * (44000 / STICK_GAIN));
// Maximalwerte abfangen
#define MAX_SENSOR (4096)
if(MesswertNick > MAX_SENSOR) MesswertNick = MAX_SENSOR;
if(MesswertNick < -MAX_SENSOR) MesswertNick = -MAX_SENSOR;
if(MesswertRoll > MAX_SENSOR) MesswertRoll = MAX_SENSOR;
if(MesswertRoll < -MAX_SENSOR) MesswertRoll = -MAX_SENSOR;
if(MesswertGier > MAX_SENSOR) MesswertGier = MAX_SENSOR;
if(MesswertGier < -MAX_SENSOR) MesswertGier = -MAX_SENSOR;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Höhenregelung
// Die Höhenregelung schwächt lediglich das Gas ab, erhöht es allerdings nicht
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(UBat > BattLowVoltageWarning) GasMischanteil = ((unsigned int)GasMischanteil * BattLowVoltageWarning) / UBat; // Gas auf das aktuelle Spannungvieveau beziehen
GasMischanteil *= STICK_GAIN;
// if height control is activated
if((Parameter_GlobalConfig & CFG_HOEHENREGELUNG) && !(Looping_Roll || Looping_Nick)) // Höhenregelung
GasMischanteil = HoehenRegelung(GasMischanteil);
else
{
// set undefined state to indicate vario off
FC_StatusFlags |= (FC_STATUS_VARIO_TRIM_UP|FC_STATUS_VARIO_TRIM_DOWN);
} // EOF no height control
// Linits the maximum gas in case of "Out of Range emergency landing"
if(NC_To_FC_Flags & NC_TO_FC_EMERGENCY_LANDING)
{
if(GasMischanteil/STICK_GAIN > HoverGasEmergencyPercent && HoverGas) GasMischanteil = HoverGasEmergencyPercent * STICK_GAIN;
SollHoehe = HoehenWert; // update setpoint to current heigth
beeptime = 15000;
BeepMuster = 0x0E00;
}
// limit gas to parameter setting
LIMIT_MIN(GasMischanteil, (MIN_GAS + 10) * STICK_GAIN);
if(GasMischanteil > (MAX_GAS - 20) * STICK_GAIN) GasMischanteil = (MAX_GAS - 20) * STICK_GAIN;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// all BL-Ctrl connected?
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(MissingMotor || Capacity.MinOfMaxPWM != 255 || NC_ErrorCode) // wait until all BL-Ctrls started and no Errors
if(modell_fliegt > 1 && modell_fliegt < 50 && GasMischanteil > 0) // only during start-phase
{
modell_fliegt = 1;
GasMischanteil = (MIN_GAS + 10) * STICK_GAIN;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Mischer und PI-Regler
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DebugOut.Analog[7] = GasMischanteil;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gier-Anteil
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
GierMischanteil = MesswertGier - sollGier * STICK_GAIN; // Regler für Gier
#define MIN_GIERGAS (40*STICK_GAIN) // unter diesem Gaswert trotzdem Gieren
if(GasMischanteil > MIN_GIERGAS)
{
if(GierMischanteil > (GasMischanteil / 2)) GierMischanteil = GasMischanteil / 2;
if(GierMischanteil < -(GasMischanteil / 2)) GierMischanteil = -(GasMischanteil / 2);
}
else
{
if(GierMischanteil > (MIN_GIERGAS / 2)) GierMischanteil = MIN_GIERGAS / 2;
if(GierMischanteil < -(MIN_GIERGAS / 2)) GierMischanteil = -(MIN_GIERGAS / 2);
}
tmp_int = MAX_GAS*STICK_GAIN;
if(GierMischanteil > ((tmp_int - GasMischanteil))) GierMischanteil = ((tmp_int - GasMischanteil));
if(GierMischanteil < -((tmp_int - GasMischanteil))) GierMischanteil = -((tmp_int - GasMischanteil));
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Nick-Achse
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DiffNick = MesswertNick - StickNick; // Differenz bestimmen
if(IntegralFaktor) SummeNick += IntegralNickMalFaktor - StickNick; // I-Anteil bei Winkelregelung
else SummeNick += DiffNick; // I-Anteil bei HH
if(SummeNick > (STICK_GAIN * 16000L)) SummeNick = (STICK_GAIN * 16000L);
if(SummeNick < -(16000L * STICK_GAIN)) SummeNick = -(16000L * STICK_GAIN);
if(EE_Parameter.Gyro_Stability <= 8)
pd_ergebnis_nick = (EE_Parameter.Gyro_Stability * DiffNick) / 8; // PI-Regler für Nick
else
pd_ergebnis_nick = ((EE_Parameter.Gyro_Stability / 2) * DiffNick) / 4; // Überlauf verhindern
pd_ergebnis_nick += SummeNick / Ki;
tmp_int = (long)((long)Parameter_DynamicStability * (long)(GasMischanteil + abs(GierMischanteil)/2)) / 64;
if(pd_ergebnis_nick > tmp_int) pd_ergebnis_nick = tmp_int;
if(pd_ergebnis_nick < -tmp_int) pd_ergebnis_nick = -tmp_int;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Roll-Achse
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DiffRoll = MesswertRoll - StickRoll; // Differenz bestimmen
if(IntegralFaktor) SummeRoll += IntegralRollMalFaktor - StickRoll;// I-Anteil bei Winkelregelung
else SummeRoll += DiffRoll; // I-Anteil bei HH
if(SummeRoll > (STICK_GAIN * 16000L)) SummeRoll = (STICK_GAIN * 16000L);
if(SummeRoll < -(16000L * STICK_GAIN)) SummeRoll = -(16000L * STICK_GAIN);
if(EE_Parameter.Gyro_Stability <= 8)
pd_ergebnis_roll = (EE_Parameter.Gyro_Stability * DiffRoll) / 8; // PI-Regler für Roll
else
pd_ergebnis_roll = ((EE_Parameter.Gyro_Stability / 2) * DiffRoll) / 4; // Überlauf verhindern
pd_ergebnis_roll += SummeRoll / Ki;
tmp_int = (long)((long)Parameter_DynamicStability * (long)(GasMischanteil + abs(GierMischanteil)/2)) / 64;
if(pd_ergebnis_roll > tmp_int) pd_ergebnis_roll = tmp_int;
if(pd_ergebnis_roll < -tmp_int) pd_ergebnis_roll = -tmp_int;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Universal Mixer
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
for(i=0; i<MAX_MOTORS; i++)
{
signed int tmp_int;
if(Mixer.Motor[i][0] > 0)
{
// Gas
if(Mixer.Motor[i][0] == 64) tmp_int = GasMischanteil; else tmp_int = ((long)GasMischanteil * Mixer.Motor[i][0]) / 64L;
// Nick
if(Mixer.Motor[i][1] == 64) tmp_int += pd_ergebnis_nick;
else if(Mixer.Motor[i][1] == -64) tmp_int -= pd_ergebnis_nick;
else tmp_int += ((long)pd_ergebnis_nick * Mixer.Motor[i][1]) / 64L;
// Roll
if(Mixer.Motor[i][2] == 64) tmp_int += pd_ergebnis_roll;
else if(Mixer.Motor[i][2] == -64) tmp_int -= pd_ergebnis_roll;
else tmp_int += ((long)pd_ergebnis_roll * Mixer.Motor[i][2]) / 64L;
// Gier
if(Mixer.Motor[i][3] == 64) tmp_int += GierMischanteil;
else if(Mixer.Motor[i][3] == -64) tmp_int -= GierMischanteil;
else tmp_int += ((long)GierMischanteil * Mixer.Motor[i][3]) / 64L;
if(tmp_int > tmp_motorwert[i]) tmp_int = (tmp_motorwert[i] + tmp_int) / 2; // MotorSmoothing
// else tmp_int = 2 * tmp_int - tmp_motorwert[i]; // original MotorSmoothing
else
{
if(EE_Parameter.MotorSmooth == 0)
{
tmp_int = 2 * tmp_int - tmp_motorwert[i]; // original MotorSmoothing
}
else // 1 means tmp_int = tmp_int;
if(EE_Parameter.MotorSmooth > 1)
{
// If >= 2 then allow >= 50% of the intended step down to rapidly reach the intended value.
tmp_int = tmp_int + ((tmp_motorwert[i] - tmp_int)/EE_Parameter.MotorSmooth);
}
}
LIMIT_MIN_MAX(tmp_int,(int) MIN_GAS * 4,(int) MAX_GAS * 4);
Motor[i].SetPoint = tmp_int / 4;
Motor[i].SetPointLowerBits = (tmp_int % 4)<<1; // (3 bits total)
tmp_motorwert[i] = tmp_int;
}
else
{
Motor[i].SetPoint = 0;
Motor[i].SetPointLowerBits = 0;
}
}
}
 
static int HoehenRegelung(int GasMischanteil)
{
#define HOVER_GAS_AVERAGE 16384L // 16384 * 2ms = 32s averaging
#define HC_GAS_AVERAGE 4 // 4 * 2ms= 8ms averaging
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
#define OPA_OFFSET_STEP 15
#else
#define OPA_OFFSET_STEP 10
#endif
static int sHeightTrimming = 0; // rate for change of height setpoint
static int sFilterHCGas = 0;
static unsigned long sHoverGasFilter = 0;
static unsigned char sDelay = 100, sBaroAtUpperLimit = 0, sBaroAtLowerLimit = 0;
// get the current hoverpoint
DebugOut.Analog[21] = HoverGas;
// Expand the measurement
// measurement of air pressure close to upper limit and no overflow in correction of the new OCR0A value occurs
if(!BaroExpandActive)
{
if(MessLuftdruck > 920)
{ // increase offset
if(OCR0A < (255 - OPA_OFFSET_STEP))
{
ExpandBaro -= 1;
OCR0A = DruckOffsetSetting - OPA_OFFSET_STEP * ExpandBaro; // increase offset to shift ADC down
beeptime = 300;
BaroExpandActive = 350;
}
else
{
sBaroAtLowerLimit = 1;
}
}
// measurement of air pressure close to lower limit and
else
if(MessLuftdruck < 100)
{ // decrease offset
if(OCR0A > OPA_OFFSET_STEP)
{
ExpandBaro += 1;
OCR0A = DruckOffsetSetting - OPA_OFFSET_STEP * ExpandBaro; // decrease offset to shift ADC up
beeptime = 300;
BaroExpandActive = 350;
}
else
{
sBaroAtUpperLimit = 1;
}
}
else
{
sBaroAtUpperLimit = 0;
sBaroAtLowerLimit = 0;
}
}
else // delay, because of expanding the Baro-Range
{
// now clear the D-values
SummenHoehe = HoehenWert * SM_FILTER;
VarioMeter = 0;
BaroExpandActive--;
}
// if height control is activated by an rc channel
if(Parameter_GlobalConfig & CFG_HOEHEN_SCHALTER) // Regler wird über Schalter gesteuert
{ // check if parameter is less than activation threshold
if(Parameter_HoehenSchalter < 50) // for 3 or 2-state switch height control is disabled in lowest position
{ //height control not active
if(!sDelay--)
{
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
if(HoehenReglerAktiv && !SpeakHoTT) SpeakHoTT = SPEAK_ALTITUDE_OFF;
#endif
HoehenReglerAktiv = 0; // disable height control
SollHoehe = HoehenWert; // update SetPoint with current reading
sDelay = 1;
}
}
else
if(Parameter_HoehenSchalter > 70)
{ //height control is activated
#if (defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__))
if(!HoehenReglerAktiv && !SpeakHoTT) SpeakHoTT = SPEAK_ALTITUDE_ON;
#endif
HoehenReglerAktiv = 1; // enable height control
sDelay = 200;
}
}
else // no switchable height control
{
SollHoehe = ((int16_t) ExternHoehenValue + (int16_t) Parameter_HoehenSchalter) * (int)EE_Parameter.Hoehe_Verstaerkung;
HoehenReglerAktiv = 1;
}
// calculate cos of nick and roll angle used for projection of the vertical hover gas
int tmp_int = (int)(IntegralNick/GIER_GRAD_FAKTOR); // nick angle in deg
int tmp_int2 = (int)(IntegralRoll/GIER_GRAD_FAKTOR); // roll angle in deg
int CosAttitude = (int16_t)ihypot(tmp_int, tmp_int2); // phytagoras gives effective attitude angle in deg
LIMIT_MAX(CosAttitude, 60); // limit effective attitude angle
CosAttitude = c_cos_8192(CosAttitude); // cos of actual attitude
VarioCharacter = ' ';
AltitudeSetpointTrimming = 0;
if(HoehenReglerAktiv && !(FC_StatusFlags & FC_STATUS_EMERGENCY_LANDING))
{
#define HEIGHT_CONTROL_STICKTHRESHOLD 15
// Holger original version
// start of height control algorithm
// the height control is only an attenuation of the actual gas stick.
// I.e. it will work only if the gas stick is higher than the hover gas
// and the hover height will always be larger than height setpoint.
int HCGas;
FC_StatusFlags2 |= FC_STATUS2_ALTITUDE_CONTROL;
if((Parameter_ExtraConfig & CFG2_HEIGHT_LIMIT) || !(Parameter_GlobalConfig & CFG_HOEHEN_SCHALTER)) // Regler wird über Schalter gesteuert)
{ // old version
HCGas = GasMischanteil; // take current stick gas as neutral point for the height control
sHeightTrimming = 0;
AltitudeSetpointTrimming = 0;
// set both flags to indicate no vario mode
FC_StatusFlags |= (FC_STATUS_VARIO_TRIM_UP|FC_STATUS_VARIO_TRIM_DOWN);
}
else
{
// alternative height control
// PD-Control with respect to hover point
// the thrust loss out of horizontal attitude is compensated
// the setpoint will be fine adjusted with the gas stick position
if(FC_StatusFlags & FC_STATUS_FLY) // trim setpoint only when flying
{ // gas stick is above hover point
if(StickGas > (StickGasHover + HEIGHT_CONTROL_STICKTHRESHOLD) && !sBaroAtUpperLimit)
{
if(FC_StatusFlags & FC_STATUS_VARIO_TRIM_DOWN)
{
FC_StatusFlags &= ~FC_STATUS_VARIO_TRIM_DOWN;
SollHoehe = HoehenWert; // update setpoint to current heigth
}
FC_StatusFlags |= FC_STATUS_VARIO_TRIM_UP;
// Limit the maximum Altitude
if(Parameter_MaximumAltitude && (SollHoehe/100 > Parameter_MaximumAltitude)) AltitudeSetpointTrimming = 0;
else
{
// SollHoehe = (long) Parameter_MaximumAltitude * 100L;
// sHeightTrimming += abs(StickGas - (StickGasHover - HEIGHT_CONTROL_STICKTHRESHOLD));
AltitudeSetpointTrimming = abs(StickGas - (StickGasHover + HEIGHT_CONTROL_STICKTHRESHOLD));
VarioCharacter = '+';
}
WaypointTrimming = 0;
} // gas stick is below hover point
else if(StickGas < (StickGasHover - HEIGHT_CONTROL_STICKTHRESHOLD) && !sBaroAtLowerLimit )
{
if(FC_StatusFlags & FC_STATUS_VARIO_TRIM_UP)
{
FC_StatusFlags &= ~FC_STATUS_VARIO_TRIM_UP;
SollHoehe = HoehenWert; // update setpoint to current heigth
}
FC_StatusFlags |= FC_STATUS_VARIO_TRIM_DOWN;
AltitudeSetpointTrimming = -abs(StickGas - (StickGasHover - HEIGHT_CONTROL_STICKTHRESHOLD));
// sHeightTrimming -= abs(StickGas - (StickGasHover - HEIGHT_CONTROL_STICKTHRESHOLD));
VarioCharacter = '-';
WaypointTrimming = 0;
}
else // Gas Stick in Hover Range
{
VarioCharacter = '=';
if(FromNC_AltitudeSpeed && FromNC_AltitudeSetpoint > SollHoehe) // von NC gesteuert -> Steigen
{
FC_StatusFlags |= FC_STATUS_VARIO_TRIM_UP;
AltitudeSetpointTrimming = FromNC_AltitudeSpeed;
//sHeightTrimming += FromNC_AltitudeSpeed;
WaypointTrimming = 10;
VarioCharacter = '^';
if(FC_StatusFlags & FC_STATUS_VARIO_TRIM_DOWN) // changed from sinking to rising
{
FC_StatusFlags &= ~FC_STATUS_VARIO_TRIM_DOWN;
SollHoehe = HoehenWert; // update setpoint to current heigth
}
}
else
if(FromNC_AltitudeSpeed && FromNC_AltitudeSetpoint < SollHoehe) // von NC gesteuert -> sinken
{
FC_StatusFlags |= FC_STATUS_VARIO_TRIM_DOWN;
AltitudeSetpointTrimming = -FromNC_AltitudeSpeed;
//sHeightTrimming -= FromNC_AltitudeSpeed;
WaypointTrimming = -10;
VarioCharacter = 'v';
if(FC_StatusFlags & FC_STATUS_VARIO_TRIM_UP) // changed from rising to sinking
{
FC_StatusFlags &= ~FC_STATUS_VARIO_TRIM_UP;
SollHoehe = HoehenWert; // update setpoint to current heigth
}
}
else
if(FC_StatusFlags & (FC_STATUS_VARIO_TRIM_UP|FC_STATUS_VARIO_TRIM_DOWN))
{
if(!WaypointTrimming)
LIMIT_MIN_MAX(SollHoehe, (HoehenWert-128), (HoehenWert+128)) // max. 1m Unterschied
else
WaypointTrimming = 0;
FC_StatusFlags &= ~(FC_STATUS_VARIO_TRIM_UP|FC_STATUS_VARIO_TRIM_DOWN);
sHeightTrimming = 0;
if(Parameter_ExtraConfig & CFG2_VARIO_BEEP)
beeptime = 500;
if(!StartTrigger && HoehenWert > 50)
{
StartTrigger = 1;
}
}
}
// Trim height set point
sHeightTrimming += AltitudeSetpointTrimming;
if(abs(sHeightTrimming) > 500) // bei Waypoint-Flug ist das ca. die 500Hz
{
if(WaypointTrimming)
{
if(abs(FromNC_AltitudeSetpoint - SollHoehe) < 10)
SollHoehe = FromNC_AltitudeSetpoint;
else
SollHoehe += WaypointTrimming;
}
else
{
if(sHeightTrimming > 0) SollHoehe += EE_Parameter.Hoehe_Verstaerkung / 3;
else SollHoehe -= EE_Parameter.Hoehe_Verstaerkung / 3;
}
sHeightTrimming = 0;
LIMIT_MIN_MAX(SollHoehe, (HoehenWert-1024), (HoehenWert+1024)); // max. 10m Unterschied
if(Parameter_ExtraConfig & CFG2_VARIO_BEEP) beeptime = 100;
//update hover gas stick value when setpoint is shifted
if(!EE_Parameter.Hoehe_StickNeutralPoint && FromNC_AltitudeSpeed == 0)
{
StickGasHover = HoverGas/STICK_GAIN; //rescale back to stick value
StickGasHover = (StickGasHover * UBat) / BattLowVoltageWarning;
if(StickGasHover < 70) StickGasHover = 70;
else if(StickGasHover > 150) StickGasHover = 150;
}
}
if(BaroExpandActive) SollHoehe = HoehenWert; // update setpoint to current altitude if Expanding is active
} //if FCFlags & MKFCFLAG_FLY
else
{
SollHoehe = HoehenWert - 400;
if(EE_Parameter.Hoehe_StickNeutralPoint) StickGasHover = EE_Parameter.Hoehe_StickNeutralPoint;
else StickGasHover = 120;
HoverGas = GasMischanteil;
VarioCharacter = '.';
}
HCGas = HoverGas; // take hover gas (neutral point)
}
if(HoehenWert > SollHoehe || !(Parameter_ExtraConfig & CFG2_HEIGHT_LIMIT))
{
// from this point the Heigth Control Algorithm is identical for both versions
int HeightDeviation = 0, GasReduction = 0;
if(BaroExpandActive) // baro range expanding active
{
HCGas = HoverGas; // hover while expanding baro adc range
} // EOF // baro range expanding active
else // valid data from air pressure sensor
{
// ------------------------- P-Part ----------------------------
int32_t tmp_long = (HoehenWert - SollHoehe); // positive when too high
LIMIT_MIN_MAX(tmp_long, -32767L, 32767L); // avoid overflov when casting to int16_t
HeightDeviation = (int)(tmp_long); // positive when too high
tmp_long = (tmp_long * (long)Parameter_Hoehe_P) / 32L; // p-part
LIMIT_MIN_MAX(tmp_long, -127 * STICK_GAIN, 256 * STICK_GAIN); // more than the full range makes no sense
GasReduction = tmp_long;
// ------------------------- D-Part 1: Vario Meter ----------------------------
tmp_int = VarioMeter / 8;
LIMIT_MIN_MAX(tmp_int, -127, 128);
tmp_int = (tmp_int * (long)Parameter_Luftdruck_D) / 4L; // scale to d-gain parameter
LIMIT_MIN_MAX(tmp_int,-64 * STICK_GAIN, 64 * STICK_GAIN);
if(FC_StatusFlags & (FC_STATUS_VARIO_TRIM_UP|FC_STATUS_VARIO_TRIM_DOWN))
tmp_int /= 4; // reduce d-part while trimming setpoint
else
if(Parameter_ExtraConfig & CFG2_HEIGHT_LIMIT) tmp_int /= 8; // reduce d-part in "Deckel" mode
GasReduction += tmp_int;
} // EOF no baro range expanding
// ------------------------ D-Part 2: ACC-Z Integral ------------------------
if(Parameter_Hoehe_ACC_Wirkung)
{
int32_t tmp_long = ((Mess_Integral_Hoch / 128L) * (int32_t) Parameter_Hoehe_ACC_Wirkung) / (128L / STICK_GAIN);
LIMIT_MIN_MAX(tmp_long, -32 * STICK_GAIN, 64 * STICK_GAIN);
GasReduction += tmp_long;
}
// ------------------------ D-Part 3: GpsZ ----------------------------------
tmp_int = (Parameter_Hoehe_GPS_Z * (int)FromNaviCtrl_Value.GpsZ)/128L;
LIMIT_MIN_MAX(tmp_int, -32 * STICK_GAIN, 64 * STICK_GAIN);
GasReduction += tmp_int;
GasReduction = ((long)GasReduction * HoverGas) / 512; // scale to the gas value
// ------------------------ ----------------------------------
HCGas -= GasReduction;
// limit deviation from hover point within the target region
if(!AltitudeSetpointTrimming && HoverGas > 0) // height setpoint is not changed and hover gas not zero
{
unsigned int tmp;
tmp = abs(HeightDeviation);
if(tmp <= 60)
{
LIMIT_MIN_MAX(HCGas, HoverGasMin, HoverGasMax); // limit gas around the hover point
}
else
{
tmp = (tmp - 60) / 32;
if(tmp > 15) tmp = 15;
if(HeightDeviation > 0)
{
tmp = (HoverGasMin * (16 - tmp)) / 16;
LIMIT_MIN_MAX(HCGas, tmp, HoverGasMax); // limit gas around the hover point
}
else
{
tmp = (HoverGasMax * (tmp + 16)) / 16;
LIMIT_MIN_MAX(HCGas, HoverGasMin, tmp); // limit gas around the hover point
}
}
}
// strech control output by inverse attitude projection 1/cos
// + 1/cos(angle) ++++++++++++++++++++++++++
int32_t tmp_long2 = (int32_t)HCGas;
tmp_long2 *= 8192L;
tmp_long2 /= CosAttitude;
HCGas = (int16_t)tmp_long2;
// update height control gas averaging
sFilterHCGas = (sFilterHCGas * (HC_GAS_AVERAGE - 1) + HCGas) / HC_GAS_AVERAGE;
// limit height control gas pd-control output
LIMIT_MIN_MAX(sFilterHCGas, EE_Parameter.Hoehe_MinGas * STICK_GAIN, (MAX_GAS - 20) * STICK_GAIN);
// set GasMischanteil to HeightControlGasFilter
if(Parameter_ExtraConfig & CFG2_HEIGHT_LIMIT)
{ // old version
LIMIT_MAX(sFilterHCGas, GasMischanteil); // nicht mehr als Gas
GasMischanteil = sFilterHCGas;
}
else GasMischanteil = sFilterHCGas + (GasMischanteil - HoverGas) / 4; // only in Vario-Mode
}
}// EOF height control active
else // HC not active
{
//update hover gas stick value when HC is not active
if(!EE_Parameter.Hoehe_StickNeutralPoint)
{
StickGasHover = HoverGas/STICK_GAIN; // rescale back to stick value
StickGasHover = (StickGasHover * UBat) / BattLowVoltageWarning;
}
else StickGasHover = EE_Parameter.Hoehe_StickNeutralPoint;
LIMIT_MIN_MAX(StickGasHover, 70, 150); // reserve some range for trim up and down
sFilterHCGas = GasMischanteil;
// set both flags to indicate no vario mode
FC_StatusFlags |= (FC_STATUS_VARIO_TRIM_UP|FC_STATUS_VARIO_TRIM_DOWN);
FC_StatusFlags2 &= ~FC_STATUS2_ALTITUDE_CONTROL;
}
// Hover gas estimation by averaging gas control output on small z-velocities
// this is done only if height contol option is selected in global config and aircraft is flying
if((FC_StatusFlags & FC_STATUS_FLY)) {
if(sHoverGasFilter == 0 || StartTrigger == 1) sHoverGasFilter = HOVER_GAS_AVERAGE * (unsigned long)(GasMischanteil); // init estimation
if(StartTrigger == 1) StartTrigger = 2;
int32_t tmp_long2 = (int32_t)GasMischanteil; // take current thrust
tmp_long2 *= CosAttitude; // apply attitude projection
tmp_long2 /= 8192;
// average vertical projected thrust
if(modell_fliegt < 4000) // the first 8 seconds
{ // reduce the time constant of averaging by factor of 4 to get much faster a stable value
sHoverGasFilter -= sHoverGasFilter/(HOVER_GAS_AVERAGE/16L);
sHoverGasFilter += 16L * tmp_long2;
}
if(modell_fliegt < 8000) // the first 16 seconds
{ // reduce the time constant of averaging by factor of 2 to get much faster a stable value
sHoverGasFilter -= sHoverGasFilter/(HOVER_GAS_AVERAGE/4L);
sHoverGasFilter += 4L * tmp_long2;
}
else //later
if(abs(VarioMeter) < 100 && abs(HoehenWert - SollHoehe) < 256) // only on small vertical speed & difference is small (only descending)
{
sHoverGasFilter -= sHoverGasFilter/HOVER_GAS_AVERAGE;
sHoverGasFilter += tmp_long2;
}
HoverGas = (int16_t)(sHoverGasFilter/HOVER_GAS_AVERAGE);
if(EE_Parameter.Hoehe_HoverBand)
{
int16_t band;
band = HoverGas / EE_Parameter.Hoehe_HoverBand; // the higher the parameter the smaller the range
HoverGasMin = HoverGas - band;
HoverGasMax = HoverGas + band;
}
else
{ // no limit
HoverGasMin = 0;
HoverGasMax = 1023;
}
}
else
{
// not flying
StartTrigger = 0;
sHoverGasFilter = 0;
HoverGas = 0;
}
return GasMischanteil;
}
/branches/Proxy sensor - tempolo/NC/GPS.c
0,0 → 1,698
/*#######################################################################################*/
/*#######################################################################################*/
 
// IMPORTANT NOTE:
 
// This is only a dummy implementation for errorfree compiling of the NaviCtrl sources.
 
// The GPS navigation routines are NOT included !
 
/*#######################################################################################*/
/*#######################################################################################*/
/* !!! THIS IS NOT FREE SOFTWARE !!! */
/*#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 2008 Ingo Busker, Holger Buss
// + Nur für den privaten Gebrauch / NON-COMMERCIAL USE ONLY
// + FOR NON COMMERCIAL USE ONLY
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung oder Nutzung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// + from this software without specific prior written permission.
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permitted
// + for non-commercial use (directly or indirectly)
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + with our written permission
// + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + * porting the sources to other systems or using the software on other systems (except hardware from www.mikrokopter.de) is not allowed
//
// + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// + POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "91x_lib.h"
#include "main.h"
#include "uart1.h"
#include "GPS.h"
#include "timer1.h"
#include "spi_slave.h"
#include "waypoints.h"
#include "i2c.h"
 
 
#define M_PI_180 (M_PI / 180.0f)
#define GPS_UPDATETIME_MS 200 // 200ms is 5 Hz
typedef enum
{
GPS_FLIGHT_MODE_UNDEF,
GPS_FLIGHT_MODE_FREE,
GPS_FLIGHT_MODE_AID,
GPS_FLIGHT_MODE_WAYPOINT
} GPS_FlightMode_t;
 
typedef struct
{
float Gain;
float P;
float I;
float D;
float A;
float ACC;
s32 P_Limit;
s32 I_Limit;
s32 D_Limit;
s32 PID_Limit;
u32 BrakingDuration;
u8 MinSat;
s8 StickThreshold;
float WindCorrection;
float SpeedCompensation;
s32 OperatingRadius;
GPS_FlightMode_t FlightMode;
} __attribute__((packed)) GPS_Parameter_t;
 
typedef struct
{
u8 Status; // invalid, newdata, processed
s32 North; // in cm
s32 East; // in cm
s32 Bearing; // in deg
s32 Distance; // in cm
} __attribute__((packed)) GPS_Deviation_t;
GPS_Deviation_t CurrentTargetDeviation; // Deviation from Target
GPS_Deviation_t CurrentHomeDeviation; // Deviation from Home
GPS_Deviation_t TargetHomeDeviation; // Deviation from Target to Home
 
GPS_Stick_t GPS_Stick;
 
// the CAM orientation
CAM_Orientation_t CAM_Orientation;
 
GPS_Parameter_t GPS_Parameter;
 
// the gps reference positions
GPS_Pos_t GPS_HoldPosition = {0,0,0, INVALID}; // the hold position
GPS_Pos_t GPS_HomePosition = {0,0,0, INVALID}; // the home position
GPS_Pos_t * GPS_pTargetPosition = NULL; // pointer to the actual target position
u32 GPS_TargetRadius = 0; // catch radius for target area
Point_t* GPS_pWaypoint = NULL; // pointer to the actual waypoint
 
//-------------------------------------------------------------
// Update GPSParamter
void GPS_UpdateParameter(void)
{
static GPS_FlightMode_t FlightMode_Old = GPS_FLIGHT_MODE_UNDEF;
// in case of bad receiving conditions
if(FC.RC_Quality < 100)
{ // set fixed parameter
GPS_Parameter.FlightMode = GPS_FLIGHT_MODE_WAYPOINT;
GPS_Parameter.Gain = (float) 100;
GPS_Parameter.P = (float) 90;
GPS_Parameter.I = (float) 90;
GPS_Parameter.D = (float) 90;
GPS_Parameter.A = (float) 90;
GPS_Parameter.ACC = (float) 0;
GPS_Parameter.P_Limit = 90;
GPS_Parameter.I_Limit = 90;
GPS_Parameter.D_Limit = 90;
GPS_Parameter.PID_Limit = 200;
GPS_Parameter.BrakingDuration = 0;
GPS_Parameter.SpeedCompensation = (float) 30;
GPS_Parameter.MinSat = 6;
GPS_Parameter.StickThreshold = 8;
GPS_Parameter.WindCorrection = 0.0;
GPS_Parameter.OperatingRadius = 0; // forces the aircraft to fly to home positon
 
}
else
{
// update parameter from FC
if(StopNavigation) GPS_Parameter.FlightMode = GPS_FLIGHT_MODE_FREE;
else
{
if(Parameter.NaviGpsModeControl < 50)
{
GPS_Parameter.FlightMode = GPS_FLIGHT_MODE_FREE;
NCFlags &= ~(NC_FLAG_PH | NC_FLAG_CH);
NCFlags |= NC_FLAG_FREE;
}
else if(Parameter.NaviGpsModeControl < 180)
{
GPS_Parameter.FlightMode = GPS_FLIGHT_MODE_AID;
NCFlags &= ~(NC_FLAG_FREE | NC_FLAG_CH);
NCFlags |= NC_FLAG_PH;
}
else
{
GPS_Parameter.FlightMode = GPS_FLIGHT_MODE_WAYPOINT;
NCFlags &= ~(NC_FLAG_FREE | NC_FLAG_PH);
NCFlags |= NC_FLAG_CH;
}
}
GPS_Parameter.Gain = (float)Parameter.NaviGpsGain;
GPS_Parameter.P = (float)Parameter.NaviGpsP;
GPS_Parameter.I = (float)Parameter.NaviGpsI;
GPS_Parameter.D = (float)Parameter.NaviGpsD;
GPS_Parameter.A = (float)Parameter.NaviGpsD;
GPS_Parameter.ACC = (float)Parameter.NaviGpsACC;
GPS_Parameter.P_Limit = (s32)Parameter.NaviGpsPLimit;
GPS_Parameter.I_Limit = (s32)Parameter.NaviGpsILimit;
GPS_Parameter.D_Limit = (s32)Parameter.NaviGpsDLimit;
GPS_Parameter.PID_Limit = 2* (u32)Parameter.NaviAngleLimitation;
GPS_Parameter.BrakingDuration = (u32)Parameter.NaviPH_LoginTime;
GPS_Parameter.SpeedCompensation = (float)Parameter.NaviSpeedCompensation;
GPS_Parameter.MinSat = (u8)Parameter.NaviGpsMinSat;
GPS_Parameter.StickThreshold = (s8)Parameter.NaviStickThreshold;
GPS_Parameter.WindCorrection = (float)Parameter.NaviWindCorrection;
GPS_Parameter.OperatingRadius = (s32)Parameter.NaviOperatingRadius * 100; // conversion of m to cm
}
// FlightMode changed?
if(GPS_Parameter.FlightMode != FlightMode_Old)
{
BeepTime = 100; // beep to indicate that mode has been switched
NCFlags &= ~NC_FLAG_TARGET_REACHED;
 
if(GPS_Parameter.FlightMode == GPS_FLIGHT_MODE_WAYPOINT) GPS_pWaypoint = PointList_WPBegin(); // reset PointList to begin
}
FlightMode_Old = GPS_Parameter.FlightMode;
}
 
//-------------------------------------------------------------
// This function defines a good GPS signal condition
u8 GPS_IsSignalOK(void)
{
if( (GPSData.Status != INVALID) && (GPSData.SatFix == SATFIX_3D) && (GPSData.NumOfSats >= GPS_Parameter.MinSat)) return(1);
else return(0);
}
 
//------------------------------------------------------------
// Checks for manual control action
u8 GPS_IsManuallyControlled(void)
{
if( ( (abs(FC.StickNick) > GPS_Parameter.StickThreshold) || (abs(FC.StickRoll) > GPS_Parameter.StickThreshold)) && (GPS_Parameter.StickThreshold > 0) && (FC.RC_Quality > 150) )
{
NCFlags |= NC_FLAG_MANUAL_CONTROL;
return(1);
}
else
{
NCFlags &= ~NC_FLAG_MANUAL_CONTROL;
return(0);
}
}
 
//------------------------------------------------------------
// copy GPS position from source position to target position
u8 GPS_CopyPosition(GPS_Pos_t * pGPSPosSrc, GPS_Pos_t* pGPSPosTgt)
{
u8 retval = 0;
if((pGPSPosSrc == NULL) || (pGPSPosTgt == NULL)) return(retval); // bad pointer
// copy only valid positions
if(pGPSPosSrc->Status != INVALID)
{
// if the source GPS position is not invalid
pGPSPosTgt->Longitude = pGPSPosSrc->Longitude;
pGPSPosTgt->Latitude = pGPSPosSrc->Latitude;
pGPSPosTgt->Altitude = pGPSPosSrc->Altitude;
pGPSPosTgt->Status = NEWDATA; // mark data in target position as new
retval = 1;
}
return(retval);
}
 
//------------------------------------------------------------
// clear position data
u8 GPS_ClearPosition(GPS_Pos_t * pGPSPos)
{
u8 retval = FALSE;
if(pGPSPos == NULL) return(retval); // bad pointer
else
{
pGPSPos->Longitude = 0;
pGPSPos->Latitude = 0;
pGPSPos->Altitude = 0;
pGPSPos->Status = INVALID;
retval = TRUE;
}
return (retval);
}
 
 
//------------------------------------------------------------
void GPS_Neutral(void)
{
GPS_Stick.Nick = 0;
GPS_Stick.Roll = 0;
GPS_Stick.Yaw = 0;
}
 
//------------------------------------------------------------
void GPS_Init(void)
{
UART1_PutString("\r\n GPS init");
UBX_Init();
GPS_Neutral();
GPS_ClearPosition(&GPS_HoldPosition);
GPS_ClearPosition(&GPS_HomePosition);
GPS_pTargetPosition = NULL;
PointList_Init();
GPS_pWaypoint = PointList_WPBegin();
GPS_UpdateParameter();
}
 
//------------------------------------------------------------
// calculate the bearing to target position from its deviation
s32 DirectionToTarget_N_E(float northdev, float eastdev)
{
s32 bearing;
bearing = (s32)(atan2(northdev, eastdev) / M_PI_180);
bearing = (270L - bearing)%360L;
return(bearing);
}
 
 
//------------------------------------------------------------
// Rescale xy-vector length if length limit is violated
// returns vector len after scaling
s32 GPS_LimitXY(s32 *x, s32 *y, s32 limit)
{
s32 dist;
 
dist = (s32)hypot(*x,*y); // the length of the vector
if (dist > limit)
// if vector length is larger than the given limit
{ // scale vector compontents so that the length is cut off to limit
*x = (s32)(( (double)(*x) * (double)limit ) / (double)dist);
*y = (s32)(( (double)(*y) * (double)limit ) / (double)dist);
dist = limit;
}
return(dist);
}
 
//------------------------------------------------------------
// transform the integer deg into float radians
inline double RadiansFromGPS(s32 deg)
{
return ((double)deg * 1e-7f * M_PI_180); // 1E-7 because deg is the value in ° * 1E7
}
 
//------------------------------------------------------------
// transform the integer deg into float deg
inline double DegFromGPS(s32 deg)
{
return ((double)deg * 1e-7f); // 1E-7 because deg is the value in ° * 1E7
}
 
//------------------------------------------------------------
// calculate the deviation from the current position to the target position
u8 GPS_CalculateDeviation(GPS_Pos_t * pCurrentPos, GPS_Pos_t * pTargetPos, GPS_Deviation_t* pDeviationFromTarget)
{
double temp1, temp2;
// if given pointer is NULL
if((pCurrentPos == NULL) || (pTargetPos == NULL)) goto baddata;
// if positions are invalid
if((pCurrentPos->Status == INVALID) || (pTargetPos->Status == INVALID)) goto baddata;
 
// The deviation from the current to the target position along north and east direction is
// simple the lat/lon difference. To convert that angular deviation into an
// arc length the spherical projection has to be considered.
// The mean earth radius is 6371km. Therfore the arc length per latitude degree
// is always 6371km * 2 * Pi / 360deg = 111.2 km/deg.
// The arc length per longitude degree depends on the correspondig latitude and
// is 111.2km * cos(latitude).
 
// calculate the shortest longitude deviation from target
temp1 = DegFromGPS(pCurrentPos->Longitude) - DegFromGPS(pTargetPos->Longitude);
// outside an angular difference of -180 deg ... +180 deg its shorter to go the other way around
// In our application we wont fly more than 20.000 km but along the date line this is important.
if(temp1 > 180.0f) temp1 -= 360.0f;
else if (temp1 < -180.0f) temp1 += 360.0f;
temp1 *= cos((RadiansFromGPS(pTargetPos->Latitude) + RadiansFromGPS(pCurrentPos->Latitude))/2);
// calculate latitude deviation from target
// this is allways within -180 deg ... 180 deg
temp2 = DegFromGPS(pCurrentPos->Latitude) - DegFromGPS(pTargetPos->Latitude);
// deviation from target position in cm
// i.e. the distance to walk from the target in northern and eastern direction to reach the current position
 
pDeviationFromTarget->Status = INVALID;
pDeviationFromTarget->North = (s32)(11119492.7f * temp2);
pDeviationFromTarget->East = (s32)(11119492.7f * temp1);
// If the position deviation is small enough to neglect the earth curvature
// (this is for our application always fulfilled) the distance to target
// can be calculated by the pythagoras of north and east deviation.
pDeviationFromTarget->Distance = (s32)(11119492.7f * hypot(temp1, temp2));
if (pDeviationFromTarget->Distance == 0L) pDeviationFromTarget->Bearing = 0L;
else pDeviationFromTarget->Bearing = DirectionToTarget_N_E(temp2, temp1);
pDeviationFromTarget->Status = NEWDATA;
return TRUE;
 
baddata:
pDeviationFromTarget->North = 0L;
pDeviationFromTarget->East = 0L;
pDeviationFromTarget->Distance = 0L;
pDeviationFromTarget->Bearing = 0L;
pDeviationFromTarget->Status = INVALID;
return FALSE;
}
 
//------------------------------------------------------------
void GPS_Navigation(gps_data_t *pGPS_Data, GPS_Stick_t* pGPS_Stick)
{
static u32 beep_rythm;
static u32 GPSDataTimeout = 0;
 
// pointer to current target position
static GPS_Pos_t * pTargetPositionOld = NULL;
static Point_t* GPS_pWaypointOld = NULL;
 
static GPS_Pos_t RangedTargetPosition = {0,0,0, INVALID}; // the limited target position, this is derived from the target position with repect to the operating radius
static s32 OperatingRadiusOld = -1;
static u32 WPTime = 0;
 
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//+ Check for new data from GPS-receiver
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
switch(GPSData.Status)
{
case INVALID: // no gps data available
// do nothing
GPS_Parameter.PID_Limit = 0; // disables PID output
break;
 
case PROCESSED: // the current data have been allready processed
// if no new data are available within the timeout switch to invalid state.
if(CheckDelay(GPSDataTimeout)) GPSData.Status = INVALID;
// wait for new gps data
break;
 
case NEWDATA: // handle new gps data
 
// update GPS Parameter from FC-Data via SPI interface
GPS_UpdateParameter();
 
// wait maximum of 3 times the normal data update time before data timemout
GPSDataTimeout = SetDelay(3 * GPS_UPDATETIME_MS);
beep_rythm++;
 
// debug
DebugOut.Analog[21] = (s16)GPSData.Speed_North;
DebugOut.Analog[22] = (s16)GPSData.Speed_East;
DebugOut.Analog[31] = (s16)GPSData.NumOfSats;
 
// If GPS signal condition is sufficient for a reliable position measurement
if(GPS_IsSignalOK())
{
// update home deviation info
GPS_CalculateDeviation(&(GPSData.Position), &GPS_HomePosition, &CurrentHomeDeviation);
 
// if the MK is starting or the home position is invalid then store the home position
if((FC.StatusFlags & FC_STATUS_START) || (GPS_HomePosition.Status == INVALID))
{ // try to update the home position from the current position
if(GPS_CopyPosition(&(GPSData.Position), &GPS_HomePosition))
{
BeepTime = 700; // beep on success
GPS_CopyPosition(&GPS_HomePosition, &(NaviData.HomePosition));
}
GPS_pWaypoint = PointList_WPBegin(); // go to start of waypoint list, return NULL of the list is empty
}
 
/* The selected flight mode influences the target position pointer and therefore the behavior */
 
// check for current flight mode and set the target pointer GPS_pTargetPosition respectively
switch(GPS_Parameter.FlightMode)
{
// the GPS control is deactived
case GPS_FLIGHT_MODE_FREE:
 
GPS_Parameter.PID_Limit = 0; // disables PID output
// update hold position
GPS_CopyPosition(&(GPSData.Position), &GPS_HoldPosition);
// no target position
GPS_pTargetPosition = NULL;
GPS_TargetRadius = 0;
break;
 
// the GPS supports the position hold, if the pilot takes no action
case GPS_FLIGHT_MODE_AID:
 
if(GPS_IsManuallyControlled())
{
GPS_Parameter.PID_Limit = 0; // disables PID output, as long as the manual conrol is active
GPS_CopyPosition(&(GPSData.Position), &GPS_HoldPosition);
GPS_pTargetPosition = NULL;
GPS_TargetRadius = 0;
}
else
{
GPS_pTargetPosition = &GPS_HoldPosition;
GPS_TargetRadius = 100; // 1 meter
}
break;
 
// the GPS control is directed to a target position
// given by a waypoint or by the home position
case GPS_FLIGHT_MODE_WAYPOINT:
 
if(GPS_IsManuallyControlled()) // the human pilot takes the action
{
GPS_Parameter.PID_Limit = 0; // disables PID output, as long as the manual conrol is active
GPS_CopyPosition(&(GPSData.Position), &GPS_HoldPosition); // update hold position
GPS_pTargetPosition = NULL; // set target position invalid
GPS_TargetRadius = 0;
}
else // no manual control -> gps position hold active
{
// waypoint trigger logic
if(GPS_pWaypoint != NULL) // waypoint exist
{
if(GPS_pWaypoint->Position.Status == INVALID) // should never happen
{
GPS_pWaypoint = PointList_WPNext(); // goto to next WP
BeepTime = 255;
}
else // waypoint position is valid
{
// check if the pointer to the waypoint has been changed or the data have been updated
if((GPS_pWaypoint != GPS_pWaypointOld) || (GPS_pWaypoint->Position.Status == NEWDATA))
{
GPS_pWaypointOld = GPS_pWaypoint;
}
// if WP has been reached once, wait hold time before trigger to next one
if(NCFlags & NC_FLAG_TARGET_REACHED)
{
/* ToDo: Adjust GPS_pWaypoint->Heading, GPS_pWaypoint->Event handling */
if(CheckDelay(WPTime))
{
GPS_pWaypoint = PointList_WPNext(); // goto to next waypoint, return NULL if end of list has been reached
}
} // EOF if(WPArrived)
else
{
WPTime = SetDelay(GPS_pWaypoint->HoldTime * 1000); // set hold time stamp
}
}
} // EOF waypoint trigger logic
 
if(GPS_pWaypoint != NULL) // Waypoint exist
{
// update the hold position
GPS_CopyPosition(&(GPSData.Position), &GPS_HoldPosition);
GPS_pTargetPosition = &(GPS_pWaypoint->Position);
GPS_TargetRadius = (s32)(GPS_pWaypoint->ToleranceRadius) * 100L;
 
}
else // no waypoint info available, i.e. the WPList is empty or the end of the list has been reached
{
// fly back to home postion
if(GPS_HomePosition.Status == INVALID)
{
GPS_pTargetPosition = &GPS_HoldPosition; // fall back to hold mode if home position is not available
GPS_TargetRadius = 100;
BeepTime = 255; // beep to indicate missin home position
}
else // the home position is valid
{
// update the hold position
GPS_CopyPosition(&(GPSData.Position), &GPS_HoldPosition);
// set target to home position
GPS_pTargetPosition = &GPS_HomePosition;
GPS_TargetRadius = 100;
}
}
} // EOF no manual control
break;
 
case GPS_FLIGHT_MODE_UNDEF:
default:
GPS_Parameter.PID_Limit = 0; // disables PID output
// update hold position
GPS_CopyPosition(&(GPSData.Position), &GPS_HoldPosition);
// no target position
GPS_pTargetPosition = NULL;
GPS_TargetRadius = 0;
break;
 
}// EOF GPS Mode Handling
 
 
/* Calculation of range target based on the real target */
 
// if no target position exist clear the ranged target position
if(GPS_pTargetPosition == NULL) GPS_ClearPosition(&RangedTargetPosition);
else
{ // if the target position has been changed or the value has been updated or the OperatingRadius has changed
if((GPS_pTargetPosition != pTargetPositionOld) || (GPS_pTargetPosition->Status == NEWDATA) || (GPS_Parameter.OperatingRadius != OperatingRadiusOld) )
{
BeepTime = 255; // beep to indicate setting of a new target position
NCFlags &= ~NC_FLAG_TARGET_REACHED; // clear target reached flag
// calculate deviation of new target position from home position
if(GPS_CalculateDeviation(GPS_pTargetPosition, &GPS_HomePosition, &TargetHomeDeviation))
{
// check distance from home position
if(TargetHomeDeviation.Distance > GPS_Parameter.OperatingRadius)
{
//calculate ranged target position to be within the operation radius area
NCFlags |= NC_FLAG_RANGE_LIMIT;
 
TargetHomeDeviation.North = (s32)(((float)TargetHomeDeviation.North * (float)GPS_Parameter.OperatingRadius) / (float)TargetHomeDeviation.Distance);
TargetHomeDeviation.East = (s32)(((float)TargetHomeDeviation.East * (float)GPS_Parameter.OperatingRadius) / (float)TargetHomeDeviation.Distance);
TargetHomeDeviation.Distance = GPS_Parameter.OperatingRadius;
 
RangedTargetPosition.Status = INVALID;
RangedTargetPosition.Latitude = GPS_HomePosition.Latitude;
RangedTargetPosition.Latitude += (s32)((float)TargetHomeDeviation.North / 1.11194927f);
RangedTargetPosition.Longitude = GPS_HomePosition.Longitude;
RangedTargetPosition.Longitude += (s32)((float)TargetHomeDeviation.East / (1.11194927f * cos(RadiansFromGPS(GPS_HomePosition.Latitude))) );
RangedTargetPosition.Altitude = GPS_pTargetPosition->Altitude;
RangedTargetPosition.Status = NEWDATA;
}
else
{ // the target is located within the operation radius area
// simple copy the loaction to the ranged target position
GPS_CopyPosition(GPS_pTargetPosition, &RangedTargetPosition);
NCFlags &= ~NC_FLAG_RANGE_LIMIT;
}
}
else
{ // deviation could not be determined
GPS_ClearPosition(&RangedTargetPosition);
}
GPS_pTargetPosition->Status = PROCESSED; // mark current target as processed!
}
}
OperatingRadiusOld = GPS_Parameter.OperatingRadius;
// remember last target position pointer
pTargetPositionOld = GPS_pTargetPosition;
 
/* Calculate position deviation from ranged target */
 
// calculate deviation of current position to ranged target position in cm
if(GPS_CalculateDeviation(&(GPSData.Position), &RangedTargetPosition, &CurrentTargetDeviation))
{ // set target reached flag of we once reached the target point
if(!(NCFlags & NC_FLAG_TARGET_REACHED) && (CurrentTargetDeviation.Distance < GPS_TargetRadius))
{
NCFlags |= NC_FLAG_TARGET_REACHED; // set target reached flag
}
// implement your control code here based
// in the info available in the CurrentTargetDeviation, GPSData and FromFlightCtrl.GyroHeading
GPS_Stick.Nick = 0;
GPS_Stick.Roll = 0;
GPS_Stick.Yaw = 0;
}
else // deviation could not be calculated
{ // do nothing on gps sticks!
GPS_Neutral();
NCFlags &= ~NC_FLAG_TARGET_REACHED; // clear target reached
}
 
}// eof if GPSSignal is OK
else // GPSSignal not OK
{
GPS_Neutral();
// beep if signal is not sufficient
if(GPS_Parameter.FlightMode != GPS_FLIGHT_MODE_FREE)
{
if(!(GPSData.Flags & FLAG_GPSFIXOK) && !(beep_rythm % 5)) BeepTime = 100;
else if (GPSData.NumOfSats < GPS_Parameter.MinSat && !(beep_rythm % 5)) BeepTime = 10;
}
}
GPSData.Status = PROCESSED; // mark as processed
break;
}
 
DebugOut.Analog[6] = NCFlags;
DebugOut.Analog[27] = (s16)CurrentTargetDeviation.North;
DebugOut.Analog[28] = (s16)CurrentTargetDeviation.East;
DebugOut.Analog[29] = GPS_Stick.Nick;
DebugOut.Analog[30] = GPS_Stick.Roll;
 
// update navi data, send back to ground station
GPS_CopyPosition(&(GPSData.Position), &(NaviData.CurrentPosition));
GPS_CopyPosition(&RangedTargetPosition, &(NaviData.TargetPosition));
GPS_CopyPosition(&GPS_HomePosition, &(NaviData.HomePosition));
NaviData.SatsInUse = GPSData.NumOfSats;
NaviData.TargetPositionDeviation.Distance = (u16)CurrentTargetDeviation.Distance/10; // dm
NaviData.TargetPositionDeviation.Bearing = (s16)CurrentTargetDeviation.Bearing;
NaviData.HomePositionDeviation.Distance = (u16)CurrentHomeDeviation.Distance/10; // dm
NaviData.HomePositionDeviation.Bearing = (s16)CurrentHomeDeviation.Bearing;
//NaviData.UBat = FC.UBat;
NaviData.GroundSpeed = (u16)GPSData.Speed_Ground;
NaviData.Heading = (s16)(GPSData.Heading/100000L);
NaviData.CompassHeading = (s16)FromFlightCtrl.GyroHeading/10; // in deg
NaviData.AngleNick = FromFlightCtrl.AngleNick / 10; // in deg
NaviData.AngleRoll = FromFlightCtrl.AngleRoll / 10; // in deg
NaviData.RC_Quality = (u8)FC.RC_Quality;
NaviData.FCStatusFlags = (u8)FC.StatusFlags;
NaviData.NCFlags = NCFlags;
NaviData.OperatingRadius = Parameter.NaviOperatingRadius;
NaviData.TopSpeed = (s16)GPSData.Speed_Top; // in cm/s
NaviData.TargetHoldTime = (u8)(GetDelay(WPTime)/1000); // in s
}
 
void CalcHeadFree(void)
{
return;
}
 
u8 MaxNumberOfWaypoints = 32; // should be 32
u16 AbsoluteFlyingRange = 0; // Maximum distance that the MK is not allowed to exceed - keep zero if not used
s16 AbsoluteFlyingAltitude = 0; // Maximum altitude that the MK is not allowed to exceed - keep zero if not used
u16 AutoDescendRange = 0;
/branches/Proxy sensor - tempolo/NC/Navi-Ctrl.Uv2
0,0 → 1,202
### uVision2 Project, (C) Keil Software
### Do not modify !
 
Target (Navi-Ctrl), 0x0003 // Tools: 'ARM-GNU'
 
Group (Source Code)
Group (Header Files)
Group (Startup Code)
Group (Str9-Lib)
Group (Documentation)
Group (USB-Lib)
 
File 1,1,<.\main.c><main.c>
File 1,1,<.\ramfunc.c><ramfunc.c>
File 1,1,<.\menu.c><menu.c>
File 1,1,<.\spi_slave.c><spi_slave.c>
File 1,1,<.\i2c.c><i2c.c>
File 1,1,<.\usb.c><usb.c>
File 1,1,<.\fat16.c><fat16.c>
File 1,1,<.\sdc.c><sdc.c>
File 1,1,<.\settings.c><settings.c>
File 1,1,<.\ssc.c><ssc.c>
File 1,1,<.\usb_desc.c><usb_desc.c>
File 1,1,<.\usb_endp.c><usb_endp.c>
File 1,1,<.\usb_istr.c><usb_istr.c>
File 1,1,<.\usb_prop.c><usb_prop.c>
File 1,1,<.\usb_pwr.c><usb_pwr.c>
File 1,1,<.\led.c><led.c>
File 1,1,<.\crc16.c><crc16.c>
File 1,1,<.\ubx.c><ubx.c>
File 1,1,<.\uart0.c><uart0.c>
File 1,1,<.\uart1.c><uart1.c>
File 1,1,<.\uart2.c><uart2.c>
File 1,1,<.\kml.c><kml.c>
File 1,1,<.\fifo.c><fifo.c>
File 1,1,<.\waypoints.c><waypoints.c>
File 1,1,<.\logging.c><logging.c>
File 1,1,<.\gpx.c><gpx.c>
File 1,1,<.\mkprotocol.c><mkprotocol.c>
File 1,1,<.\timer1.c><timer1.c>
File 1,1,<.\timer2.c><timer2.c>
File 1,1,<.\analog.c><analog.c>
File 1,1,<.\params.c><params.c>
File 1,1,<.\printf_P.c><printf_P.c>
File 1,1,<.\GPS.c><GPS.c>
File 1,1,<.\mk3mag.c><mk3mag.c>
File 1,1,<.\compass.c><compass.c>
File 1,1,<.\buffer.c><buffer.c>
File 1,1,<.\eeprom.c><eeprom.c>
File 1,1,<.\ncmag.c><ncmag.c>
File 1,1,<.\mymath.c><mymath.c>
File 1,1,<.\ftphelper.c><ftphelper.c>
File 2,5,<.\ramfunc.h><ramfunc.h>
File 2,5,<.\main.h><main.h>
File 2,5,<.\menu.h><menu.h>
File 2,5,<.\settings.h><settings.h>
File 2,5,<.\usb.h><usb.h>
File 2,5,<.\spi_slave.h><spi_slave.h>
File 2,5,<.\i2c.h><i2c.h>
File 2,5,<.\sdc.h><sdc.h>
File 2,5,<.\ssc.h><ssc.h>
File 2,5,<.\fat16.h><fat16.h>
File 2,5,<.\GPS.h><GPS.h>
File 2,5,<.\libstr91x\include\91x_lib.h><91x_lib.h>
File 2,5,<.\led.h><led.h>
File 2,5,<.\crc16.h><crc16.h>
File 2,5,<.\ubx.h><ubx.h>
File 2,5,<.\uart0.h><uart0.h>
File 2,5,<.\uart1.h><uart1.h>
File 2,5,<.\uart2.h><uart2.h>
File 2,5,<.\kml_header.h><kml_header.h>
File 2,5,<.\kml.h><kml.h>
File 2,5,<.\fifo.h><fifo.h>
File 2,5,<.\waypoints.h><waypoints.h>
File 2,5,<.\logging.h><logging.h>
File 2,5,<.\gpx_header.h><gpx_header.h>
File 2,5,<.\gpx.h><gpx.h>
File 2,5,<.\mkprotocol.h><mkprotocol.h>
File 2,5,<.\timer1.h><timer1.h>
File 2,5,<.\timer2.h><timer2.h>
File 2,5,<.\analog.h><analog.h>
File 2,5,<.\config.h><config.h>
File 2,5,<.\params.h><params.h>
File 2,5,<.\libstr91x\include\91x_conf.h><91x_conf.h>
File 2,5,<.\libstr91x\include\91x_it.h><91x_it.h>
File 2,5,<.\printf_P.h><printf_P.h>
File 2,5,<.\mk3mag.h><mk3mag.h>
File 2,5,<.\compass.h><compass.h>
File 2,5,<.\buffer.h><buffer.h>
File 2,5,<.\eeprom.h><eeprom.h>
File 2,5,<.\ncmag.h><ncmag.h>
File 2,5,<.\mymath.h><mymath.h>
File 2,5,<.\usbinc\usb_pwr.h><usb_pwr.h>
File 2,5,<.\usbinc\usb_conf.h><usb_conf.h>
File 2,5,<.\usbinc\usb_desc.h><usb_desc.h>
File 2,5,<.\usbinc\usb_prop.h><usb_prop.h>
File 3,2,<.\startup912.s><startup912.s>
File 4,1,<.\libstr91x\src\91x_scu.c><91x_scu.c>
File 4,1,<.\libstr91x\src\91x_gpio.c><91x_gpio.c>
File 4,1,<.\libstr91x\src\91x_uart.c><91x_uart.c>
File 4,1,<.\libstr91x\src\91x_vic.c><91x_vic.c>
File 4,1,<.\libstr91x\src\91x_tim.c><91x_tim.c>
File 4,1,<.\libstr91x\src\91x_ssp.c><91x_ssp.c>
File 4,1,<.\libstr91x\src\91x_i2c.c><91x_i2c.c>
File 4,1,<.\libstr91x\src\91x_fmi.c><91x_fmi.c>
File 4,1,<.\libstr91x\src\91x_wiu.c><91x_wiu.c>
File 4,1,<.\libstr91x\src\91x_adc.c><91x_adc.c>
File 4,1,<.\libstr91x\src\91x_it.c><91x_it.c>
File 6,1,<.\usblibrary\src\usb_regs.c><usb_regs.c>
File 6,1,<.\usblibrary\src\usb_core.c><usb_core.c>
File 6,1,<.\usblibrary\src\usb_int.c><usb_int.c>
File 6,1,<.\usblibrary\src\usb_init.c><usb_init.c>
File 6,1,<.\usblibrary\src\usb_mem.c><usb_mem.c>
 
 
Options 1,0,0 // Target 'Navi-Ctrl'
Device (STR911FM44)
Vendor (STMicroelectronics)
Cpu (IRAM(0x04000000-0x04017FFF) IROM(0x0-0x7FFFF) IROM2(0x400000-0x407FFF) CLOCK(25000000) CPUTYPE(ARM9E))
FlashUt ()
StupF ("STARTUP\ST\STR91x.s" ("STR91x Startup Code"))
FlashDR (UL2ARM(-UU0639C7E -O15 -S0 -C1 -N00("ST uPSD Flash") -D00(04570041) -L00(8) -N01("ARM966E-S Core") -D01(25966041) -L01(4) -N02("ST Boundary Scan") -D02(0457F041) -L02(5) -FO15 -FD4000000 -FC800 -FN2 -FF0STR91xFxx4 -FS00 -FL080000 -FF1STR91xB1 -FS1400000 -FL18000))
DevID (4069)
Rgf (91x_lib.H)
Mem ()
C ()
A ()
RL ()
OH ()
DBC_IFX ()
DBC_CMS ()
DBC_AMS ()
DBC_LMS ()
UseEnv=0
EnvBin ()
EnvInc ()
EnvLib ()
EnvReg (ÿST\91x\)
OrgReg (ÿST\91x\)
TgStat=16
OutDir (.\Obj\)
OutName (Navi-Ctrl_STR9)
GenApp=1
GenLib=0
GenHex=1
Debug=0
Browse=0
LstDir (.\Lst\)
HexSel=1
MG32K=0
TGMORE=0
RunUsr 0 0 <>
RunUsr 1 0 <>
BrunUsr 0 0 <>
BrunUsr 1 0 <>
CrunUsr 0 0 <>
CrunUsr 1 0 <>
SVCSID <>
GLFLAGS=2047
GCPUTYP (ARM9E)
TFlagsA { 0,12,32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }
OCMARM { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }
OCMARAM { 0,0,0,0,4,0,128,1,0 }
OCMAROM { 1,0,0,0,0,0,0,8,0 }
OCMXRAM { 0,0,0,0,0,0,0,0,0 }
OCMIRAM2 { 0,0,0,48,0,0,16,0,0 }
OCMIROM2 { 1,0,0,64,0,0,128,0,0 }
ACCFLG { 1,0,32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }
ACMISC ()
ACDEFN ()
ACUDEF ()
ACINCD (.\libstr91x\include;.\usblibrary\inc;.\usbinc;.\)
AASFLG { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }
AAMISC ()
AADEFN ()
AAUDEF ()
AAINCD ()
PropFld { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }
IncBld=1
AlwaysBuild=0
GenAsm=0
AsmAsm=0
PublicsOnly=0
StopCode=3
CustArgs ()
LibMods ()
ALDFLAG { 21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }
ALDTADR (0x000000)
ALDDADR (0x4000000)
ALDBSSR ()
ALDICLB ()
ALDICDR ()
ALDMISC ()
ALDSCAT (.\scripts\flash_str9.ld)
OPTDL (SARM.DLL)(-cSTR91x)(DARMST9.DLL)(-pSTR910)(SARM.DLL)(-cSTR91x)(TARMST9.DLL)(-pSTR910)
OPTDBG 48126,0,()()()()()()()()()() (BIN\UL2ARM.DLL)()()()
FLASH1 { 9,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0 }
FLASH2 (BIN\UL2ARM.DLL)
FLASH3 ("" ())
FLASH4 ()
EndOpt
 
Property changes:
Added: svn:executable
+*
\ No newline at end of property
/branches/Proxy sensor - tempolo/NC/timer2.c
0,0 → 1,280
/*#######################################################################################*/
/* !!! THIS IS NOT FREE SOFTWARE !!! */
/*#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software Nutzungsbedingungen (english version: see below)
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand
// + des Mitverschuldens offen.
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
// + Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Software LICENSING TERMS
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
// + The Software may only be used with the Licensor's products.
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
// + agreement shall be the property of the Licensor.
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
// + features that can be used to identify the program may not be altered or defaced by the customer.
// + The customer shall be responsible for taking reasonable precautions
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
// + #### END OF LICENSING TERMS ####
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include "91x_lib.h"
#include "timer2.h"
#include "uart1.h"
#include "spi_slave.h"
#include "config.h"
#include "led.h"
 
#define CR1_OLVL1_MASK 0x0100
#define CR1_OLVL2_MASK 0x0200
 
volatile ServoParams_t ServoParams;
 
#define TIM2_FREQ 625000 // 625kHz, the same clock like at the FC
// frame len 22.5 ms = 14063 * 1.6 us
// stop pulse: 0.3 ms = 188 * 1.6 us
// min servo pulse: 0.6 ms = 375 * 1.6 us
// max servo pulse: 2.4 ms = 1500 * 1.6 us
// resolution: 1500 - 375 = 1125 steps
#define PPM_STOPPULSE 188
//#define PPM_FRAMELEN 14063
#define PPM_FRAMELEN (1757 * ServoParams.Refresh) // 22.5 ms / 8 Channels = 2.8125ms per Servo Channel
#define MINSERVOPULSE 375
#define MAXSERVOPULSE 1500
#define SERVORANGE (MAXSERVOPULSE - MINSERVOPULSE)
 
//----------------------------------------------------------------------------------------------------
void TIM2_IRQHandler(void)
{
#define MULTIPLYER 4
static s16 ServoNickOffset = (255 / 2) * MULTIPLYER; // initial value near center position
static s16 ServoRollOffset = (255 / 2) * MULTIPLYER; // initial value near center position
static u16 LowPulseTime1 = 14063;
static u16 LowPulseTime2 = 14063;
 
s16 ServoNickValue = 0;
s16 ServoRollValue = 0;
 
u16 pulselen;
 
IENABLE;
 
if(TIM_GetFlagStatus(TIM2, TIM_FLAG_OC1) == SET)
{
TIM_ClearFlag(TIM2, TIM_FLAG_OC1); // clear irq pending bit
if (TIM2->CR1 & CR1_OLVL1_MASK) // start of high pulse
{
pulselen = MINSERVOPULSE + SERVORANGE/2;
ServoNickOffset = (ServoNickOffset * 3 + (s16)ServoParams.NickControl * MULTIPLYER) / 4; // lowpass offset
ServoNickValue = ServoNickOffset; // offset (Range from 0 to 255 * 3 = 765)
if(ServoParams.CompInvert & 0x01)
{ // inverting movement of servo FromFlightCtrl.AngleNick
ServoNickValue += (s16)( ( (s32)ServoParams.NickComp * MULTIPLYER * (FromFlightCtrl.AngleNick) ) / (256L) );
}
else
{ // non inverting movement of servo FromFlightCtrl.AngleNick
ServoNickValue -= (s16)( ( (s32)ServoParams.NickComp * MULTIPLYER * (FromFlightCtrl.AngleNick) ) / (256L) );
}
// limit servo value to its parameter range definition
if(ServoNickValue < ((s16)ServoParams.NickMin * MULTIPLYER) )
{
ServoNickValue = (s16)ServoParams.NickMin * MULTIPLYER;
}
else
if(ServoNickValue > ((s16)ServoParams.NickMax * MULTIPLYER) )
{
ServoNickValue = (s16)ServoParams.NickMax * MULTIPLYER;
}
 
pulselen += ServoNickValue - (256 / 2) * MULTIPLYER; // shift ServoNickValue to center position
DebugOut.Analog[7] = ServoNickValue / MULTIPLYER;
LowPulseTime1 = PPM_FRAMELEN - pulselen;
TIM2->CR1 &= ~CR1_OLVL1_MASK; // make next a low pulse
}
else // start of low pulse
{
pulselen = LowPulseTime1;
TIM2->CR1 |= CR1_OLVL1_MASK; // make next a high pulse
}
TIM2->OC1R += pulselen;
}
 
if(TIM_GetFlagStatus(TIM2, TIM_FLAG_OC2) == SET)
{
TIM_ClearFlag(TIM2, TIM_FLAG_OC2); // clear irq pending bit
if (TIM2->CR1 & CR1_OLVL2_MASK) // was high pulse
{
pulselen = MINSERVOPULSE + SERVORANGE/2;
ServoRollOffset = (ServoRollOffset * 3 + (s16)ServoParams.RollControl * MULTIPLYER) / 4; // lowpass offset
ServoRollValue = ServoRollOffset; // offset (Range from 0 to 255 * 3 = 765)
if(ServoParams.CompInvert & 0x02)
{ // inverting movement of servo FromFlightCtrl.AngleRoll
ServoRollValue += (s16)( ( (s32)ServoParams.RollComp * MULTIPLYER * (FromFlightCtrl.AngleRoll) ) / (256L) );
}
else
{ // non inverting movement of servo FromFlightCtrl.AngleRoll
ServoRollValue -= (s16)( ( (s32)ServoParams.RollComp * MULTIPLYER * (FromFlightCtrl.AngleRoll) ) / (256L) );
}
// limit servo value to its parameter range definition
if(ServoRollValue < ((s16)ServoParams.RollMin * MULTIPLYER) )
{
ServoRollValue = (s16)ServoParams.RollMin * MULTIPLYER;
}
else
if(ServoRollValue > ((s16)ServoParams.RollMax * MULTIPLYER) )
{
ServoRollValue = (s16)ServoParams.RollMax * MULTIPLYER;
}
 
pulselen += ServoRollValue - (256 / 2) * MULTIPLYER; // shift ServoNickValue to center position
DebugOut.Analog[8] = ServoRollValue / MULTIPLYER;
LowPulseTime2 = PPM_FRAMELEN - pulselen;
TIM2->CR1 &= ~CR1_OLVL2_MASK; // make next a low pulse
}
else
{
pulselen = LowPulseTime2;
TIM2->CR1 |= CR1_OLVL2_MASK; // make next a high pulse
}
TIM2->OC2R += pulselen;
}
IDISABLE;
VIC0->VAR = 0xFF; // write any value to VIC0 Vector address register
}
 
//----------------------------------------------------------------------------------------------------
// Servo Timer
//----------------------------------------------------------------------------------------------------
void TIMER2_Init(void)
{
 
GPIO_InitTypeDef GPIO_InitStructure;
TIM_InitTypeDef TIM_InitStructure;
 
// UART1_PutString("\r\n Timer2 init...");
 
SCU_APBPeriphClockConfig(__GPIO6, ENABLE); // Enable the GPIO6 Clock
 
// configure the servo pins
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinOutput;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Type = GPIO_Type_PushPull ;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Enable;
GPIO_InitStructure.GPIO_Alternate = GPIO_OutputAlt2; //TIM2_OCMP1
GPIO_Init(GPIO6, &GPIO_InitStructure);
 
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinOutput;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Type = GPIO_Type_PushPull;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Enable;
GPIO_InitStructure.GPIO_Alternate = GPIO_OutputAlt2; //TIM2_OCMP2
GPIO_Init(GPIO6, &GPIO_InitStructure);
 
SCU_APBPeriphClockConfig(__TIM23, ENABLE);
 
TIM_DeInit(TIM2);
TIM_StructInit(&TIM_InitStructure);
TIM_InitStructure.TIM_Mode = TIM_OCM_CHANNEL_12; // Output Compare Channels 1 & 2 Mode
TIM_InitStructure.TIM_OC1_Modes = TIM_WAVE; // OCMP1 pin is dedicated to the OC1 capability of the TIM
TIM_InitStructure.TIM_OC2_Modes = TIM_WAVE; // OCMP2 pin is dedicated to the OC2 capability of the TIM
TIM_InitStructure.TIM_Clock_Source = TIM_CLK_APB; // APB clock source is used
TIM_InitStructure.TIM_Pulse_Level_1 = TIM_LOW; // output low at OCMP1 pin on compare match
TIM_InitStructure.TIM_Pulse_Level_2 = TIM_LOW; // output low at OCMP2 pin on compare match
TIM_InitStructure.TIM_Prescaler = (SCU_GetPCLKFreqValue() * 1000) / TIM2_FREQ;
 
TIM_Init(TIM2, &TIM_InitStructure);
 
TIM_ITConfig(TIM2, TIM_IT_OC1|TIM_IT_OC2, ENABLE); // enable interrupts for the OC 1 & 2
 
VIC_Config(TIM2_ITLine, VIC_IRQ, PRIORITY_TIMER2);
//## VIC_ITCmd(TIM2_ITLine, ENABLE);
 
TIM2->OC1R = 10;
TIM2->OC2R = 20;
 
// set servo params to defaults
ServoParams.Refresh = 5;
ServoParams.CompInvert = 0;
ServoParams.NickControl = 127;
ServoParams.NickComp = 40;
ServoParams.NickMin = 50;
ServoParams.NickMax = 205;
ServoParams.RollControl = 127;
ServoParams.RollComp = 40;
ServoParams.RollMin = 50;
ServoParams.RollMax = 205;
TIM_CounterCmd(TIM2, TIM_CLEAR); // reset timer
TIM_CounterCmd(TIM2, TIM_START); // start the timer
// UART1_PutString("ok");
}
 
void TIMER2_Deinit(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
 
// UART1_PutString("\r\n Timer2 deinit...");
 
VIC_ITCmd(TIM2_ITLine, DISABLE);
TIM_CounterCmd(TIM2, TIM_STOP); // stop the timer
TIM_CounterCmd(TIM2, TIM_CLEAR); // stop the timer
TIM_ITConfig(TIM2, TIM_IT_OC1|TIM_IT_OC2, DISABLE); // disable interrupts for the OC 1 & 2
TIM_DeInit(TIM2);
SCU_APBPeriphClockConfig(__TIM23, DISABLE);
 
// configure the servo pins as input
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinInput;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Type = GPIO_Type_OpenCollector;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Disable;
GPIO_InitStructure.GPIO_Alternate = GPIO_InputAlt1;
GPIO_Init(GPIO6, &GPIO_InitStructure);
 
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Direction = GPIO_PinInput;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Type = GPIO_Type_OpenCollector;
GPIO_InitStructure.GPIO_IPInputConnected = GPIO_IPInputConnected_Disable;
GPIO_InitStructure.GPIO_Alternate = GPIO_InputAlt1;
GPIO_Init(GPIO6, &GPIO_InitStructure);
}