Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1804 → Rev 1805

/branches/dongfang_FC_rewrite/attitude.c
74,10 → 74,6
// For Servo_On / Off
// #include "timer2.h"
 
#ifdef USE_MK3MAG
#include "mk3mag.h"
#include "gps.h"
#endif
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
 
/*
113,13 → 109,22
 
int readingHeight = 0;
 
// compass course
int16_t compassHeading = -1; // negative angle indicates invalid data.
int16_t compassCourse = -1;
int16_t compassOffCourse = 0;
uint16_t updateCompassCourse = 0;
uint8_t compassCalState = 0;
uint16_t badCompassHeading = 500;
// Yaw angle and compass stuff.
 
// This is updated/written from MM3. Negative angle indicates invalid data.
int16_t compassHeading = -1;
 
// This is NOT updated from MM3. Negative angle indicates invalid data.
int16_t compassCourse = -1;
 
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
// Not necessary. Never read anywhere.
// int16_t compassOffCourse = 0;
 
uint8_t updateCompassCourse = 0;
uint8_t compassCalState = 0;
uint16_t ignoreCompassTimer = 500;
 
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
int16_t yawGyroDrift;
 
127,15 → 132,15
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
#define YAWOVER360 (GYRO_DEG_FACTOR_YAW * 360L)
 
int16_t correctionSum[2] = {0,0};
int16_t correctionSum[2] = { 0, 0 };
 
// For NaviCTRL use.
int16_t averageAcc[2] = {0,0}, averageAccCount = 0;
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
 
/*
* Experiment: Compensating for dynamic-induced gyro biasing.
*/
int16_t driftComp[2] = {0,0}, driftCompYaw = 0;
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
// int16_t dynamicCalCount;
151,15 → 156,15
************************************************************************/
 
int32_t getAngleEstimateFromAcc(uint8_t axis) {
return GYRO_ACC_FACTOR * (int32_t)filteredAcc[axis];
return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
}
 
void setStaticAttitudeAngles(void) {
#ifdef ATTITUDE_USE_ACC_SENSORS
angle[PITCH] = getAngleEstimateFromAcc(PITCH);
angle[ROLL] = getAngleEstimateFromAcc(ROLL);
angle[PITCH] = getAngleEstimateFromAcc(PITCH);
angle[ROLL] = getAngleEstimateFromAcc(ROLL);
#else
angle[PITCH] = angle[ROLL] = 0;
angle[PITCH] = angle[ROLL] = 0;
#endif
}
 
167,29 → 172,29
* Neutral Readings
************************************************************************/
void attitude_setNeutral(void) {
// Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
// Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
 
driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
correctionSum[PITCH] = correctionSum[ROLL] = 0;
// Calibrate hardware.
analog_calibrate();
// reset gyro readings
// rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0;
driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
correctionSum[PITCH] = correctionSum[ROLL] = 0;
 
// reset gyro integrals to acc guessing
setStaticAttitudeAngles();
yawAngleDiff = 0;
// Calibrate hardware.
analog_calibrate();
 
// update compass course to current heading
compassCourse = compassHeading;
// reset gyro readings
// rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0;
 
// Inititialize YawGyroIntegral value with current compass heading
yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
// reset gyro integrals to acc guessing
setStaticAttitudeAngles();
yawAngleDiff = 0;
 
// Servo_On(); //enable servo output
// update compass course to current heading
compassCourse = compassHeading;
 
// Inititialize YawGyroIntegral value with current compass heading
yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
 
// Servo_On(); //enable servo output
}
 
/************************************************************************
199,22 → 204,24
* The rate variable end up in a range of about [-1024, 1023].
*************************************************************************/
void getAnalogData(void) {
uint8_t axis;
for (axis=PITCH; axis <=ROLL; axis++) {
rate_PID[axis] = (gyro_PID[axis] + driftComp[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
rate_ATT[axis] = (gyro_ATT[axis] + driftComp[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
differential[axis] = gyroD[axis];
averageAcc[axis] += acc[axis];
}
uint8_t axis;
 
averageAccCount++;
yawRate = yawGyro + driftCompYaw;
for (axis = PITCH; axis <= ROLL; axis++) {
rate_PID[axis] = (gyro_PID[axis] + driftComp[axis])
/ HIRES_GYRO_INTEGRATION_FACTOR;
rate_ATT[axis] = (gyro_ATT[axis] + driftComp[axis])
/ HIRES_GYRO_INTEGRATION_FACTOR;
differential[axis] = gyroD[axis];
averageAcc[axis] += acc[axis];
}
 
// We are done reading variables from the analog module.
// Interrupt-driven sensor reading may restart.
analogDataReady = 0;
analog_start();
averageAccCount++;
yawRate = yawGyro + driftCompYaw;
 
// We are done reading variables from the analog module.
// Interrupt-driven sensor reading may restart.
analogDataReady = 0;
analog_start();
}
 
/*
224,54 → 231,59
* changed accordingly.
*/
void trigAxisCoupling(void) {
int16_t cospitch = int_cos(angle[PITCH]);
int16_t cosroll = int_cos(angle[ROLL]);
int16_t sinroll = int_sin(angle[ROLL]);
int16_t tanpitch = int_tan(angle[PITCH]);
int16_t cospitch = int_cos(angle[PITCH]);
int16_t cosroll = int_cos(angle[ROLL]);
int16_t sinroll = int_sin(angle[ROLL]);
int16_t tanpitch = int_tan(angle[PITCH]);
#define ANTIOVF 512
ACRate[PITCH] = ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t)rate_ATT[PITCH] * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(angle[ROLL]) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
ACRate[PITCH] = ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t) yawRate
* sinroll) / (int32_t) MATH_UNIT_FACTOR;
ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t) rate_ATT[PITCH] * sinroll
/ ANTIOVF * tanpitch + (int32_t) yawRate * int_cos(angle[ROLL])
/ ANTIOVF * tanpitch) / ((int32_t) MATH_UNIT_FACTOR / ANTIOVF
* MATH_UNIT_FACTOR));
ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch
+ ((int32_t) yawRate * cosroll) / cospitch;
}
 
// 480 usec with axis coupling - almost no time without.
void integrate(void) {
// First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
uint8_t axis;
if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
// The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
trigAxisCoupling();
} else {
ACRate[PITCH] = rate_ATT[PITCH];
ACRate[ROLL] = rate_ATT[ROLL];
ACYawRate = yawRate;
}
// First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
uint8_t axis;
if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
// The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
trigAxisCoupling();
} else {
ACRate[PITCH] = rate_ATT[PITCH];
ACRate[ROLL] = rate_ATT[ROLL];
ACYawRate = yawRate;
}
 
/*
* Yaw
* Calculate yaw gyro integral (~ to rotation angle)
* Limit yawGyroHeading proportional to 0 deg to 360 deg
*/
yawGyroHeading += ACYawRate;
yawAngleDiff += yawRate;
if(yawGyroHeading >= YAWOVER360) {
yawGyroHeading -= YAWOVER360; // 360 deg. wrap
} else if(yawGyroHeading < 0) {
yawGyroHeading += YAWOVER360;
}
/*
* Yaw
* Calculate yaw gyro integral (~ to rotation angle)
* Limit yawGyroHeading proportional to 0 deg to 360 deg
*/
yawGyroHeading += ACYawRate;
yawAngleDiff += yawRate;
 
/*
* Pitch axis integration and range boundary wrap.
*/
for (axis=PITCH; axis<=ROLL; axis++) {
angle[axis] += ACRate[axis];
if(angle[axis] > PITCHROLLOVER180) {
angle[axis] -= PITCHROLLOVER360;
} else if (angle[axis] <= -PITCHROLLOVER180) {
angle[axis] += PITCHROLLOVER360;
}
}
if (yawGyroHeading >= YAWOVER360) {
yawGyroHeading -= YAWOVER360; // 360 deg. wrap
} else if (yawGyroHeading < 0) {
yawGyroHeading += YAWOVER360;
}
 
/*
* Pitch axis integration and range boundary wrap.
*/
for (axis = PITCH; axis <= ROLL; axis++) {
angle[axis] += ACRate[axis];
if (angle[axis] > PITCHROLLOVER180) {
angle[axis] -= PITCHROLLOVER360;
} else if (angle[axis] <= -PITCHROLLOVER180) {
angle[axis] += PITCHROLLOVER360;
}
}
}
 
/************************************************************************
282,57 → 294,60
* That should only be necessary with drifty gyros like ENC-03.
************************************************************************/
void correctIntegralsByAcc0thOrder(void) {
// TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
// are less than ....., or reintroduce Kalman.
// Well actually the Z axis acc. check is not so silly.
uint8_t axis;
int32_t correction;
if(!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z] <= dynamicParams.UserParams[7]) {
DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
uint8_t debugFullWeight = 1;
int32_t accDerived;
if((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
permilleAcc /= 2;
debugFullWeight = 0;
}
// TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
// are less than ....., or reintroduce Kalman.
// Well actually the Z axis acc. check is not so silly.
uint8_t axis;
int32_t correction;
if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
<= dynamicParams.UserParams[7]) {
DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
 
if((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
permilleAcc /= 2;
debugFullWeight = 0;
}
if (debugFullWeight)
DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
else
DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
uint8_t debugFullWeight = 1;
int32_t accDerived;
 
/*
* Add to each sum: The amount by which the angle is changed just below.
*/
for (axis=PITCH; axis<=ROLL; axis++) {
accDerived = getAngleEstimateFromAcc(axis);
DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
permilleAcc /= 2;
debugFullWeight = 0;
}
 
// 1000 * the correction amount that will be added to the gyro angle in next line.
correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
angle[axis] = ((int32_t)(1000L - permilleAcc) * angle[axis] + (int32_t)permilleAcc * accDerived) / 1000L;
correctionSum[axis] += angle[axis] - correction;
DebugOut.Analog[16+axis] = angle[axis] - correction;
}
} else {
DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
DebugOut.Analog[9] = 0;
DebugOut.Analog[10] = 0;
if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
permilleAcc /= 2;
debugFullWeight = 0;
}
 
DebugOut.Analog[16] = 0;
DebugOut.Analog[17] = 0;
// experiment: Kill drift compensation updates when not flying smooth.
correctionSum[PITCH] = correctionSum[ROLL] = 0;
}
if (debugFullWeight)
DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
else
DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
 
/*
* Add to each sum: The amount by which the angle is changed just below.
*/
for (axis = PITCH; axis <= ROLL; axis++) {
accDerived = getAngleEstimateFromAcc(axis);
DebugOut.Analog[9 + axis] = (10 * accDerived)
/ GYRO_DEG_FACTOR_PITCHROLL;
 
// 1000 * the correction amount that will be added to the gyro angle in next line.
correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
angle[axis] = ((int32_t) (1000L - permilleAcc) * angle[axis]
+ (int32_t) permilleAcc * accDerived) / 1000L;
correctionSum[axis] += angle[axis] - correction;
DebugOut.Analog[16 + axis] = angle[axis] - correction;
}
} else {
DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
DebugOut.Analog[9] = 0;
DebugOut.Analog[10] = 0;
 
DebugOut.Analog[16] = 0;
DebugOut.Analog[17] = 0;
// experiment: Kill drift compensation updates when not flying smooth.
correctionSum[PITCH] = correctionSum[ROLL] = 0;
}
}
 
/************************************************************************
348,108 → 363,127
// 2 times / sec. = 488/2
#define DRIFTCORRECTION_TIME 256L
void driftCorrection(void) {
static int16_t timer = DRIFTCORRECTION_TIME;
int16_t deltaCorrection;
uint8_t axis;
if (! --timer) {
timer = DRIFTCORRECTION_TIME;
for (axis=PITCH; axis<=ROLL; axis++) {
// Take the sum of corrections applied, add it to delta
deltaCorrection = (correctionSum[axis] * HIRES_GYRO_INTEGRATION_FACTOR + DRIFTCORRECTION_TIME / 2) / DRIFTCORRECTION_TIME;
// Add the delta to the compensation. So positive delta means, gyro should have higher value.
driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
// DebugOut.Analog[11 + axis] = correctionSum[axis];
static int16_t timer = DRIFTCORRECTION_TIME;
int16_t deltaCorrection;
uint8_t axis;
if (!--timer) {
timer = DRIFTCORRECTION_TIME;
for (axis = PITCH; axis <= ROLL; axis++) {
// Take the sum of corrections applied, add it to delta
deltaCorrection = (correctionSum[axis]
* HIRES_GYRO_INTEGRATION_FACTOR + DRIFTCORRECTION_TIME / 2)
/ DRIFTCORRECTION_TIME;
// Add the delta to the compensation. So positive delta means, gyro should have higher value.
driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
// DebugOut.Analog[11 + axis] = correctionSum[axis];
 
DebugOut.Analog[18+axis] = deltaCorrection / staticParams.GyroAccTrim;
DebugOut.Analog[28+axis] = driftComp[axis];
DebugOut.Analog[18 + axis] = deltaCorrection
/ staticParams.GyroAccTrim;
DebugOut.Analog[28 + axis] = driftComp[axis];
 
correctionSum[axis] = 0;
}
}
correctionSum[axis] = 0;
}
}
}
 
/************************************************************************
* Main procedure.
************************************************************************/
void calculateFlightAttitude(void) {
// part1: 550 usec.
// part1a: 550 usec.
// part1b: 60 usec.
getAnalogData();
// end part1b
integrate();
// end part1a
void calculateFlightAttitude(void) {
// part1: 550 usec.
// part1a: 550 usec.
// part1b: 60 usec.
getAnalogData();
// end part1b
integrate();
// end part1a
 
DebugOut.Analog[6] = ACRate[PITCH];
DebugOut.Analog[7] = ACRate[ROLL];
DebugOut.Analog[8] = ACYawRate;
DebugOut.Analog[3] = rate_PID[PITCH];
DebugOut.Analog[4] = rate_PID[ROLL];
DebugOut.Analog[5] = yawRate;
 
DebugOut.Analog[6] = ACRate[PITCH];
DebugOut.Analog[7] = ACRate[ROLL];
DebugOut.Analog[8] = ACYawRate;
 
DebugOut.Analog[3] = rate_PID[PITCH];
DebugOut.Analog[4] = rate_PID[ROLL];
DebugOut.Analog[5] = yawRate;
 
#ifdef ATTITUDE_USE_ACC_SENSORS
correctIntegralsByAcc0thOrder();
driftCorrection();
correctIntegralsByAcc0thOrder();
driftCorrection();
#endif
// end part1
// end part1
}
 
void updateCompass(void) {
int16_t w, v, r,correction, error;
if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
if (controlMixer_testCompassCalState()) {
compassCalState++;
if(compassCalState < 5) beepNumber(compassCalState);
else beep(1000);
}
} else {
// get maximum attitude angle
w = abs(angle[PITCH] / 512);
v = abs(angle[ROLL] / 512);
if(v > w) w = v;
correction = w / 8 + 1;
// calculate the deviation of the yaw gyro heading and the compass heading
if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
if(abs(yawRate) > 128) { // spinning fast
error = 0;
}
if(!badCompassHeading && w < 25) {
yawGyroDrift += error;
if(updateCompassCourse) {
beep(200);
yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
updateCompassCourse = 0;
}
}
yawGyroHeading += (error * 8) / correction;
w = (w * dynamicParams.CompassYawEffect) / 32;
w = dynamicParams.CompassYawEffect - w;
if(w >= 0) {
if(!badCompassHeading) {
v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
// calc course deviation
r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
v = (r * w) / v; // align to compass course
// limit yaw rate
w = 3 * dynamicParams.CompassYawEffect;
if (v > w) v = w;
else if (v < -w) v = -w;
yawAngleDiff += v;
}
else
{ // wait a while
badCompassHeading--;
int16_t w, v, r, correction, error;
 
if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
if (controlMixer_testCompassCalState()) {
compassCalState++;
if (compassCalState < 5)
beepNumber(compassCalState);
else
beep(1000);
}
} else {
// get maximum attitude angle
w = abs(angle[PITCH] / 512);
v = abs(angle[ROLL] / 512);
if (v > w)
w = v;
correction = w/8 + 1;
// calculate the deviation of the yaw gyro heading and the compass heading
if (compassHeading < 0)
error = 0; // disable yaw drift compensation if compass heading is undefined
else
if (abs(yawRate) > 128) { // spinning fast
error = 0;
} else {
// compassHeading - yawGyroHeading, on a -180..179 deg interval.
error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
}
if (!ignoreCompassTimer && w < 25) {
yawGyroDrift += error;
// Basically this gets set if we are in "fix" mode, and when starting.
if (updateCompassCourse) {
beep(200);
yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
updateCompassCourse = 0;
}
}
yawGyroHeading += (error * 8) / correction;
 
/*
w = (w * dynamicParams.CompassYawEffect) / 32;
w = dynamicParams.CompassYawEffect - w;
*/
w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect) / 32;
 
// As readable formula:
// w = dynamicParams.CompassYawEffect * (1-w/32);
 
if (w >= 0) { // maxAttitudeAngle < 32
if (!ignoreCompassTimer) {
v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
// yawGyroHeading - compassCourse on a -180..179 degree interval.
r = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse) % 360) - 180;
v = (r * w) / v; // align to compass course
// limit yaw rate
w = 3 * dynamicParams.CompassYawEffect;
if (v > w)
v = w;
else if (v < -w)
v = -w;
yawAngleDiff += v;
} else { // wait a while
ignoreCompassTimer--;
}
} else { // ignore compass at extreme attitudes for a while
ignoreCompassTimer = 500;
}
}
} else { // ignore compass at extreme attitudes for a while
badCompassHeading = 500;
}
}
}
 
/*
461,32 → 495,32
* speed unfortunately... must find a better way)
*/
/*
void attitude_startDynamicCalibration(void) {
dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
}
void attitude_startDynamicCalibration(void) {
dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
}
 
void attitude_continueDynamicCalibration(void) {
// measure dynamic offset now...
dynamicCalPitch += hiResPitchGyro;
dynamicCalRoll += hiResRollGyro;
dynamicCalYaw += rawYawGyroSum;
dynamicCalCount++;
// Param6: Manual mode. The offsets are taken from Param7 and Param8.
if (dynamicParams.UserParam6 || 1) { // currently always enabled.
// manual mode
driftCompPitch = dynamicParams.UserParam7 - 128;
driftCompRoll = dynamicParams.UserParam8 - 128;
} else {
// use the sampled value (does not seem to work so well....)
driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
driftCompYaw = -dynamicCalYaw / dynamicCalCount;
}
// keep resetting these meanwhile, to avoid accumulating errors.
setStaticAttitudeIntegrals();
yawAngle = 0;
}
*/
void attitude_continueDynamicCalibration(void) {
// measure dynamic offset now...
dynamicCalPitch += hiResPitchGyro;
dynamicCalRoll += hiResRollGyro;
dynamicCalYaw += rawYawGyroSum;
dynamicCalCount++;
 
// Param6: Manual mode. The offsets are taken from Param7 and Param8.
if (dynamicParams.UserParam6 || 1) { // currently always enabled.
// manual mode
driftCompPitch = dynamicParams.UserParam7 - 128;
driftCompRoll = dynamicParams.UserParam8 - 128;
} else {
// use the sampled value (does not seem to work so well....)
driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
driftCompYaw = -dynamicCalYaw / dynamicCalCount;
}
 
// keep resetting these meanwhile, to avoid accumulating errors.
setStaticAttitudeIntegrals();
yawAngle = 0;
}
*/
/branches/dongfang_FC_rewrite/attitude.h
96,12 → 96,12
*/
extern int16_t compassHeading;
extern int16_t compassCourse;
extern int16_t compassOffCourse;
// extern int16_t compassOffCourse;
extern uint8_t compassCalState;
extern int32_t yawGyroHeading;
extern int16_t yawGyroHeadingInDeg;
extern uint16_t updateCompassCourse;
extern uint16_t badCompassHeading;
extern uint8_t updateCompassCourse;
extern uint16_t ignoreCompassTimer;
 
void updateCompass(void);
 
/branches/dongfang_FC_rewrite/configuration.c
92,7 → 92,8
SET_POT(dynamicParams.DynamicStability,staticParams.DynamicStability);
SET_POT_MM(dynamicParams.J16Timing,staticParams.J16Timing,1,255);
SET_POT_MM(dynamicParams.J17Timing,staticParams.J17Timing,1,255);
#if defined (USE_MK3MAG)
 
#if defined (USE_NAVICTRL)
SET_POT(dynamicParams.NaviGpsModeControl,staticParams.NaviGpsModeControl);
SET_POT(dynamicParams.NaviGpsGain,staticParams.NaviGpsGain);
SET_POT(dynamicParams.NaviGpsP,staticParams.NaviGpsP);
/branches/dongfang_FC_rewrite/flight.c
265,7 → 265,7
/* Yawing */
/************************************************************************/
if(abs(controlYaw) > 4 * staticParams.StickYawP) { // yaw stick is activated
badCompassHeading = 1000;
ignoreCompassTimer = 1000;
if(!(staticParams.GlobalConfig & CFG_COMPASS_FIX)) {
updateCompassCourse = 1;
}
288,7 → 288,7
updateCompass();
}
#if defined (USE_MK3MAG)
#if defined (USE_NAVICTRL)
/************************************************************************/
/* GPS is currently not supported. */
/************************************************************************/
295,8 → 295,7
if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
GPS_Main();
MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
}
else {
} else {
// GPSStickPitch = 0;
// GPSStickRoll = 0;
}
/branches/dongfang_FC_rewrite/gps.c
56,122 → 56,129
#include "rc.h"
#include "eeprom.h"
 
typedef enum
{
GPS_FLIGHT_MODE_UNDEF,
GPS_FLIGHT_MODE_FREE,
GPS_FLIGHT_MODE_AID,
GPS_FLIGHT_MODE_HOME,
} FlightMode_t;
typedef enum {
GPS_FLIGHT_MODE_UNDEF,
GPS_FLIGHT_MODE_FREE,
GPS_FLIGHT_MODE_AID,
GPS_FLIGHT_MODE_HOME,
} FlightMode_t;
 
#define GPS_POSINTEGRAL_LIMIT 32000
#define GPS_STICK_LIMIT 45 // limit of gps stick control to avoid critical flight attitudes
#define GPS_P_LIMIT 25
 
 
typedef struct
{
int32_t Longitude;
int32_t Latitude;
int32_t Altitude;
Status_t Status;
typedef struct {
int32_t Longitude;
int32_t Latitude;
int32_t Altitude;
Status_t Status;
} GPS_Pos_t;
 
// GPS coordinates for hold position
GPS_Pos_t HoldPosition = {0,0,0,INVALID};
GPS_Pos_t HoldPosition = { 0, 0, 0, INVALID };
// GPS coordinates for home position
GPS_Pos_t HomePosition = {0,0,0,INVALID};
GPS_Pos_t HomePosition = { 0, 0, 0, INVALID };
// the current flight mode
FlightMode_t FlightMode = GPS_FLIGHT_MODE_UNDEF;
 
 
// ---------------------------------------------------------------------------------
void GPS_UpdateParameter(void) {
static FlightMode_t FlightModeOld = GPS_FLIGHT_MODE_UNDEF;
if((RC_Quality < 100) || (MKFlags & MKFLAG_EMERGENCY_LANDING)) {
FlightMode = GPS_FLIGHT_MODE_FREE;
} else {
if (dynamicParams.NaviGpsModeControl < 50) FlightMode = GPS_FLIGHT_MODE_AID;
else if(dynamicParams.NaviGpsModeControl < 180) FlightMode = GPS_FLIGHT_MODE_FREE;
else FlightMode = GPS_FLIGHT_MODE_HOME;
}
static FlightMode_t FlightModeOld = GPS_FLIGHT_MODE_UNDEF;
 
if (FlightMode != FlightModeOld) {
BeepTime = 100;
}
FlightModeOld = FlightMode;
if ((RC_Quality < 100) || (MKFlags & MKFLAG_EMERGENCY_LANDING)) {
FlightMode = GPS_FLIGHT_MODE_FREE;
} else {
if (dynamicParams.NaviGpsModeControl < 50)
FlightMode = GPS_FLIGHT_MODE_AID;
else if (dynamicParams.NaviGpsModeControl < 180)
FlightMode = GPS_FLIGHT_MODE_FREE;
else
FlightMode = GPS_FLIGHT_MODE_HOME;
}
 
if (FlightMode != FlightModeOld) {
BeepTime = 100;
}
FlightModeOld = FlightMode;
}
 
// ---------------------------------------------------------------------------------
// This function defines a good GPS signal condition
uint8_t GPS_IsSignalOK(void) {
static uint8_t GPSFix = 0;
if( (GPSInfo.status != INVALID) && (GPSInfo.satfix == SATFIX_3D) && (GPSInfo.flags & FLAG_GPSFIXOK) && ((GPSInfo.satnum >= staticParams.NaviGpsMinSat) || GPSFix)) {
GPSFix = 1;
return 1;
}
else return (0);
static uint8_t GPSFix = 0;
if ((GPSInfo.status != INVALID) && (GPSInfo.satfix == SATFIX_3D)
&& (GPSInfo.flags & FLAG_GPSFIXOK) && ((GPSInfo.satnum
>= staticParams.NaviGpsMinSat) || GPSFix)) {
GPSFix = 1;
return 1;
} else
return (0);
}
 
// ---------------------------------------------------------------------------------
// rescale xy-vector length to limit
uint8_t GPS_LimitXY(int32_t *x, int32_t *y, int32_t limit) {
uint8_t retval = 0;
int32_t len;
len = (int32_t)c_sqrt(*x * *x + *y * *y);
if (len > limit) {
// normalize control vector components to the limit
*x = (*x * limit) / len;
*y = (*y * limit) / len;
retval = 1;
}
return(retval);
uint8_t retval = 0;
int32_t len;
len = (int32_t) c_sqrt(*x * *x + *y * *y);
if (len > limit) {
// normalize control vector components to the limit
*x = (*x * limit) / len;
*y = (*y * limit) / len;
retval = 1;
}
return (retval);
}
 
// checks nick and roll sticks for manual control
uint8_t GPS_IsManualControlled(void) {
if ((abs(PPM_in[staticParams.ChannelAssignment[CH_NICK]]) < staticParams.NaviStickThreshold) && (abs(PPM_in[staticParams.ChannelAssignment[CH_ROLL]]) < staticParams.NaviStickThreshold)) return 0;
else return 1;
if ((abs(PPM_in[staticParams.ChannelAssignment[CH_NICK]])
< staticParams.NaviStickThreshold)
&& (abs(PPM_in[staticParams.ChannelAssignment[CH_ROLL]])
< staticParams.NaviStickThreshold))
return 0;
else
return 1;
}
 
// set given position to current gps position
uint8_t GPS_SetCurrPosition(GPS_Pos_t * pGPSPos) {
uint8_t retval = 0;
if(pGPSPos == NULL) return(retval); // bad pointer
uint8_t retval = 0;
if (pGPSPos == NULL)
return (retval); // bad pointer
 
if(GPS_IsSignalOK()) { // is GPS signal condition is fine
pGPSPos->Longitude = GPSInfo.longitude;
pGPSPos->Latitude = GPSInfo.latitude;
pGPSPos->Altitude = GPSInfo.altitude;
pGPSPos->Status = NEWDATA;
retval = 1;
} else { // bad GPS signal condition
pGPSPos->Status = INVALID;
retval = 0;
}
return(retval);
if (GPS_IsSignalOK()) { // is GPS signal condition is fine
pGPSPos->Longitude = GPSInfo.longitude;
pGPSPos->Latitude = GPSInfo.latitude;
pGPSPos->Altitude = GPSInfo.altitude;
pGPSPos->Status = NEWDATA;
retval = 1;
} else { // bad GPS signal condition
pGPSPos->Status = INVALID;
retval = 0;
}
return (retval);
}
 
// clear position
uint8_t GPS_ClearPosition(GPS_Pos_t * pGPSPos) {
uint8_t retval = 0;
if(pGPSPos == NULL)
return retval; // bad pointer
else {
pGPSPos->Longitude = 0;
pGPSPos->Latitude = 0;
pGPSPos->Altitude = 0;
pGPSPos->Status = INVALID;
retval = 1;
}
return (retval);
uint8_t retval = 0;
if (pGPSPos == NULL)
return retval; // bad pointer
else {
pGPSPos->Longitude = 0;
pGPSPos->Latitude = 0;
pGPSPos->Altitude = 0;
pGPSPos->Status = INVALID;
retval = 1;
}
return (retval);
}
 
// disable GPS control sticks
void GPS_Neutral(void) {
GPSStickNick = 0;
GPSStickRoll = 0;
GPSStickNick = 0;
GPSStickRoll = 0;
}
 
// calculates the GPS control stick values from the deviation to target position
178,255 → 185,241
// if the pointer to the target positin is NULL or is the target position invalid
// then the P part of the controller is deactivated.
void GPS_PIDController(GPS_Pos_t *pTargetPos) {
static int32_t PID_Nick, PID_Roll;
int32_t coscompass, sincompass;
int32_t GPSPosDev_North, GPSPosDev_East; // Position deviation in cm
int32_t P_North = 0, D_North = 0, P_East = 0, D_East = 0, I_North = 0, I_East = 0;
int32_t PID_North = 0, PID_East = 0;
static int32_t cos_target_latitude = 1;
static int32_t GPSPosDevIntegral_North = 0, GPSPosDevIntegral_East = 0;
static GPS_Pos_t *pLastTargetPos = 0;
static int32_t PID_Nick, PID_Roll;
int32_t coscompass, sincompass;
int32_t GPSPosDev_North, GPSPosDev_East; // Position deviation in cm
int32_t P_North = 0, D_North = 0, P_East = 0, D_East = 0, I_North = 0,
I_East = 0;
int32_t PID_North = 0, PID_East = 0;
static int32_t cos_target_latitude = 1;
static int32_t GPSPosDevIntegral_North = 0, GPSPosDevIntegral_East = 0;
static GPS_Pos_t *pLastTargetPos = 0;
 
// if GPS data and Compass are ok
if( GPS_IsSignalOK() && (CompassHeading >= 0)) {
if(pTargetPos != NULL) // if there is a target position
{
if(pTargetPos->Status != INVALID) // and the position data are valid
{
// if the target data are updated or the target pointer has changed
if ((pTargetPos->Status != PROCESSED) || (pTargetPos != pLastTargetPos) )
{
// if GPS data and Compass are ok
if (GPS_IsSignalOK() && (CompassHeading >= 0)) {
if (pTargetPos != NULL) // if there is a target position
{
if (pTargetPos->Status != INVALID) // and the position data are valid
{
// if the target data are updated or the target pointer has changed
if ((pTargetPos->Status != PROCESSED) || (pTargetPos
!= pLastTargetPos)) {
// reset error integral
GPSPosDevIntegral_North = 0;
GPSPosDevIntegral_East = 0;
// recalculate latitude projection
cos_target_latitude = (int32_t) c_cos_8192(
(int16_t) (pTargetPos->Latitude / 10000000L));
// remember last target pointer
pLastTargetPos = pTargetPos;
// mark data as processed
pTargetPos->Status = PROCESSED;
}
// calculate position deviation from latitude and longitude differences
GPSPosDev_North = (GPSInfo.latitude - pTargetPos->Latitude); // to calculate real cm we would need *111/100 additionally
GPSPosDev_East = (GPSInfo.longitude - pTargetPos->Longitude); // to calculate real cm we would need *111/100 additionally
// calculate latitude projection
GPSPosDev_East *= cos_target_latitude;
GPSPosDev_East /= 8192;
} else {// no valid target position available
// reset error
GPSPosDev_North = 0;
GPSPosDev_East = 0;
// reset error integral
GPSPosDevIntegral_North = 0;
GPSPosDevIntegral_East = 0;
}
} else { // no target position available
// reset error
GPSPosDev_North = 0;
GPSPosDev_East = 0;
// reset error integral
GPSPosDevIntegral_North = 0;
GPSPosDevIntegral_East = 0;
}
 
//Calculate PID-components of the controller
 
// D-Part
D_North = ((int32_t) dynamicParams.NaviGpsD * GPSInfo.velnorth) / 512;
D_East = ((int32_t) dynamicParams.NaviGpsD * GPSInfo.veleast) / 512;
 
// P-Part
P_North = ((int32_t) dynamicParams.NaviGpsP * GPSPosDev_North) / 2048;
P_East = ((int32_t) dynamicParams.NaviGpsP * GPSPosDev_East) / 2048;
 
// I-Part
I_North = ((int32_t) dynamicParams.NaviGpsI * GPSPosDevIntegral_North)
/ 8192;
I_East = ((int32_t) dynamicParams.NaviGpsI * GPSPosDevIntegral_East)
/ 8192;
 
// combine P & I
PID_North = P_North + I_North;
PID_East = P_East + I_East;
if (!GPS_LimitXY(&PID_North, &PID_East, GPS_P_LIMIT)) {
GPSPosDevIntegral_North += GPSPosDev_North / 16;
GPSPosDevIntegral_East += GPSPosDev_East / 16;
GPS_LimitXY(&GPSPosDevIntegral_North, &GPSPosDevIntegral_East,
GPS_POSINTEGRAL_LIMIT);
}
 
// combine PI- and D-Part
PID_North += D_North;
PID_East += D_East;
 
// scale combination with gain.
PID_North = (PID_North * (int32_t) dynamicParams.NaviGpsGain) / 100;
PID_East = (PID_East * (int32_t) dynamicParams.NaviGpsGain) / 100;
 
// GPS to nick and roll settings
// A positive nick angle moves head downwards (flying forward).
// A positive roll angle tilts left side downwards (flying left).
// If compass heading is 0 the head of the copter is in north direction.
// A positive nick angle will fly to north and a positive roll angle will fly to west.
// In case of a positive north deviation/velocity the
// copter should fly to south (negative nick).
// In case of a positive east position deviation and a positive east velocity the
// copter should fly to west (positive roll).
// The influence of the GPSStickNick and GPSStickRoll variable is contrarily to the stick values
// in the flight.c. Therefore a positive north deviation/velocity should result in a positive
// GPSStickNick and a positive east deviation/velocity should result in a negative GPSStickRoll.
 
coscompass = (int32_t) c_cos_8192(YawGyroHeading / GYRO_DEG_FACTOR);
sincompass = (int32_t) c_sin_8192(YawGyroHeading / GYRO_DEG_FACTOR);
PID_Nick = (coscompass * PID_North + sincompass * PID_East) / 8192;
PID_Roll = (sincompass * PID_North - coscompass * PID_East) / 8192;
 
// limit resulting GPS control vector
GPS_LimitXY(&PID_Nick, &PID_Roll, GPS_STICK_LIMIT);
 
GPSStickNick = (int16_t) PID_Nick;
GPSStickRoll = (int16_t) PID_Roll;
} else { // invalid GPS data or bad compass reading
GPS_Neutral(); // do nothing
// reset error integral
GPSPosDevIntegral_North = 0;
GPSPosDevIntegral_East = 0;
// recalculate latitude projection
cos_target_latitude = (int32_t)c_cos_8192((int16_t)(pTargetPos->Latitude/10000000L));
// remember last target pointer
pLastTargetPos = pTargetPos;
// mark data as processed
pTargetPos->Status = PROCESSED;
}
// calculate position deviation from latitude and longitude differences
GPSPosDev_North = (GPSInfo.latitude - pTargetPos->Latitude); // to calculate real cm we would need *111/100 additionally
GPSPosDev_East = (GPSInfo.longitude - pTargetPos->Longitude); // to calculate real cm we would need *111/100 additionally
// calculate latitude projection
GPSPosDev_East *= cos_target_latitude;
GPSPosDev_East /= 8192;
}
else // no valid target position available
{
// reset error
GPSPosDev_North = 0;
GPSPosDev_East = 0;
// reset error integral
GPSPosDevIntegral_North = 0;
GPSPosDevIntegral_East = 0;
}
}
else // no target position available
{
// reset error
GPSPosDev_North = 0;
GPSPosDev_East = 0;
// reset error integral
GPSPosDevIntegral_North = 0;
GPSPosDevIntegral_East = 0;
}
//Calculate PID-components of the controller
// D-Part
D_North = ((int32_t)dynamicParams.NaviGpsD * GPSInfo.velnorth)/512;
D_East = ((int32_t)dynamicParams.NaviGpsD * GPSInfo.veleast)/512;
// P-Part
P_North = ((int32_t)dynamicParams.NaviGpsP * GPSPosDev_North)/2048;
P_East = ((int32_t)dynamicParams.NaviGpsP * GPSPosDev_East)/2048;
// I-Part
I_North = ((int32_t)dynamicParams.NaviGpsI * GPSPosDevIntegral_North)/8192;
I_East = ((int32_t)dynamicParams.NaviGpsI * GPSPosDevIntegral_East)/8192;
// combine P & I
PID_North = P_North + I_North;
PID_East = P_East + I_East;
if(!GPS_LimitXY(&PID_North, &PID_East, GPS_P_LIMIT))
{
GPSPosDevIntegral_North += GPSPosDev_North/16;
GPSPosDevIntegral_East += GPSPosDev_East/16;
GPS_LimitXY(&GPSPosDevIntegral_North, &GPSPosDevIntegral_East, GPS_POSINTEGRAL_LIMIT);
}
// combine PI- and D-Part
PID_North += D_North;
PID_East += D_East;
// scale combination with gain.
PID_North = (PID_North * (int32_t)dynamicParams.NaviGpsGain) / 100;
PID_East = (PID_East * (int32_t)dynamicParams.NaviGpsGain) / 100;
 
// GPS to nick and roll settings
// A positive nick angle moves head downwards (flying forward).
// A positive roll angle tilts left side downwards (flying left).
// If compass heading is 0 the head of the copter is in north direction.
// A positive nick angle will fly to north and a positive roll angle will fly to west.
// In case of a positive north deviation/velocity the
// copter should fly to south (negative nick).
// In case of a positive east position deviation and a positive east velocity the
// copter should fly to west (positive roll).
// The influence of the GPSStickNick and GPSStickRoll variable is contrarily to the stick values
// in the flight.c. Therefore a positive north deviation/velocity should result in a positive
// GPSStickNick and a positive east deviation/velocity should result in a negative GPSStickRoll.
coscompass = (int32_t)c_cos_8192(YawGyroHeading / GYRO_DEG_FACTOR);
sincompass = (int32_t)c_sin_8192(YawGyroHeading / GYRO_DEG_FACTOR);
PID_Nick = (coscompass * PID_North + sincompass * PID_East) / 8192;
PID_Roll = (sincompass * PID_North - coscompass * PID_East) / 8192;
// limit resulting GPS control vector
GPS_LimitXY(&PID_Nick, &PID_Roll, GPS_STICK_LIMIT);
GPSStickNick = (int16_t)PID_Nick;
GPSStickRoll = (int16_t)PID_Roll;
}
else // invalid GPS data or bad compass reading
{
GPS_Neutral(); // do nothing
// reset error integral
GPSPosDevIntegral_North = 0;
GPSPosDevIntegral_East = 0;
}
}
}
 
void GPS_Main(void) {
static uint8_t GPS_P_Delay = 0;
static uint16_t beep_rythm = 0;
static uint8_t GPS_P_Delay = 0;
static uint16_t beep_rythm = 0;
 
GPS_UpdateParameter();
GPS_UpdateParameter();
 
// store home position if start of flight flag is set
if(MKFlags & MKFLAG_CALIBRATE) {
if(GPS_SetCurrPosition(&HomePosition)) BeepTime = 700;
}
switch(GPSInfo.status) {
case INVALID: // invalid gps data
GPS_Neutral();
if(FlightMode != GPS_FLIGHT_MODE_FREE) {
BeepTime = 100; // beep if signal is neccesary
}
break;
case PROCESSED: // if gps data are already processed do nothing
// downcount timeout
if(GPSTimeout) GPSTimeout--;
// if no new data arrived within timeout set current data invalid
// and therefore disable GPS
else
{
GPS_Neutral();
GPSInfo.status = INVALID;
}
break;
case NEWDATA: // new valid data from gps device
// if the gps data quality is good
beep_rythm++;
if (GPS_IsSignalOK())
{
switch(FlightMode) // check what's to do
{
case GPS_FLIGHT_MODE_FREE:
// update hold position to current gps position
GPS_SetCurrPosition(&HoldPosition); // can get invalid if gps signal is bad
// disable gps control
GPS_Neutral();
break;
case GPS_FLIGHT_MODE_AID:
if(HoldPosition.Status != INVALID)
{
if( GPS_IsManualControlled() ) // MK controlled by user
{
// update hold point to current gps position
GPS_SetCurrPosition(&HoldPosition);
// disable gps control
GPS_Neutral();
GPS_P_Delay = 0;
}
else // GPS control active
{
if(GPS_P_Delay < 7)
{ // delayed activation of P-Part for 8 cycles (8*0.25s = 2s)
GPS_P_Delay++;
GPS_SetCurrPosition(&HoldPosition); // update hold point to current gps position
GPS_PIDController(NULL); // activates only the D-Part
}
else GPS_PIDController(&HoldPosition);// activates the P&D-Part
}
}
else // invalid Hold Position
{ // try to catch a valid hold position from gps data input
GPS_SetCurrPosition(&HoldPosition);
// store home position if start of flight flag is set
if (MKFlags & MKFLAG_CALIBRATE) {
if (GPS_SetCurrPosition(&HomePosition))
BeepTime = 700;
}
 
switch (GPSInfo.status) {
case INVALID: // invalid gps data
GPS_Neutral();
}
break;
case GPS_FLIGHT_MODE_HOME:
if(HomePosition.Status != INVALID)
{
// update hold point to current gps position
// to avoid a flight back if home comming is deactivated
GPS_SetCurrPosition(&HoldPosition);
if( GPS_IsManualControlled() ) // MK controlled by user
{
GPS_Neutral();
}
else // GPS control active
{
GPS_PIDController(&HomePosition);
}
}
else // bad home position
{
BeepTime = 50; // signal invalid home position
// try to hold at least the position as a fallback option
if (HoldPosition.Status != INVALID)
{
if( GPS_IsManualControlled() ) // MK controlled by user
{
if (FlightMode != GPS_FLIGHT_MODE_FREE) {
BeepTime = 100; // beep if signal is neccesary
}
break;
case PROCESSED: // if gps data are already processed do nothing
// downcount timeout
if (GPSTimeout)
GPSTimeout--;
// if no new data arrived within timeout set current data invalid
// and therefore disable GPS
else {
GPS_Neutral();
}
else // GPS control active
{
GPS_PIDController(&HoldPosition);
}
}
else
{ // try to catch a valid hold position
GPS_SetCurrPosition(&HoldPosition);
GPS_Neutral();
}
}
break; // eof TSK_HOME
default: // unhandled task
GPS_Neutral();
break; // eof default
} // eof switch GPS_Task
} // eof gps data quality is good
else // gps data quality is bad
{ // disable gps control
GPS_Neutral();
if(FlightMode != GPS_FLIGHT_MODE_FREE)
{
// beep if signal is not sufficient
if(!(GPSInfo.flags & FLAG_GPSFIXOK) && !(beep_rythm % 5)) BeepTime = 100;
else if (GPSInfo.satnum < staticParams.NaviGpsMinSat && !(beep_rythm % 5)) BeepTime = 10;
}
}
// set current data as processed to avoid further calculations on the same gps data
GPSInfo.status = PROCESSED;
break;
} // eof GPSInfo.status
GPSInfo.status = INVALID;
}
break;
case NEWDATA: // new valid data from gps device
// if the gps data quality is good
beep_rythm++;
if (GPS_IsSignalOK()) {
switch (FlightMode) { // check what's to do
case GPS_FLIGHT_MODE_FREE:
// update hold position to current gps position
GPS_SetCurrPosition(&HoldPosition); // can get invalid if gps signal is bad
// disable gps control
GPS_Neutral();
break;
 
case GPS_FLIGHT_MODE_AID:
if (HoldPosition.Status != INVALID) {
if (GPS_IsManualControlled()) { // MK controlled by user
// update hold point to current gps position
GPS_SetCurrPosition(&HoldPosition);
// disable gps control
GPS_Neutral();
GPS_P_Delay = 0;
} else { // GPS control active
if (GPS_P_Delay < 7) {
// delayed activation of P-Part for 8 cycles (8*0.25s = 2s)
GPS_P_Delay++;
GPS_SetCurrPosition(&HoldPosition); // update hold point to current gps position
GPS_PIDController(NULL); // activates only the D-Part
} else
GPS_PIDController(&HoldPosition);// activates the P&D-Part
}
} else // invalid Hold Position
{ // try to catch a valid hold position from gps data input
GPS_SetCurrPosition(&HoldPosition);
GPS_Neutral();
}
break;
 
case GPS_FLIGHT_MODE_HOME:
if (HomePosition.Status != INVALID) {
// update hold point to current gps position
// to avoid a flight back if home comming is deactivated
GPS_SetCurrPosition(&HoldPosition);
if (GPS_IsManualControlled()) // MK controlled by user
{
GPS_Neutral();
} else // GPS control active
{
GPS_PIDController(&HomePosition);
}
} else // bad home position
{
BeepTime = 50; // signal invalid home position
// try to hold at least the position as a fallback option
 
if (HoldPosition.Status != INVALID) {
if (GPS_IsManualControlled()) // MK controlled by user
{
GPS_Neutral();
} else // GPS control active
{
GPS_PIDController(&HoldPosition);
}
} else { // try to catch a valid hold position
GPS_SetCurrPosition(&HoldPosition);
GPS_Neutral();
}
}
break; // eof TSK_HOME
default: // unhandled task
GPS_Neutral();
break; // eof default
} // eof switch GPS_Task
} // eof gps data quality is good
else // gps data quality is bad
{ // disable gps control
GPS_Neutral();
if (FlightMode != GPS_FLIGHT_MODE_FREE) {
// beep if signal is not sufficient
if (!(GPSInfo.flags & FLAG_GPSFIXOK) && !(beep_rythm % 5))
BeepTime = 100;
else if (GPSInfo.satnum < staticParams.NaviGpsMinSat
&& !(beep_rythm % 5))
BeepTime = 10;
}
}
// set current data as processed to avoid further calculations on the same gps data
GPSInfo.status = PROCESSED;
break;
} // eof GPSInfo.status
}
 
/branches/dongfang_FC_rewrite/main.c
136,14 → 136,14
// Instead, while away the time by flashing the 2 outputs:
// First J16, then J17. Makes it easier to see which is which.
timer = SetDelay(200);
OUTPUT_ON(0);
OUTPUT_SET(0,1);
GRN_OFF;
RED_ON;
while(!CheckDelay(timer));
 
timer = SetDelay(200);
OUTPUT_OFF(0);
OUTPUT_ON(1);
OUTPUT_SET(0,0);
OUTPUT_SET(1,1);
RED_OFF;
GRN_ON;
while(!CheckDelay(timer));
150,7 → 150,7
 
timer = SetDelay(200);
while(!CheckDelay(timer));
OUTPUT_OFF(1);
OUTPUT_SET(1,0);
 
twi_diagnostics();
 
/branches/dongfang_FC_rewrite/makefile
143,7 → 143,7
SRC += eeprom.c uart1.c heightControl.c configuration.c attitudeControl.c commands.c $(GYRO).c
 
ifeq ($(EXT), MK3MAG)
SRC += mk3mag.c gps.c ubx.c
SRC += mk3mag.c
#mymath.c
endif
ifeq ($(EXT), NAVICTRL)
/branches/dongfang_FC_rewrite/menu.c
60,10 → 60,11
#include "twimaster.h"
#include "attitude.h"
 
#if (!defined (USE_MK3MAG))
#if (!defined (USE_NAVICTRL))
uint8_t MaxMenuItem = 13;
#else
#ifdef USE_MK3MAG
#ifdef USE_NAVICTRL
#include "gps.c"
uint8_t MaxMenuItem = 14;
#endif
#endif
84,8 → 85,7
/************************************/
/* Clear LCD Buffer */
/************************************/
void LCD_Clear(void)
{
void LCD_Clear(void) {
uint8_t i;
for( i = 0; i < DISPLAYBUFFSIZE; i++) DisplayBuff[i] = ' ';
}
202,7 → 202,7
LCD_printfxy(0,0,"Compass ");
LCD_printfxy(0,1,"Course: %5i", compassCourse);
LCD_printfxy(0,2,"Heading: %5i", compassHeading);
LCD_printfxy(0,3,"OffCourse: %5i", compassOffCourse);
LCD_printfxy(0,3,"OffCourse: %5i", ((540 + compassHeading - compassCourse) % 360) - 180);
break;
case 9:// Poti Menu Item
LCD_printfxy(0,0,"Po1: %3i Po5: %3i" ,variables[0], variables[4]); //PPM24-Extesion
242,7 → 242,7
if(motor[11].Present) LCD_printfxy(12,3,"12");
break;
#if (defined (USE_MK3MAG))
#if (defined (USE_NAVICTRL))
case 14://GPS Lat/Lon coords
if (GPSInfo.status == INVALID) {
LCD_printfxy(0,0,"No GPS data!");
/branches/dongfang_FC_rewrite/mk3mag.c
87,9 → 87,13
// in other words 100us/° with a +1ms offset.
// The signal goes low for 65ms between pulses,
// so the cycle time is 65mS + the pulse width.
 
// pwm is high
 
if (debugCounter++ == 5000) {
DebugOut.Digital[0] ^= DEBUG_MK3MAG;
debugCounter = 0;
}
 
if (PINC & (1 << PINC4)) {
// If PWM signal is high increment PWM high counter
// This counter is incremented by a periode of 102.4us,
103,26 → 107,34
PWMCount = 0; // reset PWM Counter
}
} else { // pwm is low
// ignore pwm values values of 0 and higher than 37 ms;
// ignore pwm values values of 0 and higher than 37 ms;
if ((PWMCount) && (PWMCount < 362)) { // 362 * 102.4us = 37.0688 ms
if (PWMCount < 10)
compassHeading = 0;
else
else {
compassHeading = ((uint32_t) (PWMCount - 10) * 1049L) / 1024; // correct timebase and offset
compassOffCourse = ((540 + compassHeading - compassCourse) % 360) - 180;
DebugOut.Digital[1] ^= DEBUG_MK3MAG; // correct signal recd.
}
/*
compassHeading - compassCourse on a -180..179 range.
compassHeading 20 compassCourse 30 --> ((540 - 10)%360) - 180 = -10
compassHeading 30 compassCourse 20 --> ((540 + 10)%360) - 180 = 10
compassHeading 350 compassCourse 10 --> ((540 + 340)%360) - 180 = -20
compassHeading 10 compassCourse 350 --> ((540 - 340)%360) - 180 = 20
*/
//compassOffCourse = ((540 + compassHeading - compassCourse) % 360) - 180;
PWMTimeout = 12; // if 12 periodes long no valid PWM was detected the data are invalid
// 12 * 362 counts * 102.4 us
}
PWMCount = 0; // reset pwm counter
DebugOut.Digital[0] ^= DEBUG_MK3MAG;
DebugOut.Digital[1] &= ~DEBUG_MK3MAG;
} if (!PWMTimeout) {
}
if (!PWMTimeout) {
if (CheckDelay(BeepDelay)) {
if (!BeepTime)
BeepTime = 100; // make noise with 10Hz to signal the compass problem
BeepDelay = SetDelay(100);
DebugOut.Digital[1] |= DEBUG_MK3MAG;
}
}
}
 
 
/branches/dongfang_FC_rewrite/output.c
59,7 → 59,7
void output_init(void) {
// set PC2 & PC3 as output (control of J16 & J17)
DDRC |= (1<<DDC2)|(1<<DDC3);
OUTPUT_OFF(0); OUTPUT_OFF(1);
OUTPUT_SET(0,0); OUTPUT_SET(1,0);
flashCnt[0] = flashCnt[1] = 0;
flashMask[0] = flashMask[1] = 128;
}
94,25 → 94,12
*/
#define DIGITAL_DEBUG_MASK DEBUG_MK3MAG
 
// invert means: An "1" bit in digital debug data will feed NO base current to output transistor.
#define DIGITAL_DEBUG_INVERT 0
 
void output_update(void) {
uint8_t output0, output1;
if (!DIGITAL_DEBUG_MASK)
flashingLights();
else {
if (DIGITAL_DEBUG_MASK == DEBUG_LEDTEST) {
// Show the state for a SET bit. If inverse, then invert.
output0 = output1 = ~DIGITAL_DEBUG_INVERT;
} else if (DIGITAL_DEBUG_INVERT) {
output0 = (~DebugOut.Digital[0]) & DIGITAL_DEBUG_MASK;
output1 = (~DebugOut.Digital[1]) & DIGITAL_DEBUG_MASK;
} else {
output0 = DebugOut.Digital[0] & DIGITAL_DEBUG_MASK;
output1 = DebugOut.Digital[1] & DIGITAL_DEBUG_MASK;
}
OUTPUT_SET(0, output0);
OUTPUT_SET(1, output1);
OUTPUT_SET(0, DebugOut.Digital[0] & DIGITAL_DEBUG_MASK);
OUTPUT_SET(1, DebugOut.Digital[1] & DIGITAL_DEBUG_MASK);
}
}
/branches/dongfang_FC_rewrite/output.h
7,9 → 7,12
// PORTbit = 0 --> LED on.
// To use the normal transistor set-up where 1 --> transistor conductive, reverse the
// ON and OFF statements.
#define OUTPUT_ON(num) {PORTC |= (4 << (num));}
#define OUTPUT_OFF(num) {PORTC &= ~(4 << (num));}
#define OUTPUT_SET(num, state) {if ((state)) OUTPUT_ON(num) else OUTPUT_OFF(num)}
 
// invert means: An "1" bit in digital debug data make a LOW on the output.
#define DIGITAL_DEBUG_INVERT 1
#define OUTPUT_HIGH(num) {PORTC |= (4 << (num));}
#define OUTPUT_LOW(num) {PORTC &= ~(4 << (num));}
#define OUTPUT_SET(num, state) {if (DIGITAL_DEBUG_INVERT){if(state) OUTPUT_LOW(num) else OUTPUT_HIGH(num)} else {if(state) OUTPUT_HIGH(num) else OUTPUT_LOW(num)}}
#define OUTPUT_TOGGLE(num) ( {PORTC ^= (4 << (num));}
 
#define DEBUG_LEDTEST 256
/branches/dongfang_FC_rewrite/spi.c
292,8 → 292,8
if(fromNaviCtrl.CompassHeading <= 360) {
compassHeading = fromNaviCtrl.CompassHeading;
}
if(compassHeading < 0) compassOffCourse = 0;
else compassOffCourse = ((540 + compassHeading - compassCourse) % 360) - 180;
//if(compassHeading < 0) compassOffCourse = 0;
//else compassOffCourse = ((540 + compassHeading - compassCourse) % 360) - 180;
// NaviCtrl wants to beep?
if (fromNaviCtrl.BeepTime > BeepTime && !compassCalState) BeepTime = fromNaviCtrl.BeepTime;
/branches/dongfang_FC_rewrite/timer0.c
54,7 → 54,7
#include "eeprom.h"
#include "analog.h"
 
// for degugging!
// for debugging!
#include "rc.h"
 
#ifdef USE_MK3MAG