Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 2188 → Rev 2189

/branches/dongfang_FC_rewrite/timer0.c
1,25 → 1,33
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "eeprom.h"
//#include "eeprom.h"
#include "profiler.h"
#include "controlMixer.h"
#include "configuration.h"
#include "analog.h"
#include "controlMixer.h"
 
#include "timer0.h"
#include "debug.h"
#include "beeper.h"
#include "output.h"
#include "commands.h"
#include "flight.h"
#include "uart0.h"
#include "twimaster.h"
 
#ifdef USE_MK3MAG
#include "mk3mag.h"
#endif
 
volatile uint32_t globalMillisClock = 0;
volatile uint8_t runFlightControl = 0;
volatile uint16_t beepTime = 0;
#define MILLIS_DIVIDER 10
 
volatile uint32_t jiffiesClock;
volatile uint32_t millisClock;
volatile uint8_t loopJiffiesClock;
volatile uint16_t beepTime;
volatile uint16_t beepModulation = BEEP_MODULATION_NONE;
 
#ifdef USE_NAVICTRL
volatile uint8_t SendSPI = 0;
#endif
volatile uint8_t flightControlStatus;
 
/*****************************************************
* Initialize Timer 0
27,144 → 35,184
// timer 0 is used for the PWM generation to control the offset voltage at the air pressure sensor
// Its overflow interrupt routine is used to generate the beep signal and the flight control motor update rate
void timer0_init(void) {
uint8_t sreg = SREG;
uint8_t sreg = SREG;
 
// disable all interrupts before reconfiguration
cli();
// disable all interrupts before reconfiguration
cli();
 
// Configure speaker port as output.
if (boardRelease == 10) { // Speaker at PD2
DDRD |= (1 << DDD2);
PORTD &= ~(1 << PORTD2);
} else { // Speaker at PC7
DDRC |= (1 << DDC7);
PORTC &= ~(1 << PORTC7);
}
// Configure speaker port as output.
if (boardRelease == 10) { // Speaker at PD2
DDRD |= (1 << DDD2);
PORTD &= ~(1 << PORTD2);
} else { // Speaker at PC7
DDRC |= (1 << DDC7);
PORTC &= ~(1 << PORTC7);
}
 
// set PB3 and PB4 as output for the PWM used as offset for the pressure sensor
DDRB |= (1 << DDB4) | (1 << DDB3);
PORTB &= ~((1 << PORTB4) | (1 << PORTB3));
// set PB3 and PB4 as output for the PWM used as offset for the pressure sensor
DDRB |= (1 << DDB4) | (1 << DDB3);
PORTB &= ~((1 << PORTB4) | (1 << PORTB3));
 
// Timer/Counter 0 Control Register A
// Timer/Counter 0 Control Register A
 
// Waveform Generation Mode is Fast PWM (Bits WGM02 = 0, WGM01 = 1, WGM00 = 1)
// Clear OC0A on Compare Match, set OC0A at BOTTOM, noninverting PWM (Bits COM0A1 = 1, COM0A0 = 0)
// Clear OC0B on Compare Match, set OC0B at BOTTOM, (Bits COM0B1 = 1, COM0B0 = 0)
TCCR0A &= ~((1 << COM0A0) | (1 << COM0B0));
TCCR0A |= (1 << COM0A1) | (1 << COM0B1) | (1 << WGM01) | (1 << WGM00);
// Waveform Generation Mode is Fast PWM (Bits WGM02 = 0, WGM01 = 1, WGM00 = 1)
// Clear OC0A on Compare Match, set OC0A at BOTTOM, noninverting PWM (Bits COM0A1 = 1, COM0A0 = 0)
// Clear OC0B on Compare Match, set OC0B at BOTTOM, (Bits COM0B1 = 1, COM0B0 = 0)
TCCR0A &= ~((1 << COM0A0) | (1 << COM0B0));
TCCR0A |= (1 << COM0A1) | (1 << COM0B1) | (1 << WGM01) | (1 << WGM00);
 
// Timer/Counter 0 Control Register B
// set clock divider for timer 0 to SYSCLOCK/8 = 20MHz/8 = 2.5MHz
// i.e. the timer increments from 0x00 to 0xFF with an update rate of 2.5 MHz
// hence the timer overflow interrupt frequency is 2.5 MHz/256 = 9.765 kHz
// Timer/Counter 0 Control Register B
// set clock divider for timer 0 to SYSCLOCK/8 = 20MHz/8 = 2.5MHz
// i.e. the timer increments from 0x00 to 0xFF with an update rate of 2.5 MHz
// hence the timer overflow interrupt frequency is 2.5 MHz/256 = 9.765 kHz
// divider 8 (Bits CS02 = 0, CS01 = 1, CS00 = 0)
TCCR0B &= ~((1 << FOC0A) | (1 << FOC0B) | (1 << WGM02));
TCCR0B = (TCCR0B & 0xF8) | (0 << CS02) | (1 << CS01) | (0 << CS00);
 
// divider 8 (Bits CS02 = 0, CS01 = 1, CS00 = 0)
TCCR0B &= ~((1 << FOC0A) | (1 << FOC0B) | (1 << WGM02));
TCCR0B = (TCCR0B & 0xF8) | (0 << CS02) | (1 << CS01) | (0 << CS00);
// initialize the Output Compare Register A & B used for PWM generation on port PB3 & PB4
OCR0A = 0; // for PB3
OCR0B = 120; // for PB4
 
// initialize the Output Compare Register A & B used for PWM generation on port PB3 & PB4
OCR0A = 0; // for PB3
OCR0B = 120; // for PB4
// init Timer/Counter 0 Register
TCNT0 = 0;
 
// init Timer/Counter 0 Register
TCNT0 = 0;
// Timer/Counter 0 Interrupt Mask Register
// enable timer overflow interrupt only
TIMSK0 &= ~((1 << OCIE0B) | (1 << OCIE0A));
TIMSK0 |= (1 << TOIE0);
 
// Timer/Counter 0 Interrupt Mask Register
// enable timer overflow interrupt only
TIMSK0 &= ~((1 << OCIE0B) | (1 << OCIE0A));
TIMSK0 |= (1 << TOIE0);
SREG = sreg;
}
 
SREG = sreg;
void runFlightControlTask(void) {
if (flightControlStatus != NOT_RUNNING) {
// Previous execution not completed! It is dangerous to start another.
debugOut.digital[0] |= DEBUG_MAINLOOP_TIMER;
return;
}
 
debugOut.digital[0] &= ~DEBUG_MAINLOOP_TIMER;
 
controlMixer_periodicTask();
commands_handleCommands();
flightControlStatus = RUNNING;
 
if (!--I2CTimeout || missingMotor) { // try to reset the i2c if motor is missing or timeout
if (!I2CTimeout) {
I2C_reset();
I2CTimeout = 5;
}
beepI2CAlarm();
}
if (analog_controlDataStatus != CONTROL_SENSOR_DATA_READY) {
// Analog data should have been ready but is not!!
debugOut.digital[1] |= DEBUG_MAINLOOP_TIMER;
} else {
debugOut.digital[1] &= ~DEBUG_MAINLOOP_TIMER;
J4HIGH;
analog_sumAttitudeData();
analog_updateControlData();
flight_control();
output_applyMulticopterMixer();
I2C_start(TWI_STATE_MOTOR_TX);
J4LOW;
}
 
flightControlStatus = NOT_RUNNING;
}
 
/*****************************************************/
/* Interrupt Routine of Timer 0 */
/*****************************************************/
ISR(TIMER0_OVF_vect) { // 9765.625 Hz
static uint8_t cnt_1ms = 1, cnt = 0;
uint8_t beeperOn = 0;
ISR (TIMER0_OVF_vect) { // 9765.625 Hz
static uint8_t millisDivider = MILLIS_DIVIDER;
static uint8_t controlLoopDivider = CONTROLLOOP_DIVIDER;
static uint8_t serialLoopDivider = SERIALLOOP_DIVIDER /2;
static uint8_t outputLoopDivider = OUTPUTLOOP_DIVIDER /3;
uint8_t beeperOn = 0;
 
#ifdef USE_NAVICTRL
if(SendSPI) SendSPI--; // if SendSPI is 0, the transmit of a byte via SPI bus to and from The Navicontrol is done
#endif
jiffiesClock++;
loopJiffiesClock++;
// profiler_scoreTimerHit();
 
if (!cnt--) { // every 10th run (9.765625kHz/10 = 976.5625Hz)
cnt = 9;
cnt_1ms ^= 1;
if (!cnt_1ms) {
if (runFlightControl == 1)
debugOut.digital[1] |= DEBUG_MAINLOOP_TIMER;
else
debugOut.digital[1] &= ~DEBUG_MAINLOOP_TIMER;
runFlightControl = 1; // every 2nd run (976.5625 Hz/2 = 488.28125 Hz)
sei();
 
if (!--millisDivider) {
millisClock++;
millisDivider = MILLIS_DIVIDER;
}
 
if (!--controlLoopDivider) {
//sei();
controlLoopDivider= CONTROLLOOP_DIVIDER;
runFlightControlTask();
//cli();
}
 
if (!--serialLoopDivider) {
//sei();
serialLoopDivider= SERIALLOOP_DIVIDER;
// Allow serial data transmission if there is still time, or if we are not flying anyway.
usart0_transmitTxData();
usart0_processRxData();
//cli();
}
globalMillisClock++; // increment millisecond counter
}
 
// beeper on if duration is not over
if (beepTime) {
beepTime--; // decrement BeepTime
if (beepTime & beepModulation)
beeperOn = 1;
else
beeperOn = 0;
} else { // beeper off if duration is over
beeperOn = 0;
beepModulation = BEEP_MODULATION_NONE;
}
if (!--outputLoopDivider) {
//sei();
outputLoopDivider= OUTPUTLOOP_DIVIDER;
output_update();
//cli();
}
 
if (beeperOn) {
// set speaker port to high.
if (boardRelease == 10)
PORTD |= (1 << PORTD2); // Speaker at PD2
else
PORTC |= (1 << PORTC7); // Speaker at PC7
} else { // beeper is off
// set speaker port to low
if (boardRelease == 10)
PORTD &= ~(1 << PORTD2);// Speaker at PD2
else
PORTC &= ~(1 << PORTC7);// Speaker at PC7
}
// beeper on if duration is not over
if (beepTime) {
beepTime--; // decrement BeepTime
if (beepTime & beepModulation)
beeperOn = 1;
else
beeperOn = 0;
} else { // beeper off if duration is over
beeperOn = 0;
beepModulation = BEEP_MODULATION_NONE;
}
 
if (beeperOn) {
// set speaker port to high.
if (boardRelease == 10)
PORTD |= (1 << PORTD2); // Speaker at PD2
else
PORTC |= (1 << PORTC7); // Speaker at PC7
} else { // beeper is off
// set speaker port to low
if (boardRelease == 10)
PORTD &= ~(1 << PORTD2);// Speaker at PD2
else
PORTC &= ~(1 << PORTC7);// Speaker at PC7
}
 
#ifdef USE_MK3MAG
// update compass value if this option is enabled in the settings
if (staticParams.bitConfig & CFG_COMPASS_ENABLED) {
MK3MAG_periodicTask(); // read out mk3mag pwm
}
// update compass value if this option is enabled in the settings
if (staticParams.bitConfig & CFG_COMPASS_ENABLED) {
MK3MAG_periodicTask(); // read out mk3mag pwm
}
#endif
}
 
// -----------------------------------------------------------------------
uint16_t setDelay(uint16_t t) {
return (globalMillisClock + t - 1);
return (millisClock + t - 1);
}
 
// -----------------------------------------------------------------------
int8_t checkDelay(uint16_t t) {
return (((t - globalMillisClock) & 0x8000) >> 8); // check sign bit
return (((t - millisClock) & 0x8000) >> 8); // check sign bit
}
 
// -----------------------------------------------------------------------
void delay_ms(uint16_t w) {
uint16_t t_stop = setDelay(w);
while (!checkDelay(t_stop))
;
uint16_t t_stop = setDelay(w);
while (!checkDelay(t_stop))
;
}
 
// -----------------------------------------------------------------------
void delay_ms_with_adc_measurement(uint16_t w, uint8_t stop) {
uint16_t t_stop;
t_stop = setDelay(w);
while (!checkDelay(t_stop)) {
if (analogDataReady) {
analog_update();
startAnalogConversionCycle();
}
}
if (stop) {
// Wait for new samples to get prepared but do not restart AD conversion after that!
// Caller MUST to that.
while (!analogDataReady);
}
}