Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1909 → Rev 1910

/branches/dongfang_FC_fixedwing/uart0.c
0,0 → 1,699
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include <stdarg.h>
#include <string.h>
 
#include "eeprom.h"
#include "timer0.h"
#include "uart0.h"
#include "rc.h"
#include "externalControl.h"
#include "output.h"
#include "attitude.h"
 
 
#ifdef USE_MK3MAG
#include "mk3mag.h"
#endif
 
#define FC_ADDRESS 1
#define NC_ADDRESS 2
#define MK3MAG_ADDRESS 3
 
#define FALSE 0
#define TRUE 1
//int8_t test __attribute__ ((section (".noinit")));
uint8_t request_VerInfo = FALSE;
uint8_t request_ExternalControl = FALSE;
uint8_t request_Display = FALSE;
uint8_t request_Display1 = FALSE;
uint8_t request_DebugData = FALSE;
uint8_t request_Data3D = FALSE;
uint8_t request_DebugLabel = 255;
uint8_t request_PPMChannels = FALSE;
uint8_t request_OutputTest = FALSE;
uint8_t request_variables = FALSE;
 
uint8_t DisplayLine = 0;
 
volatile uint8_t txd_buffer[TXD_BUFFER_LEN];
volatile uint8_t rxd_buffer_locked = FALSE;
volatile uint8_t rxd_buffer[RXD_BUFFER_LEN];
volatile uint8_t txd_complete = TRUE;
volatile uint8_t ReceivedBytes = 0;
volatile uint8_t *pRxData = 0;
volatile uint8_t RxDataLen = 0;
 
uint8_t outputTestActive = 0;
uint8_t outputTest[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
uint8_t ConfirmFrame;
 
typedef struct {
int16_t Heading;
}__attribute__((packed)) Heading_t;
 
DebugOut_t DebugOut;
Data3D_t Data3D;
UART_VersionInfo_t UART_VersionInfo;
 
uint16_t DebugData_Timer;
uint16_t Data3D_Timer;
uint16_t DebugData_Interval = 500; // in 1ms
uint16_t Data3D_Interval = 0; // in 1ms
 
#ifdef USE_MK3MAG
int16_t Compass_Timer;
#endif
 
// keep lables in flash to save 512 bytes of sram space
const prog_uint8_t ANALOG_LABEL[32][16] = {
//1234567890123456
"AnglePitch ", //0
"AngleRoll ",
"AngleYaw ",
"GyroPitch(PID) ",
"GyroRoll(PID) ",
"GyroYaw ", //5
"GyroFactorPitch ",
"GyroFactorRoll ",
"GyroFactorYaw ",
"GyroDPitch ",
"GyroDRoll ",//10
"GyroDYaw ",
"Pitch Term ",
"Roll Term ",
"Throttle Term ",
"Yaw Term ", //15
"0th O Corr pitch",
"0th O Corr roll ",
"ControlIntePitch",
"ControlInteRoll ",
"UBat ", //20
"hoverThrottle ",
"IPartPitch ", // OK
"IPartRoll ",
"S3 (THROTTLE) ",
"S4 (RUDDER) ", // OK //25
"ControlYaw ",
"Airpress. Range ", // OK
"DriftCompPitch ",
"DriftCompRoll ",
"AirpressFiltered", // MISSING //30
"AirpressADC " };
 
/****************************************************************/
/* Initialization of the USART0 */
/****************************************************************/
void usart0_Init(void) {
uint8_t sreg = SREG;
uint16_t ubrr = (uint16_t) ((uint32_t) SYSCLK / (8 * USART0_BAUD) - 1);
 
// disable all interrupts before configuration
cli();
 
// disable RX-Interrupt
UCSR0B &= ~(1 << RXCIE0);
// disable TX-Interrupt
UCSR0B &= ~(1 << TXCIE0);
 
// set direction of RXD0 and TXD0 pins
// set RXD0 (PD0) as an input pin
PORTD |= (1 << PORTD0);
DDRD &= ~(1 << DDD0);
// set TXD0 (PD1) as an output pin
PORTD |= (1 << PORTD1);
DDRD |= (1 << DDD1);
 
// USART0 Baud Rate Register
// set clock divider
UBRR0H = (uint8_t) (ubrr >> 8);
UBRR0L = (uint8_t) ubrr;
 
// USART0 Control and Status Register A, B, C
 
// enable double speed operation in
UCSR0A |= (1 << U2X0);
// enable receiver and transmitter in
UCSR0B = (1 << TXEN0) | (1 << RXEN0);
// set asynchronous mode
UCSR0C &= ~(1 << UMSEL01);
UCSR0C &= ~(1 << UMSEL00);
// no parity
UCSR0C &= ~(1 << UPM01);
UCSR0C &= ~(1 << UPM00);
// 1 stop bit
UCSR0C &= ~(1 << USBS0);
// 8-bit
UCSR0B &= ~(1 << UCSZ02);
UCSR0C |= (1 << UCSZ01);
UCSR0C |= (1 << UCSZ00);
 
// flush receive buffer
while (UCSR0A & (1 << RXC0))
UDR0;
 
// enable interrupts at the end
// enable RX-Interrupt
UCSR0B |= (1 << RXCIE0);
// enable TX-Interrupt
UCSR0B |= (1 << TXCIE0);
 
// initialize the debug timer
DebugData_Timer = setDelay(DebugData_Interval);
 
// unlock rxd_buffer
rxd_buffer_locked = FALSE;
pRxData = 0;
RxDataLen = 0;
 
// no bytes to send
txd_complete = TRUE;
 
UART_VersionInfo.SWMajor = VERSION_MAJOR;
UART_VersionInfo.SWMinor = VERSION_MINOR;
UART_VersionInfo.SWPatch = VERSION_PATCH;
UART_VersionInfo.ProtoMajor = VERSION_SERIAL_MAJOR;
UART_VersionInfo.ProtoMinor = VERSION_SERIAL_MINOR;
 
// restore global interrupt flags
SREG = sreg;
}
 
/****************************************************************/
/* USART0 transmitter ISR */
/****************************************************************/
ISR(USART0_TX_vect)
{
static uint16_t ptr_txd_buffer = 0;
uint8_t tmp_tx;
if (!txd_complete) { // transmission not completed
ptr_txd_buffer++; // die [0] wurde schon gesendet
tmp_tx = txd_buffer[ptr_txd_buffer];
// if terminating character or end of txd buffer was reached
if ((tmp_tx == '\r') || (ptr_txd_buffer == TXD_BUFFER_LEN)) {
ptr_txd_buffer = 0; // reset txd pointer
txd_complete = 1; // stop transmission
}
UDR0 = tmp_tx; // send current byte will trigger this ISR again
}
// transmission completed
else
ptr_txd_buffer = 0;
}
 
/****************************************************************/
/* USART0 receiver ISR */
/****************************************************************/
ISR(USART0_RX_vect)
{
static uint16_t crc;
static uint8_t ptr_rxd_buffer = 0;
uint8_t crc1, crc2;
uint8_t c;
 
c = UDR0; // catch the received byte
 
if (rxd_buffer_locked)
return; // if rxd buffer is locked immediately return
 
// the rxd buffer is unlocked
if ((ptr_rxd_buffer == 0) && (c == '#')) { // if rxd buffer is empty and syncronisation character is received
rxd_buffer[ptr_rxd_buffer++] = c; // copy 1st byte to buffer
crc = c; // init crc
}
#if 0
else if (ptr_rxd_buffer == 1) { // handle address
rxd_buffer[ptr_rxd_buffer++] = c; // copy byte to rxd buffer
crc += c; // update crc
}
#endif
else if (ptr_rxd_buffer < RXD_BUFFER_LEN) { // collect incomming bytes
if (c != '\r') { // no termination character
rxd_buffer[ptr_rxd_buffer++] = c; // copy byte to rxd buffer
crc += c; // update crc
} else { // termination character was received
// the last 2 bytes are no subject for checksum calculation
// they are the checksum itself
crc -= rxd_buffer[ptr_rxd_buffer - 2];
crc -= rxd_buffer[ptr_rxd_buffer - 1];
// calculate checksum from transmitted data
crc %= 4096;
crc1 = '=' + crc / 64;
crc2 = '=' + crc % 64;
// compare checksum to transmitted checksum bytes
if ((crc1 == rxd_buffer[ptr_rxd_buffer - 2]) && (crc2
== rxd_buffer[ptr_rxd_buffer - 1])) {
// checksum valid
rxd_buffer[ptr_rxd_buffer] = '\r'; // set termination character
ReceivedBytes = ptr_rxd_buffer + 1;// store number of received bytes
rxd_buffer_locked = TRUE; // lock the rxd buffer
// if 2nd byte is an 'R' enable watchdog that will result in an reset
if (rxd_buffer[2] == 'R') {
wdt_enable(WDTO_250MS);
} // Reset-Commando
} else { // checksum invalid
rxd_buffer_locked = FALSE; // unlock rxd buffer
}
ptr_rxd_buffer = 0; // reset rxd buffer pointer
}
} else { // rxd buffer overrun
ptr_rxd_buffer = 0; // reset rxd buffer
rxd_buffer_locked = FALSE; // unlock rxd buffer
}
}
 
// --------------------------------------------------------------------------
void AddCRC(uint16_t datalen) {
uint16_t tmpCRC = 0, i;
for (i = 0; i < datalen; i++) {
tmpCRC += txd_buffer[i];
}
tmpCRC %= 4096;
txd_buffer[i++] = '=' + tmpCRC / 64;
txd_buffer[i++] = '=' + tmpCRC % 64;
txd_buffer[i++] = '\r';
txd_complete = FALSE;
UDR0 = txd_buffer[0]; // initiates the transmittion (continued in the TXD ISR)
}
 
// --------------------------------------------------------------------------
// application example:
// SendOutData('A', FC_ADDRESS, 2, (uint8_t *)&request_DebugLabel, sizeof(request_DebugLabel), label, 16);
/*
void SendOutData(uint8_t cmd, uint8_t addr, uint8_t numofbuffers, ...) { // uint8_t *pdata, uint8_t len, ...
va_list ap;
uint16_t txd_bufferIndex = 0;
uint8_t *currentBuffer;
uint8_t currentBufferIndex;
uint16_t lengthOfCurrentBuffer;
uint8_t shift = 0;
 
txd_buffer[txd_bufferIndex++] = '#'; // Start character
txd_buffer[txd_bufferIndex++] = 'a' + addr; // Address (a=0; b=1,...)
txd_buffer[txd_bufferIndex++] = cmd; // Command
 
va_start(ap, numofbuffers);
 
while(numofbuffers) {
currentBuffer = va_arg(ap, uint8_t*);
lengthOfCurrentBuffer = va_arg(ap, int);
currentBufferIndex = 0;
// Encode data: 3 bytes of data are encoded into 4 bytes,
// where the 2 most significant bits are both 0.
while(currentBufferIndex != lengthOfCurrentBuffer) {
if (!shift) txd_buffer[txd_bufferIndex] = 0;
txd_buffer[txd_bufferIndex] |= currentBuffer[currentBufferIndex] >> (shift + 2);
txd_buffer[++txd_bufferIndex] = (currentBuffer[currentBufferIndex] << (4 - shift)) & 0b00111111;
shift += 2;
if (shift == 6) { shift=0; txd_bufferIndex++; }
currentBufferIndex++;
}
}
// If the number of data bytes was not divisible by 3, stuff
// with 0 pseudodata until length is again divisible by 3.
if (shift == 2) {
// We need to stuff with zero bytes at the end.
txd_buffer[txd_bufferIndex] &= 0b00110000;
txd_buffer[++txd_bufferIndex] = 0;
shift = 4;
}
if (shift == 4) {
// We need to stuff with zero bytes at the end.
txd_buffer[txd_bufferIndex++] &= 0b00111100;
txd_buffer[txd_bufferIndex] = 0;
}
va_end(ap);
AddCRC(pt); // add checksum after data block and initates the transmission
}
*/
 
void SendOutData(uint8_t cmd, uint8_t addr, uint8_t numofbuffers, ...) { // uint8_t *pdata, uint8_t len, ...
va_list ap;
uint16_t pt = 0;
uint8_t a, b, c;
uint8_t ptr = 0;
 
uint8_t *pdata = 0;
int len = 0;
 
txd_buffer[pt++] = '#'; // Start character
txd_buffer[pt++] = 'a' + addr; // Address (a=0; b=1,...)
txd_buffer[pt++] = cmd; // Command
 
va_start(ap, numofbuffers);
 
if (numofbuffers) {
pdata = va_arg(ap, uint8_t*);
len = va_arg(ap, int);
ptr = 0;
numofbuffers--;
}
 
while (len) {
if (len) {
a = pdata[ptr++];
len--;
if ((!len) && numofbuffers) {
pdata = va_arg(ap, uint8_t*);
len = va_arg(ap, int);
ptr = 0;
numofbuffers--;
}
} else
a = 0;
if (len) {
b = pdata[ptr++];
len--;
if ((!len) && numofbuffers) {
pdata = va_arg(ap, uint8_t*);
len = va_arg(ap, int);
ptr = 0;
numofbuffers--;
}
} else
b = 0;
if (len) {
c = pdata[ptr++];
len--;
if ((!len) && numofbuffers) {
pdata = va_arg(ap, uint8_t*);
len = va_arg(ap, int);
ptr = 0;
numofbuffers--;
}
} else
c = 0;
txd_buffer[pt++] = '=' + (a >> 2);
txd_buffer[pt++] = '=' + (((a & 0x03) << 4) | ((b & 0xf0) >> 4));
txd_buffer[pt++] = '=' + (((b & 0x0f) << 2) | ((c & 0xc0) >> 6));
txd_buffer[pt++] = '=' + (c & 0x3f);
}
va_end(ap);
AddCRC(pt); // add checksum after data block and initates the transmission
}
 
// --------------------------------------------------------------------------
void Decode64(void) {
uint8_t a, b, c, d;
uint8_t x, y, z;
uint8_t ptrIn = 3;
uint8_t ptrOut = 3;
uint8_t len = ReceivedBytes - 6;
 
while (len) {
a = rxd_buffer[ptrIn++] - '=';
b = rxd_buffer[ptrIn++] - '=';
c = rxd_buffer[ptrIn++] - '=';
d = rxd_buffer[ptrIn++] - '=';
//if(ptrIn > ReceivedBytes - 3) break;
 
x = (a << 2) | (b >> 4);
y = ((b & 0x0f) << 4) | (c >> 2);
z = ((c & 0x03) << 6) | d;
 
if (len--)
rxd_buffer[ptrOut++] = x;
else
break;
if (len--)
rxd_buffer[ptrOut++] = y;
else
break;
if (len--)
rxd_buffer[ptrOut++] = z;
else
break;
}
pRxData = &rxd_buffer[3];
RxDataLen = ptrOut - 3;
}
 
// --------------------------------------------------------------------------
void usart0_ProcessRxData(void) {
// We control the outputTestActive var from here: Count it down.
if (outputTestActive)
outputTestActive--;
// if data in the rxd buffer are not locked immediately return
if (!rxd_buffer_locked)
return;
uint8_t tempchar1, tempchar2;
Decode64(); // decode data block in rxd_buffer
 
switch (rxd_buffer[1] - 'a') {
 
case FC_ADDRESS:
switch (rxd_buffer[2]) {
#ifdef USE_MK3MAG
case 'K':// compass value
compassHeading = ((Heading_t *)pRxData)->Heading;
// compassOffCourse = ((540 + compassHeading - compassCourse) % 360) - 180;
break;
#endif
case 't': // motor test
if (RxDataLen > 20) {
memcpy(&outputTest[0], (uint8_t*) pRxData, sizeof(outputTest));
} else {
memcpy(&outputTest[0], (uint8_t*) pRxData, 4);
}
outputTestActive = 255;
externalControlActive = 255;
break;
 
case 'n':// "Get Mixer Table
while (!txd_complete)
; // wait for previous frame to be sent
SendOutData('N', FC_ADDRESS, 1, (uint8_t *) &Mixer, sizeof(Mixer));
break;
 
case 'm':// "Set Mixer Table
if (pRxData[0] == EEMIXER_REVISION) {
memcpy(&Mixer, (uint8_t*) pRxData, sizeof(Mixer));
MixerTable_WriteToEEProm();
while (!txd_complete)
; // wait for previous frame to be sent
tempchar1 = 1;
} else {
tempchar1 = 0;
}
SendOutData('M', FC_ADDRESS, 1, &tempchar1, 1);
break;
 
case 'p': // get PPM channels
request_PPMChannels = TRUE;
break;
 
case 'q':// request settings
if (pRxData[0] == 0xFF) {
pRxData[0] = GetParamByte(PID_ACTIVE_SET);
}
// limit settings range
if (pRxData[0] < 1)
pRxData[0] = 1; // limit to 1
else if (pRxData[0] > 5)
pRxData[0] = 5; // limit to 5
// load requested parameter set
ParamSet_ReadFromEEProm(pRxData[0]);
tempchar1 = pRxData[0];
tempchar2 = EEPARAM_REVISION;
while (!txd_complete)
; // wait for previous frame to be sent
SendOutData('Q', FC_ADDRESS, 3, &tempchar1, sizeof(tempchar1),
&tempchar2, sizeof(tempchar2), (uint8_t *) &staticParams,
sizeof(staticParams));
break;
 
case 's': // save settings
if (!(MKFlags & MKFLAG_MOTOR_RUN)) // save settings only if motors are off
{
if ((1 <= pRxData[0]) && (pRxData[0] <= 5) && (pRxData[1]
== EEPARAM_REVISION)) // check for setting to be in range and version of settings
{
memcpy(&staticParams, (uint8_t*) &pRxData[2], sizeof(staticParams));
ParamSet_WriteToEEProm(pRxData[0]);
tempchar1 = getActiveParamSet();
beepNumber(tempchar1);
} else {
tempchar1 = 0; //indicate bad data
}
while (!txd_complete)
; // wait for previous frame to be sent
SendOutData('S', FC_ADDRESS, 1, &tempchar1, sizeof(tempchar1));
}
break;
 
default:
//unsupported command received
break;
} // case FC_ADDRESS:
 
default: // any Slave Address
switch (rxd_buffer[2]) {
case 'a':// request for labels of the analog debug outputs
request_DebugLabel = pRxData[0];
if (request_DebugLabel > 31)
request_DebugLabel = 31;
externalControlActive = 255;
break;
 
case 'b': // submit extern control
memcpy(&externalControl, (uint8_t*) pRxData, sizeof(externalControl));
ConfirmFrame = externalControl.frame;
externalControlActive = 255;
break;
 
case 'h':// request for display columns
externalControlActive = 255;
request_Display = TRUE;
break;
 
case 'l':// request for display columns
externalControlActive = 255;
request_Display1 = TRUE;
break;
 
case 'v': // request for version and board release
request_VerInfo = TRUE;
break;
 
case 'x':
request_variables = TRUE;
break;
 
case 'g':// get external control data
request_ExternalControl = TRUE;
break;
case 'd': // request for the debug data
DebugData_Interval = (uint16_t) pRxData[0] * 10;
if (DebugData_Interval > 0)
request_DebugData = TRUE;
break;
 
case 'c': // request for the 3D data
Data3D_Interval = (uint16_t) pRxData[0] * 10;
if (Data3D_Interval > 0)
request_Data3D = TRUE;
break;
 
default:
//unsupported command received
break;
}
break; // default:
}
// unlock the rxd buffer after processing
pRxData = 0;
RxDataLen = 0;
rxd_buffer_locked = FALSE;
}
 
/************************************************************************/
/* Routine für die Serielle Ausgabe */
/************************************************************************/
int16_t uart_putchar(int8_t c) {
if (c == '\n')
uart_putchar('\r');
// wait until previous character was send
loop_until_bit_is_set(UCSR0A, UDRE0);
// send character
UDR0 = c;
return (0);
}
 
//---------------------------------------------------------------------------------------------
void usart0_TransmitTxData(void) {
if (!txd_complete)
return;
 
if (request_VerInfo && txd_complete) {
SendOutData('V', FC_ADDRESS, 1, (uint8_t *) &UART_VersionInfo,
sizeof(UART_VersionInfo));
request_VerInfo = FALSE;
}
 
if (request_Display && txd_complete) {
//LCD_PrintMenu();
SendOutData('H', FC_ADDRESS, 0);
DisplayLine++;
if (DisplayLine >= 4)
DisplayLine = 0;
request_Display = FALSE;
}
 
if (request_Display1 && txd_complete) {
// LCD_PrintMenu();
SendOutData('L', FC_ADDRESS, 0);
request_Display1 = FALSE;
}
 
if (request_DebugLabel != 0xFF) { // Texte für die Analogdaten
uint8_t label[16]; // local sram buffer
memcpy_P(label, ANALOG_LABEL[request_DebugLabel], 16); // read lable from flash to sram buffer
SendOutData('A', FC_ADDRESS, 2, (uint8_t *) &request_DebugLabel,
sizeof(request_DebugLabel), label, 16);
request_DebugLabel = 0xFF;
}
 
if (ConfirmFrame && txd_complete) { // Datensatz ohne CRC bestätigen
SendOutData('B', FC_ADDRESS, 1, (uint8_t*) &ConfirmFrame,
sizeof(ConfirmFrame));
ConfirmFrame = 0;
}
 
if (((DebugData_Interval && checkDelay(DebugData_Timer)) || request_DebugData)
&& txd_complete) {
SendOutData('D', FC_ADDRESS, 1, (uint8_t *) &DebugOut, sizeof(DebugOut));
DebugData_Timer = setDelay(DebugData_Interval);
request_DebugData = FALSE;
}
 
if (((Data3D_Interval && checkDelay(Data3D_Timer)) || request_Data3D)
&& txd_complete) {
SendOutData('C', FC_ADDRESS, 1, (uint8_t *) &Data3D, sizeof(Data3D));
Data3D.AngleNick = (int16_t) ((10 * angle[PITCH])
/ GYRO_DEG_FACTOR_PITCHROLL); // convert to multiple of 0.1°
Data3D.AngleRoll = (int16_t) ((10 * angle[ROLL])
/ GYRO_DEG_FACTOR_PITCHROLL); // convert to multiple of 0.1°
Data3D.Heading = (int16_t) ((10 * yawGyroHeading) / GYRO_DEG_FACTOR_YAW); // convert to multiple of 0.1°
Data3D_Timer = setDelay(Data3D_Interval);
request_Data3D = FALSE;
}
 
if (request_ExternalControl && txd_complete) {
SendOutData('G', FC_ADDRESS, 1, (uint8_t *) &externalControl,
sizeof(externalControl));
request_ExternalControl = FALSE;
}
 
 
#ifdef USE_MK3MAG
if((checkDelay(Compass_Timer)) && txd_complete) {
ToMk3Mag.Attitude[0] = (int16_t)((10 * angle[PITCH]) / GYRO_DEG_FACTOR_PITCHROLL); // approx. 0.1 deg
ToMk3Mag.Attitude[1] = (int16_t)((10 * angle[ROLL]) / GYRO_DEG_FACTOR_PITCHROLL); // approx. 0.1 deg
ToMk3Mag.UserParam[0] = dynamicParams.UserParams[0];
ToMk3Mag.UserParam[1] = dynamicParams.UserParams[1];
ToMk3Mag.CalState = compassCalState;
SendOutData('w', MK3MAG_ADDRESS, 1,(uint8_t *) &ToMk3Mag,sizeof(ToMk3Mag));
// the last state is 5 and should be send only once to avoid multiple flash writing
if(compassCalState > 4) compassCalState = 0;
Compass_Timer = setDelay(99);
}
#endif
 
if (request_OutputTest && txd_complete) {
SendOutData('T', FC_ADDRESS, 0);
request_OutputTest = FALSE;
}
 
if (request_PPMChannels && txd_complete) {
SendOutData('P', FC_ADDRESS, 1, (uint8_t *) &PPM_in, sizeof(PPM_in));
request_PPMChannels = FALSE;
}
 
if (request_variables && txd_complete) {
SendOutData('X', FC_ADDRESS, 1, (uint8_t *) &variables, sizeof(variables));
request_variables = FALSE;
}
}