Subversion Repositories FlightCtrl

Compare Revisions

Ignore whitespace Rev 1050 → Rev 1051

/trunk/fc.c
6,14 → 6,14
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
24,21 → 24,21
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// + from this software without specific prior written permission.
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + for non-commercial use (directly or indirectly)
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + with our written permission
// + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + * porting to systems other than hardware from www.mikrokopter.de is not allowed
// + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49,7 → 49,7
// + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// + POSSIBILITY OF SUCH DAMAGE.
// + POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#include "main.h"
58,7 → 58,7
unsigned char h,m,s;
volatile unsigned int I2CTimeout = 100;
volatile int MesswertNick,MesswertRoll,MesswertGier,MesswertGierBias;
int AdNeutralGierBias;
int AdNeutralGierBias;
int AdNeutralNick = 0,AdNeutralRoll = 0,AdNeutralGier = 0,StartNeutralRoll = 0,StartNeutralNick = 0;
int Mittelwert_AccNick, Mittelwert_AccRoll,Mittelwert_AccHoch, NeutralAccX=0, NeutralAccY=0;
int NaviAccNick, NaviAccRoll,NaviCntAcc = 0;
88,7 → 88,7
float GyroFaktor;
float IntegralFaktor;
volatile int DiffNick,DiffRoll;
int Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0;
int Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0;
volatile unsigned char Motor_Vorne,Motor_Hinten,Motor_Rechts,Motor_Links, Count;
volatile unsigned char SenderOkay = 0;
int StickNick = 0,StickRoll = 0,StickGier = 0,StickGas = 0;
127,11 → 127,11
unsigned char Parameter_J17Bitmask; // for the J17 Output
unsigned char Parameter_J17Timing; // for the J17 Output
unsigned char Parameter_NaviGpsModeControl; // Parameters for the Naviboard
unsigned char Parameter_NaviGpsGain;
unsigned char Parameter_NaviGpsP;
unsigned char Parameter_NaviGpsI;
unsigned char Parameter_NaviGpsD;
unsigned char Parameter_NaviGpsACC;
unsigned char Parameter_NaviGpsGain;
unsigned char Parameter_NaviGpsP;
unsigned char Parameter_NaviGpsI;
unsigned char Parameter_NaviGpsD;
unsigned char Parameter_NaviGpsACC;
unsigned char Parameter_NaviOperatingRadius;
unsigned char Parameter_NaviWindCorrection;
unsigned char Parameter_NaviSpeedCompensation;
157,48 → 157,48
void SetNeutral(void)
//############################################################################
{
NeutralAccX = 0;
NeutralAccX = 0;
NeutralAccY = 0;
NeutralAccZ = 0;
AdNeutralNick = 0;
AdNeutralRoll = 0;
AdNeutralNick = 0;
AdNeutralRoll = 0;
AdNeutralGier = 0;
AdNeutralGierBias = 0;
Parameter_AchsKopplung1 = 0;
Parameter_AchsGegenKopplung1 = 0;
ExpandBaro = 0;
CalibrierMittelwert();
CalibrierMittelwert();
Delay_ms_Mess(100);
CalibrierMittelwert();
if((EE_Parameter.GlobalConfig & CFG_HOEHENREGELUNG)) // Höhenregelung aktiviert?
{
{
if((MessLuftdruck > 950) || (MessLuftdruck < 750)) SucheLuftruckOffset();
}
 
AdNeutralNick= AdWertNick;
AdNeutralRoll= AdWertRoll;
AdNeutralNick= AdWertNick;
AdNeutralRoll= AdWertRoll;
AdNeutralGier= AdWertGier;
AdNeutralGierBias = AdWertGier;
StartNeutralRoll = AdNeutralRoll;
StartNeutralNick = AdNeutralNick;
if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_NICK]) > 4)
if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_NICK]) > 4)
{
NeutralAccY = abs(Mittelwert_AccRoll) / ACC_AMPLIFY;
NeutralAccX = abs(Mittelwert_AccNick) / ACC_AMPLIFY;
NeutralAccZ = Aktuell_az;
}
else
else
{
NeutralAccX = (int)eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_NICK]) * 256 + (int)eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_NICK+1]);
NeutralAccY = (int)eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_ROLL]) * 256 + (int)eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_ROLL+1]);
NeutralAccZ = (int)eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_Z]) * 256 + (int)eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_Z+1]);
}
Mess_IntegralNick = 0;
 
Mess_IntegralNick = 0;
Mess_IntegralNick2 = 0;
Mess_IntegralRoll = 0;
Mess_IntegralRoll = 0;
Mess_IntegralRoll2 = 0;
Mess_Integral_Gier = 0;
Mess_Integral_Gier = 0;
MesswertNick = 0;
MesswertRoll = 0;
MesswertGier = 0;
208,7 → 208,7
Mess_Integral_Hoch = 0;
KompassStartwert = KompassValue;
GPS_Neutral();
beeptime = 50;
beeptime = 50;
Umschlag180Nick = ((long) EE_Parameter.WinkelUmschlagNick * 2500L) + 15000L;
Umschlag180Roll = ((long) EE_Parameter.WinkelUmschlagRoll * 2500L) + 15000L;
ExternHoehenValue = 0;
226,8 → 226,8
// Bearbeitet die Messwerte
void Mittelwert(void)
//############################################################################
{
static signed long tmpl,tmpl2;
{
static signed long tmpl,tmpl2;
MesswertGier = (signed int) AdNeutralGier - AdWertGier;
MesswertGierBias = (signed int) AdNeutralGierBias - AdWertGier;
MesswertRoll = (signed int) AdWertRoll - AdNeutralRoll;
261,7 → 261,7
tmpl2 = (MesswertGierBias * Mess_IntegralRoll) / 2048L;
tmpl2 *= Parameter_AchsKopplung1;
tmpl2 /= 4096L;
if(labs(tmpl) > 128 || labs(tmpl2) > 128) TrichterFlug = 1;
if(labs(tmpl) > 128 || labs(tmpl2) > 128) TrichterFlug = 1;
}
else tmpl = tmpl2 = 0;
// Roll ++++++++++++++++++++++++++++++++++++++++++++++++
269,16 → 269,16
MesswertRoll += (tmpl2*Parameter_AchsGegenKopplung1)/512L; //109
Mess_IntegralRoll2 += MesswertRoll;
Mess_IntegralRoll += MesswertRoll - LageKorrekturRoll;
if(Mess_IntegralRoll > Umschlag180Roll)
if(Mess_IntegralRoll > Umschlag180Roll)
{
Mess_IntegralRoll = -(Umschlag180Roll - 25000L);
Mess_IntegralRoll2 = Mess_IntegralRoll;
}
}
if(Mess_IntegralRoll <-Umschlag180Roll)
{
Mess_IntegralRoll = (Umschlag180Roll - 25000L);
Mess_IntegralRoll2 = Mess_IntegralRoll;
}
}
if(AdWertRoll < 15) MesswertRoll = -1000;
if(AdWertRoll < 7) MesswertRoll = -2000;
if(PlatinenVersion == 10)
286,7 → 286,7
if(AdWertRoll > 1010) MesswertRoll = +1000;
if(AdWertRoll > 1017) MesswertRoll = +2000;
}
else
else
{
if(AdWertRoll > 2020) MesswertRoll = +1000;
if(AdWertRoll > 2034) MesswertRoll = +2000;
297,16 → 297,16
Mess_IntegralNick2 += MesswertNick;
Mess_IntegralNick += MesswertNick - LageKorrekturNick;
 
if(Mess_IntegralNick > Umschlag180Nick)
if(Mess_IntegralNick > Umschlag180Nick)
{
Mess_IntegralNick = -(Umschlag180Nick - 25000L);
Mess_IntegralNick2 = Mess_IntegralNick;
}
if(Mess_IntegralNick <-Umschlag180Nick)
}
if(Mess_IntegralNick <-Umschlag180Nick)
{
Mess_IntegralNick = (Umschlag180Nick - 25000L);
Mess_IntegralNick2 = Mess_IntegralNick;
}
}
if(AdWertNick < 15) MesswertNick = -1000;
if(AdWertNick < 7) MesswertNick = -2000;
if(PlatinenVersion == 10)
314,7 → 314,7
if(AdWertNick > 1010) MesswertNick = +1000;
if(AdWertNick > 1017) MesswertNick = +2000;
}
else
else
{
if(AdWertNick > 2020) MesswertNick = +1000;
if(AdWertNick > 2034) MesswertNick = +2000;
321,21 → 321,21
}
//++++++++++++++++++++++++++++++++++++++++++++++++
// ADC einschalten
ANALOG_ON;
ANALOG_ON;
//++++++++++++++++++++++++++++++++++++++++++++++++
 
Integral_Gier = Mess_Integral_Gier;
IntegralNick = Mess_IntegralNick;
IntegralRoll = Mess_IntegralRoll;
IntegralNick2 = Mess_IntegralNick2;
IntegralNick2 = Mess_IntegralNick2;
IntegralRoll2 = Mess_IntegralRoll2;
 
if(EE_Parameter.GlobalConfig & CFG_DREHRATEN_BEGRENZER && !Looping_Nick && !Looping_Roll)
{
if(MesswertNick > 200) MesswertNick += 4 * (MesswertNick - 200);
else if(MesswertNick < -200) MesswertNick += 4 * (MesswertNick + 200);
else if(MesswertNick < -200) MesswertNick += 4 * (MesswertNick + 200);
if(MesswertRoll > 200) MesswertRoll += 4 * (MesswertRoll - 200);
else if(MesswertRoll < -200) MesswertRoll += 4 * (MesswertRoll + 200);
else if(MesswertRoll < -200) MesswertRoll += 4 * (MesswertRoll + 200);
}
if(Poti1 < PPM_in[EE_Parameter.Kanalbelegung[K_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[EE_Parameter.Kanalbelegung[K_POTI1]] + 110 && Poti1) Poti1--;
if(Poti2 < PPM_in[EE_Parameter.Kanalbelegung[K_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[EE_Parameter.Kanalbelegung[K_POTI2]] + 110 && Poti2) Poti2--;
351,7 → 351,7
// Messwerte beim Ermitteln der Nullage
void CalibrierMittelwert(void)
//############################################################################
{
{
if(PlatinenVersion == 13) SucheGyroOffset();
// ADC auschalten, damit die Werte sich nicht während der Berechnung ändern
ANALOG_OFF;
362,7 → 362,7
Mittelwert_AccRoll = ACC_AMPLIFY * (long)AdWertAccRoll;
Mittelwert_AccHoch = (long)AdWertAccHoch;
// ADC einschalten
ANALOG_ON;
ANALOG_ON;
if(Poti1 < PPM_in[EE_Parameter.Kanalbelegung[K_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[EE_Parameter.Kanalbelegung[K_POTI1]] + 110 && Poti1) Poti1--;
if(Poti2 < PPM_in[EE_Parameter.Kanalbelegung[K_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[EE_Parameter.Kanalbelegung[K_POTI2]] + 110 && Poti2) Poti2--;
if(Poti3 < PPM_in[EE_Parameter.Kanalbelegung[K_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[EE_Parameter.Kanalbelegung[K_POTI3]] + 110 && Poti3) Poti3--;
380,7 → 380,7
// Senden der Motorwerte per I2C-Bus
void SendMotorData(void)
//############################################################################
{
{
if(!MotorenEin)
{
Motor_Hinten = 0;
397,12 → 397,12
DebugOut.Analog[12] = Motor_Vorne;
DebugOut.Analog[13] = Motor_Hinten;
DebugOut.Analog[14] = Motor_Links;
DebugOut.Analog[15] = Motor_Rechts;
DebugOut.Analog[15] = Motor_Rechts;
 
//Start I2C Interrupt Mode
twi_state = 0;
motor = 0;
i2c_start();
i2c_start();
}
 
 
409,7 → 409,7
 
//############################################################################
// Trägt ggf. das Poti als Parameter ein
void ParameterZuordnung(void)
void ParameterZuordnung(void)
//############################################################################
{
#define CHK_POTI_MM(b,a,min,max) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a; if(b <= min) b = min; else if(b >= max) b = max;}
421,15 → 421,15
CHK_POTI(Parameter_KompassWirkung,EE_Parameter.KompassWirkung,0,255);
CHK_POTI_MM(Parameter_Gyro_P,EE_Parameter.Gyro_P,10,255);
CHK_POTI(Parameter_Gyro_I,EE_Parameter.Gyro_I,0,255);
CHK_POTI(Parameter_I_Faktor,EE_Parameter.I_Faktor,0,255);
CHK_POTI(Parameter_UserParam1,EE_Parameter.UserParam1,0,255);
CHK_POTI(Parameter_UserParam2,EE_Parameter.UserParam2,0,255);
CHK_POTI(Parameter_UserParam3,EE_Parameter.UserParam3,0,255);
CHK_POTI(Parameter_UserParam4,EE_Parameter.UserParam4,0,255);
CHK_POTI(Parameter_UserParam5,EE_Parameter.UserParam5,0,255);
CHK_POTI(Parameter_UserParam6,EE_Parameter.UserParam6,0,255);
CHK_POTI(Parameter_UserParam7,EE_Parameter.UserParam7,0,255);
CHK_POTI(Parameter_UserParam8,EE_Parameter.UserParam8,0,255);
CHK_POTI(Parameter_I_Faktor,EE_Parameter.I_Faktor,0,255);
CHK_POTI(Parameter_UserParam1,EE_Parameter.UserParam1,0,255);
CHK_POTI(Parameter_UserParam2,EE_Parameter.UserParam2,0,255);
CHK_POTI(Parameter_UserParam3,EE_Parameter.UserParam3,0,255);
CHK_POTI(Parameter_UserParam4,EE_Parameter.UserParam4,0,255);
CHK_POTI(Parameter_UserParam5,EE_Parameter.UserParam5,0,255);
CHK_POTI(Parameter_UserParam6,EE_Parameter.UserParam6,0,255);
CHK_POTI(Parameter_UserParam7,EE_Parameter.UserParam7,0,255);
CHK_POTI(Parameter_UserParam8,EE_Parameter.UserParam8,0,255);
CHK_POTI(Parameter_ServoNickControl,EE_Parameter.ServoNickControl,0,255);
CHK_POTI(Parameter_LoopGasLimit,EE_Parameter.LoopGasLimit,0,255);
CHK_POTI(Parameter_AchsKopplung1, EE_Parameter.AchsKopplung1,0,255);
475,34 → 475,34
static char TimerWerteausgabe = 0;
static char NeueKompassRichtungMerken = 0;
static long ausgleichNick, ausgleichRoll;
Mittelwert();
 
Mittelwert();
 
GRN_ON;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gaswert ermitteln
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
GasMischanteil = StickGas;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
GasMischanteil = StickGas;
if(GasMischanteil < MIN_GAS + 10) GasMischanteil = MIN_GAS + 10;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Empfang schlecht
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(SenderOkay < 100)
{
if(!PcZugriff)
if(!PcZugriff)
{
if(BeepMuster == 0xffff)
{
if(BeepMuster == 0xffff)
{
beeptime = 15000;
BeepMuster = 0x0c00;
}
}
}
if(RcLostTimer) RcLostTimer--;
else
if(RcLostTimer) RcLostTimer--;
else
{
MotorenEin = 0;
Notlandung = 0;
}
}
ROT_ON;
if(modell_fliegt > 1000) // wahrscheinlich in der Luft --> langsam absenken
{
509,7 → 509,7
GasMischanteil = EE_Parameter.NotGas;
Notlandung = 1;
PPM_diff[EE_Parameter.Kanalbelegung[K_NICK]] = 0;
PPM_diff[EE_Parameter.Kanalbelegung[K_ROLL]] = 0;
PPM_diff[EE_Parameter.Kanalbelegung[K_ROLL]] = 0;
PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] = 0;
PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] = 0;
PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] = 0;
516,10 → 516,10
}
else MotorenEin = 0;
}
else
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
else
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Emfang gut
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(SenderOkay > 140)
{
Notlandung = 0;
532,20 → 532,20
{
SummeNick = 0;
SummeRoll = 0;
if(modell_fliegt == 250)
if(modell_fliegt == 250)
{
NeueKompassRichtungMerken = 1;
NeueKompassRichtungMerken = 1;
sollGier = 0;
Mess_Integral_Gier = 0;
Mess_Integral_Gier = 0;
// Mess_Integral_Gier2 = 0;
}
}
} else MikroKopterFlags |= FLAG_FLY;
 
if((PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] > 80) && MotorenEin == 0)
{
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// auf Nullwerte kalibrieren
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] > 75) // Neutralwerte
{
if(++delay_neutral > 200) // nicht sofort
565,8 → 565,8
eeprom_write_byte(&EEPromArray[EEPROM_ADR_ACTIVE_SET], setting); // aktiven Datensatz merken
}
// else
if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]]) < 30 && PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < -70)
{
if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]]) < 30 && PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < -70)
{
WinkelOut.CalcState = 1;
beeptime = 1000;
}
576,13 → 576,13
if((EE_Parameter.GlobalConfig & CFG_HOEHENREGELUNG)) // Höhenregelung aktiviert?
{
if((MessLuftdruck > 950) || (MessLuftdruck < 750)) SucheLuftruckOffset();
}
}
SetNeutral();
Piep(GetActiveParamSetNumber());
}
}
}
}
else
else
if(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] < -75) // ACC Neutralwerte speichern
{
if(++delay_neutral > 200) // nicht sofort
600,21 → 600,21
eeprom_write_byte(&EEPromArray[EEPROM_ADR_ACC_Z],(int)NeutralAccZ / 256);
eeprom_write_byte(&EEPromArray[EEPROM_ADR_ACC_Z+1],(int)NeutralAccZ % 256);
Piep(GetActiveParamSetNumber());
}
}
}
else delay_neutral = 0;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gas ist unten
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] < 35-120)
{
// Starten
if(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] < -75)
{
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Einschalten
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(++delay_einschalten > 200)
{
delay_einschalten = 200;
621,7 → 621,7
modell_fliegt = 1;
MotorenEin = 1;
sollGier = 0;
Mess_Integral_Gier = 0;
Mess_Integral_Gier = 0;
Mess_Integral_Gier2 = 0;
Mess_IntegralNick = 0;
Mess_IntegralRoll = 0;
630,13 → 630,13
SummeNick = 0;
SummeRoll = 0;
MikroKopterFlags |= FLAG_START;
}
}
}
}
else delay_einschalten = 0;
//Auf Neutralwerte setzen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Auschalten
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(PPM_in[EE_Parameter.Kanalbelegung[K_GIER]] > 75)
{
if(++delay_ausschalten > 200) // nicht sofort
644,24 → 644,24
MotorenEin = 0;
delay_ausschalten = 200;
modell_fliegt = 0;
}
}
}
else delay_ausschalten = 0;
}
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// neue Werte von der Funke
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!NewPpmData-- || Notlandung)
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!NewPpmData-- || Notlandung)
{
int tmp_int;
static int stick_nick,stick_roll;
ParameterZuordnung();
stick_nick = (stick_nick * 3 + PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] * EE_Parameter.Stick_P) / 4;
stick_nick = (stick_nick * 3 + PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] * EE_Parameter.Stick_P) / 4;
stick_nick += PPM_diff[EE_Parameter.Kanalbelegung[K_NICK]] * EE_Parameter.Stick_D;
StickNick = stick_nick - (GPS_Nick + GPS_Nick2);
// StickNick = (StickNick * 3 + PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] * EE_Parameter.Stick_P) / 4;
// StickNick = (StickNick * 3 + PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] * EE_Parameter.Stick_P) / 4;
 
stick_roll = (stick_roll * 3 + PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] * EE_Parameter.Stick_P) / 4;
stick_roll += PPM_diff[EE_Parameter.Kanalbelegung[K_ROLL]] * EE_Parameter.Stick_D;
672,9 → 672,9
StickGier = -PPM_in[EE_Parameter.Kanalbelegung[K_GIER]];
StickGas = PPM_in[EE_Parameter.Kanalbelegung[K_GAS]] + 120;
 
/* if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_NICK]]) > MaxStickNick)
/* if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_NICK]]) > MaxStickNick)
MaxStickNick = abs(PPM_in[EE_Parameter.Kanalbelegung[K_NICK]]); else MaxStickNick--;
if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]]) > MaxStickRoll)
if(abs(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]]) > MaxStickRoll)
MaxStickRoll = abs(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]]); else MaxStickRoll--;
*/
GyroFaktor = ((float)Parameter_Gyro_P + 10.0) / (256.0/STICK_GAIN);
681,26 → 681,6
IntegralFaktor = ((float) Parameter_Gyro_I) / (44000 / STICK_GAIN);
 
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//+ Digitale Steuerung per DubWise
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#define KEY_VALUE (Parameter_ExternalControl * 4) //(Poti3 * 8)
if(DubWiseKeys[1]) beeptime = 10;
if(DubWiseKeys[1] & DUB_KEY_UP) tmp_int = KEY_VALUE; else
if(DubWiseKeys[1] & DUB_KEY_DOWN) tmp_int = -KEY_VALUE; else tmp_int = 0;
ExternStickNick = (ExternStickNick * 7 + tmp_int) / 8;
if(DubWiseKeys[1] & DUB_KEY_LEFT) tmp_int = KEY_VALUE; else
if(DubWiseKeys[1] & DUB_KEY_RIGHT) tmp_int = -KEY_VALUE; else tmp_int = 0;
ExternStickRoll = (ExternStickRoll * 7 + tmp_int) / 8;
 
if(DubWiseKeys[0] & 8) ExternStickGier = 50;else
if(DubWiseKeys[0] & 4) ExternStickGier =-50;else ExternStickGier = 0;
if(DubWiseKeys[0] & 2) ExternHoehenValue++;
if(DubWiseKeys[0] & 16) ExternHoehenValue--;
 
StickNick += (STICK_GAIN * ExternStickNick) / 8;
StickRoll += (STICK_GAIN * ExternStickRoll) / 8;
StickGier += STICK_GAIN * ExternStickGier;
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//+ Analoge Steuerung per Seriell
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(ExternControl.Config & 0x01 && Parameter_ExternalControl > 128)
717,55 → 697,55
if(GyroFaktor < 0) GyroFaktor = 0;
if(IntegralFaktor < 0) IntegralFaktor = 0;
 
if(abs(StickNick/STICK_GAIN) > MaxStickNick)
if(abs(StickNick/STICK_GAIN) > MaxStickNick)
{
MaxStickNick = abs(StickNick)/STICK_GAIN;
MaxStickNick = abs(StickNick)/STICK_GAIN;
if(MaxStickNick > 100) MaxStickNick = 100;
}
}
else MaxStickNick--;
if(abs(StickRoll/STICK_GAIN) > MaxStickRoll)
if(abs(StickRoll/STICK_GAIN) > MaxStickRoll)
{
MaxStickRoll = abs(StickRoll)/STICK_GAIN;
MaxStickRoll = abs(StickRoll)/STICK_GAIN;
if(MaxStickRoll > 100) MaxStickRoll = 100;
}
}
else MaxStickRoll--;
if(Notlandung) {MaxStickNick = 0; MaxStickRoll = 0;}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Looping?
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if((PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] > EE_Parameter.LoopThreshold) && EE_Parameter.BitConfig & CFG_LOOP_LINKS) Looping_Links = 1;
else
{
else
{
{
if((PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] < (EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese))) Looping_Links = 0;
}
}
if((PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] < (EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese))) Looping_Links = 0;
}
}
if((PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] < -EE_Parameter.LoopThreshold) && EE_Parameter.BitConfig & CFG_LOOP_RECHTS) Looping_Rechts = 1;
else
else
{
if(Looping_Rechts) // Hysterese
{
if(PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]] > -(EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese)) Looping_Rechts = 0;
}
}
}
 
if((PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > EE_Parameter.LoopThreshold) && EE_Parameter.BitConfig & CFG_LOOP_OBEN) Looping_Oben = 1;
else
{
else
{
if(Looping_Oben) // Hysterese
{
if((PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < (EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese))) Looping_Oben = 0;
}
}
if((PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < (EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese))) Looping_Oben = 0;
}
}
if((PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] < -EE_Parameter.LoopThreshold) && EE_Parameter.BitConfig & CFG_LOOP_UNTEN) Looping_Unten = 1;
else
else
{
if(Looping_Unten) // Hysterese
{
if(PPM_in[EE_Parameter.Kanalbelegung[K_NICK]] > -(EE_Parameter.LoopThreshold - EE_Parameter.LoopHysterese)) Looping_Unten = 0;
}
}
}
 
if(Looping_Links || Looping_Rechts) Looping_Roll = 1; else Looping_Roll = 0;
if(Looping_Oben || Looping_Unten) {Looping_Nick = 1; Looping_Roll = 0; Looping_Links = 0; Looping_Rechts = 0;} else Looping_Nick = 0;
775,11 → 755,11
{
if(GasMischanteil > EE_Parameter.LoopGasLimit) GasMischanteil = EE_Parameter.LoopGasLimit;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Bei Empfangsausfall im Flug
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Bei Empfangsausfall im Flug
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(Notlandung)
{
StickGier = 0;
789,12 → 769,12
IntegralFaktor = (float) 120 / (44000 / STICK_GAIN);
Looping_Roll = 0;
Looping_Nick = 0;
}
}
 
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Integrale auf ACC-Signal abgleichen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#define ABGLEICH_ANZAHL 256L
 
MittelIntegralNick += IntegralNick; // Für die Mittelwertbildung aufsummieren
817,7 → 797,7
LageKorrekturRoll = 0;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!Looping_Nick && !Looping_Roll)
{
long tmp_long, tmp_long2;
824,9 → 804,9
if(FromNaviCtrl_Value.Kalman_K != -1)
{
tmp_long = (long)(IntegralNick / EE_Parameter.GyroAccFaktor - (long)Mittelwert_AccNick);
tmp_long2 = (long)(IntegralRoll / EE_Parameter.GyroAccFaktor - (long)Mittelwert_AccRoll);
tmp_long = (tmp_long * FromNaviCtrl_Value.Kalman_K) / (32 * 16);
tmp_long2 = (tmp_long2 * FromNaviCtrl_Value.Kalman_K) / (32 * 16);
tmp_long2 = (long)(IntegralRoll / EE_Parameter.GyroAccFaktor - (long)Mittelwert_AccRoll);
tmp_long = (tmp_long * FromNaviCtrl_Value.Kalman_K) / (32 * 16);
tmp_long2 = (tmp_long2 * FromNaviCtrl_Value.Kalman_K) / (32 * 16);
if((MaxStickNick > 64) || (MaxStickRoll > 64))
{
tmp_long /= 2;
842,10 → 822,10
if(tmp_long2 > (long) FromNaviCtrl_Value.Kalman_MaxFusion) tmp_long2 = (long) FromNaviCtrl_Value.Kalman_MaxFusion;
if(tmp_long2 < (long)-FromNaviCtrl_Value.Kalman_MaxFusion) tmp_long2 = (long)-FromNaviCtrl_Value.Kalman_MaxFusion;
}
else
else
{
tmp_long = (long)(IntegralNick / EE_Parameter.GyroAccFaktor - (long)Mittelwert_AccNick);
tmp_long2 = (long)(IntegralRoll / EE_Parameter.GyroAccFaktor - (long)Mittelwert_AccRoll);
tmp_long2 = (long)(IntegralRoll / EE_Parameter.GyroAccFaktor - (long)Mittelwert_AccRoll);
tmp_long /= 16;
tmp_long2 /= 16;
if((MaxStickNick > 64) || (MaxStickRoll > 64))
864,11 → 844,11
if(tmp_long2 > AUSGLEICH) tmp_long2 = AUSGLEICH;
if(tmp_long2 <-AUSGLEICH) tmp_long2 =-AUSGLEICH;
}
 
Mess_IntegralNick -= tmp_long;
Mess_IntegralRoll -= tmp_long2;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(ZaehlMessungen >= ABGLEICH_ANZAHL)
{
static int cnt = 0;
885,8 → 865,8
// Nick ++++++++++++++++++++++++++++++++++++++++++++++++
IntegralFehlerNick = (long)(MittelIntegralNick - (long)IntegralAccNick);
ausgleichNick = IntegralFehlerNick / EE_Parameter.GyroAccAbgleich;
// Roll ++++++++++++++++++++++++++++++++++++++++++++++++
IntegralFehlerRoll = (long)(MittelIntegralRoll - (long)IntegralAccRoll);
// Roll ++++++++++++++++++++++++++++++++++++++++++++++++
IntegralFehlerRoll = (long)(MittelIntegralRoll - (long)IntegralAccRoll);
ausgleichRoll = IntegralFehlerRoll / EE_Parameter.GyroAccAbgleich;
 
LageKorrekturNick = ausgleichNick / ABGLEICH_ANZAHL;
898,13 → 878,13
LageKorrekturRoll /= 2;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gyro-Drift ermitteln
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
MittelIntegralNick2 /= ABGLEICH_ANZAHL;
MittelIntegralRoll2 /= ABGLEICH_ANZAHL;
tmp_long = IntegralNick2 - IntegralNick;
tmp_long2 = IntegralRoll2 - IntegralRoll;
tmp_long = IntegralNick2 - IntegralNick;
tmp_long2 = IntegralRoll2 - IntegralRoll;
//DebugOut.Analog[25] = MittelIntegralRoll2 / 26;
 
IntegralFehlerNick = tmp_long;
942,34 → 922,34
cnt = 1;// + labs(IntegralFehlerNick) / 4096;
if(labs(MittelIntegralNick_Alt - MittelIntegralNick) < BEWEGUNGS_LIMIT || (FromNaviCtrl_Value.Kalman_MaxDrift > 3*16))
{
if(IntegralFehlerNick > FEHLER_LIMIT2)
if(IntegralFehlerNick > FEHLER_LIMIT2)
{
if(last_n_p)
if(last_n_p)
{
cnt += labs(IntegralFehlerNick) / FEHLER_LIMIT2;
cnt += labs(IntegralFehlerNick) / FEHLER_LIMIT2;
ausgleichNick = IntegralFehlerNick / 8;
if(ausgleichNick > 5000) ausgleichNick = 5000;
LageKorrekturNick += ausgleichNick / ABGLEICH_ANZAHL;
}
}
else last_n_p = 1;
} else last_n_p = 0;
if(IntegralFehlerNick < -FEHLER_LIMIT2)
if(IntegralFehlerNick < -FEHLER_LIMIT2)
{
if(last_n_n)
{
cnt += labs(IntegralFehlerNick) / FEHLER_LIMIT2;
{
cnt += labs(IntegralFehlerNick) / FEHLER_LIMIT2;
ausgleichNick = IntegralFehlerNick / 8;
if(ausgleichNick < -5000) ausgleichNick = -5000;
LageKorrekturNick += ausgleichNick / ABGLEICH_ANZAHL;
}
}
else last_n_n = 1;
} else last_n_n = 0;
}
else
}
else
{
cnt = 0;
KompassSignalSchlecht = 1000;
}
}
if(cnt > EE_Parameter.Driftkomp) cnt = EE_Parameter.Driftkomp;
if(cnt * 16 > FromNaviCtrl_Value.Kalman_MaxDrift) cnt = FromNaviCtrl_Value.Kalman_MaxDrift/16;
if(IntegralFehlerNick > FEHLER_LIMIT) AdNeutralNick += cnt;
981,22 → 961,22
ausgleichRoll = 0;
if(labs(MittelIntegralRoll_Alt - MittelIntegralRoll) < BEWEGUNGS_LIMIT || (FromNaviCtrl_Value.Kalman_MaxDrift > 3*16))
{
if(IntegralFehlerRoll > FEHLER_LIMIT2)
if(IntegralFehlerRoll > FEHLER_LIMIT2)
{
if(last_r_p)
if(last_r_p)
{
cnt += labs(IntegralFehlerRoll) / FEHLER_LIMIT2;
cnt += labs(IntegralFehlerRoll) / FEHLER_LIMIT2;
ausgleichRoll = IntegralFehlerRoll / 8;
if(ausgleichRoll > 5000) ausgleichRoll = 5000;
LageKorrekturRoll += ausgleichRoll / ABGLEICH_ANZAHL;
}
}
else last_r_p = 1;
} else last_r_p = 0;
if(IntegralFehlerRoll < -FEHLER_LIMIT2)
if(IntegralFehlerRoll < -FEHLER_LIMIT2)
{
if(last_r_n)
if(last_r_n)
{
cnt += labs(IntegralFehlerRoll) / FEHLER_LIMIT2;
cnt += labs(IntegralFehlerRoll) / FEHLER_LIMIT2;
ausgleichRoll = IntegralFehlerRoll / 8;
if(ausgleichRoll < -5000) ausgleichRoll = -5000;
LageKorrekturRoll += ausgleichRoll / ABGLEICH_ANZAHL;
1003,28 → 983,28
}
else last_r_n = 1;
} else last_r_n = 0;
} else
} else
{
cnt = 0;
KompassSignalSchlecht = 1000;
}
}
if(cnt > EE_Parameter.Driftkomp) cnt = EE_Parameter.Driftkomp;
if(cnt * 16 > FromNaviCtrl_Value.Kalman_MaxDrift) cnt = FromNaviCtrl_Value.Kalman_MaxDrift/16;
if(IntegralFehlerRoll > FEHLER_LIMIT) AdNeutralRoll += cnt;
if(IntegralFehlerRoll < -FEHLER_LIMIT) AdNeutralRoll -= cnt;
}
else
else
{
LageKorrekturRoll = 0;
LageKorrekturNick = 0;
TrichterFlug = 0;
}
 
if(!IntegralFaktor) { LageKorrekturRoll = 0; LageKorrekturNick = 0;} // z.B. bei HH
// +++++++++++++++++++++++++++++++++++++++++++++++++++++
MittelIntegralNick_Alt = MittelIntegralNick;
MittelIntegralRoll_Alt = MittelIntegralRoll;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++
MittelIntegralNick_Alt = MittelIntegralNick;
MittelIntegralRoll_Alt = MittelIntegralRoll;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++
IntegralAccNick = 0;
IntegralAccRoll = 0;
IntegralAccZ = 0;
1036,31 → 1016,31
}
//DebugOut.Analog[31] = StickRoll / (26*IntegralFaktor);
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gieren
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// if(GasMischanteil < 35) { if(StickGier > 10) StickGier = 10; else if(StickGier < -10) StickGier = -10;};
if(abs(StickGier) > 15) // war 35
if(abs(StickGier) > 15) // war 35
{
KompassSignalSchlecht = 1000;
if(!(EE_Parameter.GlobalConfig & CFG_KOMPASS_FIX))
{
NeueKompassRichtungMerken = 1;
if(!(EE_Parameter.GlobalConfig & CFG_KOMPASS_FIX))
{
NeueKompassRichtungMerken = 1;
};
}
tmp_int = (long) EE_Parameter.Gier_P * ((long)StickGier * abs(StickGier)) / 512L; // expo y = ax + bx²
tmp_int += (EE_Parameter.Gier_P * StickGier) / 4;
tmp_int += (EE_Parameter.Gier_P * StickGier) / 4;
sollGier = tmp_int;
Mess_Integral_Gier -= tmp_int;
Mess_Integral_Gier -= tmp_int;
if(Mess_Integral_Gier > 50000) Mess_Integral_Gier = 50000; // begrenzen
if(Mess_Integral_Gier <-50000) Mess_Integral_Gier =-50000;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Kompass
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//DebugOut.Analog[29] = (MaxStickNick + MaxStickRoll);
 
if(KompassValue && (EE_Parameter.GlobalConfig & CFG_KOMPASS_AKTIV))
if(KompassValue && (EE_Parameter.GlobalConfig & CFG_KOMPASS_AKTIV))
{
int w,v,r,fehler,korrektur;
w = abs(IntegralNick /512); // mit zunehmender Neigung den Einfluss drosseln
1068,16 → 1048,16
if(v > w) w = v; // grösste Neigung ermitteln
korrektur = w / 8 + 1;
fehler = ((540 + KompassValue - (ErsatzKompass/GIER_GRAD_FAKTOR)) % 360) - 180;
if(NeueKompassRichtungMerken)
if(NeueKompassRichtungMerken)
{
fehler = 0;
ErsatzKompass = KompassValue * GIER_GRAD_FAKTOR;
}
}
if(!KompassSignalSchlecht && w < 25)
{
GierGyroFehler += fehler;
if(NeueKompassRichtungMerken)
{
if(NeueKompassRichtungMerken)
{
beeptime = 200;
// KompassStartwert = KompassValue;
KompassStartwert = (ErsatzKompass/GIER_GRAD_FAKTOR);
1089,27 → 1069,27
w = Parameter_KompassWirkung - w; // Wirkung ggf drosseln
if(w >= 0)
{
if(!KompassSignalSchlecht)
if(!KompassSignalSchlecht)
{
v = 64 + ((MaxStickNick + MaxStickRoll)) / 8;
v = 64 + ((MaxStickNick + MaxStickRoll)) / 8;
r = ((540 + (ErsatzKompass/GIER_GRAD_FAKTOR) - KompassStartwert) % 360) - 180;
// r = KompassRichtung;
v = (r * w) / v; // nach Kompass ausrichten
w = 3 * Parameter_KompassWirkung;
if(v > w) v = w; // Begrenzen
else
else
if(v < -w) v = -w;
Mess_Integral_Gier += v;
}
}
if(KompassSignalSchlecht) KompassSignalSchlecht--;
}
}
else KompassSignalSchlecht = 500; // so lange das Signal taub stellen --> ca. 1 sek
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Debugwerte zuordnen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if(!TimerWerteausgabe--)
{
TimerWerteausgabe = 24;
1123,7 → 1103,7
DebugOut.Analog[6] = (Mess_Integral_Hoch / 512);
DebugOut.Analog[8] = KompassValue;
DebugOut.Analog[9] = UBat;
DebugOut.Analog[11] = ErsatzKompass / GIER_GRAD_FAKTOR;
DebugOut.Analog[11] = ErsatzKompass / GIER_GRAD_FAKTOR;
DebugOut.Analog[10] = SenderOkay;
//DebugOut.Analog[16] = Mittelwert_AccHoch;
DebugOut.Analog[17] = FromNaviCtrl_Value.Distance;
1155,17 → 1135,17
// DebugOut.Analog[9] = SollHoehe;
// DebugOut.Analog[10] = Mess_Integral_Gier / 128;
// DebugOut.Analog[11] = KompassStartwert;
// DebugOut.Analog[10] = Parameter_Gyro_I;
// DebugOut.Analog[10] = EE_Parameter.Gyro_I;
// DebugOut.Analog[9] = KompassRichtung;
// DebugOut.Analog[10] = Parameter_Gyro_I;
// DebugOut.Analog[10] = EE_Parameter.Gyro_I;
// DebugOut.Analog[9] = KompassRichtung;
// DebugOut.Analog[10] = GasMischanteil;
// DebugOut.Analog[3] = HoeheD * 32;
// DebugOut.Analog[4] = hoehenregler;
}
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Drehgeschwindigkeit und -winkel zu einem Istwert zusammenfassen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
if(Looping_Nick) MesswertNick = MesswertNick * GyroFaktor;
else MesswertNick = IntegralNick * IntegralFaktor + MesswertNick * GyroFaktor;
1185,10 → 1165,10
if(MesswertGier > MAX_SENSOR) MesswertGier = MAX_SENSOR;
if(MesswertGier < -MAX_SENSOR) MesswertGier = -MAX_SENSOR;
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Höhenregelung
// Die Höhenregelung schwächt lediglich das Gas ab, erhöht es allerdings nicht
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//OCR0B = 180 - (Poti1 + 120) / 4;
//DruckOffsetSetting = OCR0B;
GasMischanteil *= STICK_GAIN;
1210,36 → 1190,36
{
if(!delay--)
{
if(MessLuftdruck > 1000)
if(MessLuftdruck > 1000)
{
ExpandBaro -= 10;
OCR0A = DruckOffsetSetting - ExpandBaro;
OCR0A = DruckOffsetSetting - ExpandBaro;
beeptime = 300;
delay = 250;
}
else
if(MessLuftdruck < 100)
if(MessLuftdruck < 100)
{
ExpandBaro += 10;
OCR0A = DruckOffsetSetting - ExpandBaro;
OCR0A = DruckOffsetSetting - ExpandBaro;
beeptime = 300;
delay = 250;
}
else
{
{
SollHoehe = HoehenWert - 20; // Parameter_MaxHoehe ist der PPM-Wert des Schalters
HoehenReglerAktiv = 0;
delay = 1;
}
}
}
}
else
{
else
{
HoehenReglerAktiv = 1;
delay = 200;
}
}
}
else
else
{
SollHoehe = ((int) ExternHoehenValue + (int) Parameter_MaxHoehe) * (int)EE_Parameter.Hoehe_Verstaerkung - 20;
HoehenReglerAktiv = 1;
1248,7 → 1228,7
if(Notlandung) SollHoehe = 0;
h = HoehenWert;
if((h > SollHoehe) && HoehenReglerAktiv) // zu hoch --> drosseln
{
{
h = ((h - SollHoehe) * (int) Parameter_Hoehe_P) / (16 / STICK_GAIN); // Differenz bestimmen --> P-Anteil
h = GasMischanteil - h; // vom Gas abziehen
// h -= (HoeheD * Parameter_Luftdruck_D)/(8/STICK_GAIN); // D-Anteil
1257,24 → 1237,24
if(tmp_int > 70*STICK_GAIN) tmp_int = 70*STICK_GAIN;
else if(tmp_int < -(70*STICK_GAIN)) tmp_int = -(70*STICK_GAIN);
h -= tmp_int;
hoehenregler = (hoehenregler*15 + h) / 16;
hoehenregler = (hoehenregler*15 + h) / 16;
if(hoehenregler < EE_Parameter.Hoehe_MinGas * STICK_GAIN) // nicht unter MIN
{
if(GasMischanteil >= EE_Parameter.Hoehe_MinGas * STICK_GAIN) hoehenregler = EE_Parameter.Hoehe_MinGas * STICK_GAIN;
if(GasMischanteil < EE_Parameter.Hoehe_MinGas * STICK_GAIN) hoehenregler = GasMischanteil;
}
}
if(hoehenregler > GasMischanteil) hoehenregler = GasMischanteil; // nicht mehr als Gas
GasMischanteil = hoehenregler;
}
}
}
if(GasMischanteil > (MAX_GAS - 20) * STICK_GAIN) GasMischanteil = (MAX_GAS - 20) * STICK_GAIN;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Mischer und PI-Regler
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DebugOut.Analog[7] = GasMischanteil;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Gier-Anteil
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#define MUL_G 1.0
GierMischanteil = MesswertGier - sollGier * STICK_GAIN; // Regler für Gier
// GierMischanteil = 0;
1281,38 → 1261,38
#define MIN_GIERGAS (40*STICK_GAIN) // unter diesem Gaswert trotzdem Gieren
if(GasMischanteil > MIN_GIERGAS)
{
if(GierMischanteil > (GasMischanteil / 2)) GierMischanteil = GasMischanteil / 2;
if(GierMischanteil < -(GasMischanteil / 2)) GierMischanteil = -(GasMischanteil / 2);
if(GierMischanteil > (GasMischanteil / 2)) GierMischanteil = GasMischanteil / 2;
if(GierMischanteil < -(GasMischanteil / 2)) GierMischanteil = -(GasMischanteil / 2);
}
else
else
{
if(GierMischanteil > (MIN_GIERGAS / 2)) GierMischanteil = MIN_GIERGAS / 2;
if(GierMischanteil < -(MIN_GIERGAS / 2)) GierMischanteil = -(MIN_GIERGAS / 2);
if(GierMischanteil > (MIN_GIERGAS / 2)) GierMischanteil = MIN_GIERGAS / 2;
if(GierMischanteil < -(MIN_GIERGAS / 2)) GierMischanteil = -(MIN_GIERGAS / 2);
}
tmp_int = MAX_GAS*STICK_GAIN;
if(GierMischanteil > ((tmp_int - GasMischanteil))) GierMischanteil = ((tmp_int - GasMischanteil));
if(GierMischanteil > ((tmp_int - GasMischanteil))) GierMischanteil = ((tmp_int - GasMischanteil));
if(GierMischanteil < -((tmp_int - GasMischanteil))) GierMischanteil = -((tmp_int - GasMischanteil));
 
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Nick-Achse
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DiffNick = MesswertNick - StickNick; // Differenz bestimmen
if(IntegralFaktor) SummeNick += IntegralNick * IntegralFaktor - StickNick; // I-Anteil bei Winkelregelung
else SummeNick += DiffNick; // I-Anteil bei HH
else SummeNick += DiffNick; // I-Anteil bei HH
if(SummeNick > (STICK_GAIN * 16000L)) SummeNick = (STICK_GAIN * 16000L);
if(SummeNick < -(16000L * STICK_GAIN)) SummeNick = -(16000L * STICK_GAIN);
pd_ergebnis = DiffNick + Ki * SummeNick; // PI-Regler für Nick
pd_ergebnis = DiffNick + Ki * SummeNick; // PI-Regler für Nick
// Motor Vorn
tmp_int = (long)((long)Parameter_DynamicStability * (long)(GasMischanteil + abs(GierMischanteil)/2)) / 64;
if(pd_ergebnis > tmp_int) pd_ergebnis = tmp_int;
if(pd_ergebnis < -tmp_int) pd_ergebnis = -tmp_int;
if(pd_ergebnis > tmp_int) pd_ergebnis = tmp_int;
if(pd_ergebnis < -tmp_int) pd_ergebnis = -tmp_int;
 
motorwert = GasMischanteil + pd_ergebnis + GierMischanteil; // Mischer
motorwert /= STICK_GAIN;
if ((motorwert < 0)) motorwert = 0;
else if(motorwert > MAX_GAS) motorwert = MAX_GAS;
if (motorwert < MIN_GAS) motorwert = MIN_GAS;
Motor_Vorne = motorwert;
if (motorwert < MIN_GAS) motorwert = MIN_GAS;
Motor_Vorne = motorwert;
// Motor Heck
motorwert = GasMischanteil - pd_ergebnis + GierMischanteil;
motorwert /= STICK_GAIN;
1319,10 → 1299,10
if ((motorwert < 0)) motorwert = 0;
else if(motorwert > MAX_GAS) motorwert = MAX_GAS;
if (motorwert < MIN_GAS) motorwert = MIN_GAS;
Motor_Hinten = motorwert;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Motor_Hinten = motorwert;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Roll-Achse
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DiffRoll = MesswertRoll - StickRoll; // Differenz bestimmen
if(IntegralFaktor) SummeRoll += IntegralRoll * IntegralFaktor - StickRoll;// I-Anteil bei Winkelregelung
else SummeRoll += DiffRoll; // I-Anteil bei HH
1330,8 → 1310,8
if(SummeRoll < -(16000L * STICK_GAIN)) SummeRoll = -(16000L * STICK_GAIN);
pd_ergebnis = DiffRoll + Ki * SummeRoll; // PI-Regler für Roll
tmp_int = (long)((long)Parameter_DynamicStability * (long)(GasMischanteil + abs(GierMischanteil)/2)) / 64;
if(pd_ergebnis > tmp_int) pd_ergebnis = tmp_int;
if(pd_ergebnis < -tmp_int) pd_ergebnis = -tmp_int;
if(pd_ergebnis > tmp_int) pd_ergebnis = tmp_int;
if(pd_ergebnis < -tmp_int) pd_ergebnis = -tmp_int;
// Motor Links
motorwert = GasMischanteil + pd_ergebnis - GierMischanteil;
motorwert /= STICK_GAIN;
1338,14 → 1318,14
if ((motorwert < 0)) motorwert = 0;
else if(motorwert > MAX_GAS) motorwert = MAX_GAS;
if (motorwert < MIN_GAS) motorwert = MIN_GAS;
Motor_Links = motorwert;
Motor_Links = motorwert;
// Motor Rechts
motorwert = GasMischanteil - pd_ergebnis - GierMischanteil;
motorwert /= STICK_GAIN;
if ((motorwert < 0)) motorwert = 0;
else if(motorwert > MAX_GAS) motorwert = MAX_GAS;
if (motorwert < MIN_GAS) motorwert = MIN_GAS;
Motor_Rechts = motorwert;
if (motorwert < MIN_GAS) motorwert = MIN_GAS;
Motor_Rechts = motorwert;
// +++++++++++++++++++++++++++++++++++++++++++++++
}
 
/trunk/main.c
3,14 → 3,14
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten und nicht-kommerziellen Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten und nicht-kommerziellen Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
21,21 → 21,21
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// + from this software without specific prior written permission.
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + for non-commercial use (directly or indirectly)
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + with our written permission
// + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + * porting to systems other than hardware from www.mikrokopter.de is not allowed
// + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47,7 → 47,7
// + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// + POSSIBILITY OF SUCH DAMAGE.
// + POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include "main.h"
 
55,7 → 55,7
unsigned char PlatinenVersion = 10;
unsigned char SendVersionToNavi = 1;
// -- Parametersatz aus EEPROM lesen ---
// number [1..5]
// number [1..5]
void ReadParameterSet(unsigned char number, unsigned char *buffer, unsigned char length)
{
if((number > 5)||(number < 1)) number = 3;
65,10 → 65,10
}
 
// -- Parametersatz ins EEPROM schreiben ---
// number [1..5]
// number [1..5]
void WriteParameterSet(unsigned char number, unsigned char *buffer, unsigned char length)
{
if(number > 5) number = 5;
if(number > 5) number = 5;
if(number < 1) return;
number--;
eeprom_write_block(buffer, &EEPromArray[EEPROM_ADR_PARAM_BEGIN + length * number], length);
80,11 → 80,11
{
unsigned char set;
set = eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACTIVE_SET]);
if(set > 5)
{
set = 2;
if(set > 5)
{
set = 2;
eeprom_write_byte(&EEPromArray[EEPROM_ADR_ACTIVE_SET], set); // diesen Parametersatz als aktuell merken
}
}
return(set);
}
 
97,11 → 97,11
{
stick = 1;
WinkelOut.CalcState++;
if(WinkelOut.CalcState > 4)
{
if(WinkelOut.CalcState > 4)
{
// WinkelOut.CalcState = 0; // in Uart.c
beeptime = 1000;
}
}
else Piep(WinkelOut.CalcState);
}
DebugOut.Analog[19] = WinkelOut.CalcState;
115,18 → 115,18
unsigned int timer;
 
//unsigned int timer2 = 0;
DDRB = 0x00;
PORTB = 0x00;
DDRB = 0x00;
PORTB = 0x00;
for(timer = 0; timer < 1000; timer++); // verzögern
if(PINB & 0x01)
if(PINB & 0x01)
{
if(PINB & 0x02) PlatinenVersion = 13;
else PlatinenVersion = 11;
if(PINB & 0x02) PlatinenVersion = 13;
else PlatinenVersion = 11;
}
else
else
{
if(PINB & 0x02) PlatinenVersion = 20;
else PlatinenVersion = 10;
if(PINB & 0x02) PlatinenVersion = 20;
else PlatinenVersion = 10;
}
 
DDRC = 0x81; // SCL
137,8 → 137,8
DDRD = 0x3E; // Speaker & TXD & J3 J4 J5
DDRD |=0x80; // J7 -> Servo signal
PORTD = 0x77; // LED
 
 
MCUSR &=~(1<<WDRF);
WDTCSR |= (1<<WDCE)|(1<<WDE);
WDTCSR = 0;
148,7 → 148,7
StickGier = 0; PPM_in[K_GAS] = 0;StickRoll = 0; StickNick = 0;
 
ROT_OFF;
 
Timer_Init();
UART_Init();
rc_sum_init();
155,17 → 155,10
ADC_Init();
i2c_init();
SPI_MasterInit();
 
sei();
 
VersionInfo.Hauptversion = VERSION_HAUPTVERSION;
VersionInfo.Nebenversion = VERSION_NEBENVERSION;
VersionInfo.PCKompatibel = VERSION_KOMPATIBEL;
VersionInfo.NaviKompatibel = NAVI_KOMPATIBEL;
VersionInfo.Hardware = 1; // FlightCtrl
VersionInfo.Patch = VERSION_INDEX;
printf("\n\rFlightControl\n\rHardware:%d.%d\n\rSoftware:V%d.%d%c ",PlatinenVersion/10,PlatinenVersion%10, VERSION_HAUPTVERSION, VERSION_NEBENVERSION,VERSION_INDEX + 'a');
printf("\n\rFlightControl\n\rHardware:%d.%d\n\rSoftware:V%d.%d%c ",PlatinenVersion/10,PlatinenVersion%10, VERSION_MAJOR, VERSION_MINOR,VERSION_PATCH + 'a');
printf("\n\r==============================");
 
GRN_ON;
173,80 → 166,78
#define EE_DATENREVISION 72 // wird angepasst, wenn sich die EEPROM-Daten geändert haben
ReadParameterSet(0, (unsigned char *) &EE_Parameter.Kanalbelegung[0], 9); // read only the first bytes
// valid Stick-Settings?
if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_VALID]) == 255 || eeprom_read_byte(&EEPromArray[EEPROM_ADR_VALID]) < 72 ||
if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_VALID]) == 255 || eeprom_read_byte(&EEPromArray[EEPROM_ADR_VALID]) < 72 ||
EE_Parameter.Kanalbelegung[0] > 9 || EE_Parameter.Kanalbelegung[1] > 9 || EE_Parameter.Kanalbelegung[2] > 9 || EE_Parameter.Kanalbelegung[3] > 9)
{
{
printf("\n\rInit. EEPROM: Generating Default-Parameter and Stick-Settings...");
DefaultStickMapping();
}
else if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_VALID]) != EE_DATENREVISION) printf("\n\rInit. EEPROM: Generating Default-Parameter using old Stick Settings");
if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_VALID]) != EE_DATENREVISION)
{
 
if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_VALID]) != EE_DATENREVISION)
{
DefaultKonstanten1();
for (unsigned char i=1;i<6;i++)
for (unsigned char i=1;i<6;i++)
{
if(i==2) DefaultKonstanten2(); // Kamera
if(i==3) DefaultKonstanten3(); // Beginner
if(i>3) DefaultKonstanten2(); // Kamera
WriteParameterSet(i, (unsigned char *) &EE_Parameter.Kanalbelegung[0], STRUCT_PARAM_LAENGE);
}
}
eeprom_write_byte(&EEPromArray[EEPROM_ADR_ACTIVE_SET], 3); // default-Setting
eeprom_write_byte(&EEPromArray[EEPROM_ADR_VALID], EE_DATENREVISION);
}
 
if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_NICK]) > 4)
if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_NICK]) > 4)
{
printf("\n\rACC nicht abgeglichen!");
}
 
ReadParameterSet(GetActiveParamSetNumber(), (unsigned char *) &EE_Parameter.Kanalbelegung[0], STRUCT_PARAM_LAENGE);
printf("\n\rBenutze Parametersatz %d", GetActiveParamSetNumber());
 
 
if(EE_Parameter.GlobalConfig & CFG_HOEHENREGELUNG)
{
{
printf("\n\rAbgleich Luftdrucksensor..");
timer = SetDelay(1000);
timer = SetDelay(1000);
SucheLuftruckOffset();
while (!CheckDelay(timer));
printf("OK\n\r");
}
 
SetNeutral();
 
ROT_OFF;
 
beeptime = 2000;
ExternControl.Digital[0] = 0x55;
ExternControl.Digital[0] = 0x55;
 
 
printf("\n\rSteuerung: ");
if (EE_Parameter.GlobalConfig & CFG_HEADING_HOLD) printf("HeadingHold");
else printf("Neutral");
 
printf("\n\n\r");
 
LcdClear();
I2CTimeout = 5000;
WinkelOut.Orientation = 1;
while (1)
{
 
if(UpdateMotor) // ReglerIntervall
{
UpdateMotor=0;
{
UpdateMotor=0;
//PORTD |= 0x08;
if(WinkelOut.CalcState) CalMk3Mag();
else MotorRegler();
else MotorRegler();
//PORTD &= ~0x08;
SendMotorData();
ROT_OFF;
if(PcZugriff) PcZugriff--;
else
if(PcZugriff) PcZugriff--;
else
{
DubWiseKeys[0] = 0;
DubWiseKeys[1] = 0;
ExternControl.Config = 0;
ExternStickNick = 0;
ExternStickRoll = 0;
257,16 → 248,16
{
I2CTimeout = 5;
i2c_reset();
if((BeepMuster == 0xffff) && MotorenEin)
{
if((BeepMuster == 0xffff) && MotorenEin)
{
beeptime = 10000;
BeepMuster = 0x0080;
}
}
}
else
else
{
I2CTimeout--;
ROT_OFF;
ROT_OFF;
}
if(SIO_DEBUG && (!UpdateMotor || !MotorenEin))
{
275,16 → 266,16
}
else BearbeiteRxDaten();
if(CheckDelay(timer))
{
{
if(UBat < EE_Parameter.UnterspannungsWarnung)
{
if(BeepMuster == 0xffff)
{
{
if(BeepMuster == 0xffff)
{
beeptime = 6000;
BeepMuster = 0x0300;
}
}
}
/* if(SendVersionToNavi)
/* if(SendVersionToNavi)
{
SPI_StartTransmitPacket(SPI_CMD_VERSION);//#
SendVersionToNavi = 0;
294,8 → 285,8
SPI_StartTransmitPacket();//#
 
SendSPI = 4;
timer = SetDelay(20);
}
timer = SetDelay(20);
}
//if(UpdateMotor) DebugOut.Analog[26]++;
LED_Update();
}
/trunk/makefile
3,12 → 3,12
MCU = atmega644
F_CPU = 20000000
#-------------------------------------------------------------------
HAUPT_VERSION = 0
NEBEN_VERSION = 71
VERSION_INDEX = 5
VERSION_MAJOR = 0
VERSION_MINOR = 71
VERSION_PATCH = 6
 
VERSION_KOMPATIBEL = 9 # PC-Kompatibilität
NAVI_KOMPATIBEL = 1 # Navi-Kompatibilität
VERSION_SERIAL_COMPATIBLE = 10 # PC-Kompatibilität
NC_SPI_COMPATIBLE = 2 # Navi-Kompatibilität
#-------------------------------------------------------------------
 
ifeq ($(MCU), atmega32)
44,38 → 44,38
 
# Target file name (without extension).
 
ifeq ($(VERSION_INDEX), 0)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)a
ifeq ($(VERSION_PATCH), 0)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)a
endif
ifeq ($(VERSION_INDEX), 1)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)b
ifeq ($(VERSION_PATCH), 1)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)b
endif
ifeq ($(VERSION_INDEX), 2)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)c
ifeq ($(VERSION_PATCH), 2)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)c
endif
ifeq ($(VERSION_INDEX), 3)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)d
ifeq ($(VERSION_PATCH), 3)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)d
endif
ifeq ($(VERSION_INDEX), 4)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)e
ifeq ($(VERSION_PATCH), 4)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)e
endif
ifeq ($(VERSION_INDEX), 5)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)f
ifeq ($(VERSION_PATCH), 5)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)f
endif
ifeq ($(VERSION_INDEX), 6)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)g
ifeq ($(VERSION_PATCH), 6)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)g
endif
ifeq ($(VERSION_INDEX), 7)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)h
ifeq ($(VERSION_PATCH), 7)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)h
endif
ifeq ($(VERSION_INDEX), 8)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)i
ifeq ($(VERSION_PATCH), 8)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)i
endif
ifeq ($(VERSION_INDEX), 9)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)j
ifeq ($(VERSION_PATCH), 9)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)j
endif
ifeq ($(VERSION_INDEX), 10)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(HAUPT_VERSION)_$(NEBEN_VERSION)k
ifeq ($(VERSION_PATCH), 10)
TARGET = Flight-Ctrl_$(HEX_NAME)_V$(VERSION_MAJOR)_$(VERSION_MINOR)k
endif
 
# Optimization level, can be [0, 1, 2, 3, s]. 0 turns off optimization.
128,7 → 128,7
#CFLAGS += -std=c99
CFLAGS += -std=gnu99
 
CFLAGS += -DVERSION_HAUPTVERSION=$(HAUPT_VERSION) -DVERSION_NEBENVERSION=$(NEBEN_VERSION) -DVERSION_KOMPATIBEL=$(VERSION_KOMPATIBEL) -DNAVI_KOMPATIBEL=$(NAVI_KOMPATIBEL) -DVERSION_INDEX=$(VERSION_INDEX)
CFLAGS += -DVERSION_MAJOR=$(VERSION_MAJOR) -DVERSION_MINOR=$(VERSION_MINOR) -DVERSION_PATCH=$(VERSION_PATCH) -DVERSION_SERIAL_COMPATIBLE=$(VERSION_SERIAL_COMPATIBLE) -DNC_SPI_COMPATIBLE=$(NC_SPI_COMPATIBLE)
 
 
# Optional assembler flags.
/trunk/menu.c
10,74 → 10,66
#define ARRAYGROESSE 10
unsigned char Array[ARRAYGROESSE] = {1,2,3,4,5,6,7,8,9,10};
char DisplayBuff[80] = "Hallo Welt";
unsigned char DispPtr = 0;
unsigned char RemoteTasten = 0;
unsigned char DispPtr = 0;
 
#define KEY1 0x01
#define KEY2 0x02
#define KEY3 0x04
#define KEY4 0x08
#define KEY5 0x10
unsigned char MaxMenue = 11;
unsigned char MenuePunkt = 0;
 
 
void LcdClear(void)
{
unsigned char i;
for(i=0;i<80;i++) DisplayBuff[i] = ' ';
unsigned char i;
for(i=0;i<80;i++) DisplayBuff[i] = ' ';
}
 
void Menu(void)
{
static unsigned char MaxMenue = 11,MenuePunkt=255;
if(MenuePunkt == 255) {if(eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACC_NICK]) != 255) MenuePunkt = 0; else MenuePunkt = 5;}
if(RemoteTasten & KEY1) { if(MenuePunkt) MenuePunkt--; else MenuePunkt = MaxMenue; LcdClear(); RemotePollDisplayLine = -1; }
if(RemoteTasten & KEY2) { MenuePunkt++; LcdClear(); RemotePollDisplayLine = -1;}
if((RemoteTasten & KEY1) && (RemoteTasten & KEY2)) MenuePunkt = 0;
if(MenuePunkt < 10) {LCD_printfxy(17,0,"[%i]",MenuePunkt);} else {LCD_printfxy(16,0,"[%i]",MenuePunkt);};
 
if(MenuePunkt > MaxMenue) MenuePunkt = MaxMenue;
switch(MenuePunkt)
{
case 0:
case 0:
LCD_printfxy(0,0,"+ MikroKopter +");
LCD_printfxy(0,1,"HW:V%d.%d SW:%d.%d%c",PlatinenVersion/10,PlatinenVersion%10,VERSION_HAUPTVERSION, VERSION_NEBENVERSION,VERSION_INDEX+'a');
LCD_printfxy(0,1,"HW:V%d.%d SW:%d.%d%c",PlatinenVersion/10,PlatinenVersion%10, VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH +'a');
LCD_printfxy(0,2,"Setting: %d ",GetActiveParamSetNumber());
LCD_printfxy(0,3,"(c) Holger Buss");
// if(RemoteTasten & KEY3) TestInt--;
// if(RemoteTasten & KEY4) TestInt++;
break;
case 1:
case 1:
if(EE_Parameter.GlobalConfig & CFG_HOEHENREGELUNG)
{
{
LCD_printfxy(0,0,"Hoehe: %5i",HoehenWert);
LCD_printfxy(0,1,"SollHoehe: %5i",SollHoehe);
LCD_printfxy(0,2,"Luftdruck: %5i",MessLuftdruck);
LCD_printfxy(0,3,"Off : %5i",DruckOffsetSetting);
}
else
{
else
{
LCD_printfxy(0,1,"Keine ");
LCD_printfxy(0,2,"Höhenregelung");
}
 
break;
case 2:
case 2:
LCD_printfxy(0,0,"akt. Lage");
LCD_printfxy(0,1,"Nick: %5i",IntegralNick/1024);
LCD_printfxy(0,2,"Roll: %5i",IntegralRoll/1024);
LCD_printfxy(0,3,"Kompass: %5i",KompassValue);
break;
case 3:
case 3:
LCD_printfxy(0,0,"K1:%4i K2:%4i ",PPM_in[1],PPM_in[2]);
LCD_printfxy(0,1,"K3:%4i K4:%4i ",PPM_in[3],PPM_in[4]);
LCD_printfxy(0,2,"K5:%4i K6:%4i ",PPM_in[5],PPM_in[6]);
LCD_printfxy(0,3,"K7:%4i K8:%4i ",PPM_in[7],PPM_in[8]);
break;
case 4:
case 4:
LCD_printfxy(0,0,"Ni:%4i Ro:%4i ",PPM_in[EE_Parameter.Kanalbelegung[K_NICK]],PPM_in[EE_Parameter.Kanalbelegung[K_ROLL]]);
LCD_printfxy(0,1,"Gs:%4i Gi:%4i ",PPM_in[EE_Parameter.Kanalbelegung[K_GAS]],PPM_in[EE_Parameter.Kanalbelegung[K_GIER]]);
LCD_printfxy(0,2,"P1:%4i P2:%4i ",PPM_in[EE_Parameter.Kanalbelegung[K_POTI1]],PPM_in[EE_Parameter.Kanalbelegung[K_POTI2]]);
LCD_printfxy(0,3,"P3:%4i P4:%4i ",PPM_in[EE_Parameter.Kanalbelegung[K_POTI3]],PPM_in[EE_Parameter.Kanalbelegung[K_POTI4]]);
break;
case 5:
case 5:
LCD_printfxy(0,0,"Gyro - Sensor");
if(PlatinenVersion == 10)
{
85,7 → 77,7
LCD_printfxy(0,2,"Roll %4i (%3i)",AdWertRoll - AdNeutralRoll, AdNeutralRoll);
LCD_printfxy(0,3,"Gier %4i (%3i)",AdNeutralGier - AdWertGier, AdNeutralGier);
}
else
else
if((PlatinenVersion == 11) || (PlatinenVersion == 20))
{
LCD_printfxy(0,1,"Nick %4i (%3i)",AdWertNick - AdNeutralNick, AdNeutralNick/2);
101,35 → 93,35
}
 
break;
case 6:
case 6:
LCD_printfxy(0,0,"ACC - Sensor");
LCD_printfxy(0,1,"Nick %4i (%3i)",AdWertAccNick,NeutralAccX);
LCD_printfxy(0,2,"Roll %4i (%3i)",AdWertAccRoll,NeutralAccY);
LCD_printfxy(0,3,"Hoch %4i (%3i)",Mittelwert_AccHoch/*accumulate_AccHoch / messanzahl_AccHoch*/,(int)NeutralAccZ);
break;
case 7:
case 7:
LCD_printfxy(0,1,"Spannung: %5i",UBat);
LCD_printfxy(0,2,"Empf.Pegel:%5i",SenderOkay);
break;
case 8:
case 8:
LCD_printfxy(0,0,"Kompass ");
LCD_printfxy(0,1,"Richtung: %5i",KompassRichtung);
LCD_printfxy(0,2,"Messwert: %5i",KompassValue);
LCD_printfxy(0,3,"Start: %5i",KompassStartwert);
break;
case 9:
case 9:
LCD_printfxy(0,0,"Poti1: %3i",Poti1);
LCD_printfxy(0,1,"Poti2: %3i",Poti2);
LCD_printfxy(0,2,"Poti3: %3i",Poti3);
LCD_printfxy(0,3,"Poti4: %3i",Poti4);
break;
case 10:
case 10:
LCD_printfxy(0,0,"Servo " );
LCD_printfxy(0,1,"Setpoint %3i",Parameter_ServoNickControl);
LCD_printfxy(0,2,"Stellung: %3i",ServoValue);
LCD_printfxy(0,3,"Range:%3i-%3i",EE_Parameter.ServoNickMin,EE_Parameter.ServoNickMax);
break;
case 11:
case 11:
LCD_printfxy(0,0,"ExternControl " );
LCD_printfxy(0,1,"Ni:%4i Ro:%4i ",ExternControl.Nick,ExternControl.Roll);
LCD_printfxy(0,2,"Gs:%4i Gi:%4i ",ExternControl.Gas,ExternControl.Gier);
136,8 → 128,7
LCD_printfxy(0,3,"Hi:%4i Cf:%4i ",ExternControl.Hight,ExternControl.Config);
break;
default: MaxMenue = MenuePunkt - 1;
MenuePunkt = 0;
MenuePunkt = 0;
break;
}
RemoteTasten = 0;
}
/trunk/menu.h
2,5 → 2,8
extern void LcdClear(void);
extern char DisplayBuff[80];
extern unsigned char DispPtr;
extern unsigned char RemoteTasten;
 
extern unsigned char MaxMenue;
extern unsigned char MenuePunkt;
 
 
/trunk/spi.c
7,6 → 7,7
struct str_ToNaviCtrl ToNaviCtrl;
struct str_FromNaviCtrl FromNaviCtrl;
struct str_FromNaviCtrl_Value FromNaviCtrl_Value;
struct str_SPI_VersionInfo SPI_VersionInfo;
 
unsigned char SPI_BufferIndex;
unsigned char SPI_RxBufferIndex;
25,24 → 26,29
//------------------------------------------------------
void SPI_MasterInit(void)
{
DDR_SPI |= (1<<DD_MOSI)|(1<<DD_SCK); // Set MOSI and SCK output, all others input
DDR_SPI |= (1<<DD_MOSI)|(1<<DD_SCK); // Set MOSI and SCK output, all others input
SLAVE_SELECT_DDR_PORT |= (1 << SPI_SLAVE_SELECT);
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR1)|(0<<SPR0)|(0<<SPIE); // Enable SPI, Master, set clock rate fck/64
 
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR1)|(0<<SPR0)|(0<<SPIE); // Enable SPI, Master, set clock rate fck/64
SPSR = 0;//(1<<SPI2X);
SLAVE_SELECT_PORT |= (1 << SPI_SLAVE_SELECT);
 
SLAVE_SELECT_PORT |= (1 << SPI_SLAVE_SELECT);
SPITransferCompleted = 1;
 
//SPDR = 0x00; // dummy write
 
ToNaviCtrl.Sync1 = 0xAA;
ToNaviCtrl.Sync2 = 0x83;
 
ToNaviCtrl.Command = SPI_CMD_USER;
ToNaviCtrl.IntegralNick = 0;
ToNaviCtrl.IntegralRoll = 0;
SPI_RxDataValid = 0;
SPI_RxDataValid = 0;
 
SPI_VersionInfo.Major = VERSION_MAJOR;
SPI_VersionInfo.Minor = VERSION_MINOR;
SPI_VersionInfo.Patch = VERSION_PATCH;
SPI_VersionInfo.Compatible = NC_SPI_COMPATIBLE;
}
 
//------------------------------------------------------
50,19 → 56,19
{
//if ((SLAVE_SELECT_PORT & (1 << SPI_SLAVE_SELECT)) == 0) return; // transfer of prev. packet not completed
if (!SPITransferCompleted) return;
// _delay_us(30);
// _delay_us(30);
 
SLAVE_SELECT_PORT &= ~(1 << SPI_SLAVE_SELECT); // SelectSlave
SPI_TX_Buffer = (unsigned char *) &ToNaviCtrl;
 
ToNaviCtrl.Command = SPI_CommandSequence[SPI_CommandCounter++];
if (SPI_CommandCounter >= sizeof(SPI_CommandSequence)) SPI_CommandCounter = 0;
 
SPITransferCompleted = 0;
UpdateSPI_Buffer(); // update buffer
 
SPI_BufferIndex = 1;
//ebugOut.Analog[16]++;
//ebugOut.Analog[16]++;
// -- Debug-Output ---
//----
asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop");
69,7 → 75,7
asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop");
asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop");
ToNaviCtrl.Chksum = ToNaviCtrl.Sync1;
SPDR = ToNaviCtrl.Sync1; // Start transmission
SPDR = ToNaviCtrl.Sync1; // Start transmission
// SLAVE_SELECT_PORT |= (1 << SPI_SLAVE_SELECT); // DeselectSlave
 
}
79,71 → 85,71
void SPI_TransmitByte(void)
{
static unsigned char SPI_RXState = 0;
unsigned char rxdata;
unsigned char rxdata;
static unsigned char rxchksum;
 
if (SPITransferCompleted) return;
if (!(SPSR & (1 << SPIF))) return;
SendSPI = 4;
// _delay_us(30);
SendSPI = 4;
 
// _delay_us(30);
SLAVE_SELECT_PORT |= (1 << SPI_SLAVE_SELECT); // DeselectSlave
 
rxdata = SPDR;
switch ( SPI_RXState)
{
case 0:
SPI_RxBufferIndex = 0;
case 0:
 
SPI_RxBufferIndex = 0;
//DebugOut.Analog[17]++;
rxchksum = rxdata;
if (rxdata == 0x81 ) { SPI_RXState = 1; } // 1. Syncbyte ok
rxchksum = rxdata;
if (rxdata == 0x81 ) { SPI_RXState = 1; } // 1. Syncbyte ok
 
break;
 
case 1:
if (rxdata == 0x55) { rxchksum += rxdata; SPI_RXState = 2; } // 2. Syncbyte ok
else SPI_RXState = 0;
case 1:
if (rxdata == 0x55) { rxchksum += rxdata; SPI_RXState = 2; } // 2. Syncbyte ok
else SPI_RXState = 0;
//DebugOut.Analog[18]++;
break;
break;
 
case 2:
SPI_Buffer[SPI_RxBufferIndex++]= rxdata; // get data
//DebugOut.Analog[19]++;
if (SPI_RxBufferIndex >= sizeof(FromNaviCtrl))
{
if (SPI_RxBufferIndex >= sizeof(FromNaviCtrl))
{
 
if (rxdata == rxchksum)
{
unsigned char *ptr = (unsigned char *)&FromNaviCtrl;
 
memcpy(ptr, (unsigned char *) SPI_Buffer, sizeof(SPI_Buffer));
SPI_RxDataValid = 1;
}
else SPI_RxDataValid = 0;
SPI_RXState = 0;
 
SPI_RxDataValid = 1;
}
else SPI_RxDataValid = 0;
 
SPI_RXState = 0;
}
else rxchksum += rxdata;
break;
}
if (SPI_BufferIndex < sizeof(ToNaviCtrl))
{
else rxchksum += rxdata;
break;
 
}
 
if (SPI_BufferIndex < sizeof(ToNaviCtrl))
{
SLAVE_SELECT_PORT &= ~(1 << SPI_SLAVE_SELECT); // SelectSlave
asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop");
asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop");
asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop"); asm volatile ("nop");
 
SPDR = SPI_TX_Buffer[SPI_BufferIndex];
ToNaviCtrl.Chksum += SPI_TX_Buffer[SPI_BufferIndex];
// SLAVE_SELECT_PORT |= (1 << SPI_SLAVE_SELECT); // DeselectSlave
 
}
else SPITransferCompleted = 1;
else SPITransferCompleted = 1;
 
SPI_BufferIndex++;
}
 
154,10 → 160,10
static unsigned char i =0;
signed int tmp;
cli();
 
ToNaviCtrl.IntegralNick = (int) (IntegralNick / 108);
ToNaviCtrl.IntegralRoll = (int) (IntegralRoll / 108);
ToNaviCtrl.GyroCompass = ErsatzKompass / GIER_GRAD_FAKTOR;
ToNaviCtrl.GyroCompass = ErsatzKompass / GIER_GRAD_FAKTOR;
ToNaviCtrl.AccNick = (int) ACC_AMPLIFY * (NaviAccNick / NaviCntAcc);
ToNaviCtrl.AccRoll = (int) ACC_AMPLIFY * (NaviAccRoll / NaviCntAcc);
NaviCntAcc = 0; NaviAccNick = 0; NaviAccRoll = 0;
164,9 → 170,9
// ToNaviCtrl.User8 = Parameter_UserParam8;
// ToNaviCtrl.CalState = WinkelOut.CalcState;
 
switch(ToNaviCtrl.Command) //
switch(ToNaviCtrl.Command) //
{
case SPI_CMD_USER:
case SPI_CMD_USER:
ToNaviCtrl.Param.Byte[0] = Parameter_UserParam1;
ToNaviCtrl.Param.Byte[1] = Parameter_UserParam2;
ToNaviCtrl.Param.Byte[2] = Parameter_UserParam3;
181,20 → 187,20
ToNaviCtrl.Param.Byte[10] =(unsigned char) EE_Parameter.UnterspannungsWarnung;
ToNaviCtrl.Param.Byte[11] =(unsigned char) eeprom_read_byte(&EEPromArray[EEPROM_ADR_ACTIVE_SET]);
break;
case SPI_CMD_PARAMETER1:
case SPI_CMD_PARAMETER1:
ToNaviCtrl.Param.Byte[0] = EE_Parameter.NaviGpsModeControl; // Parameters for the Naviboard
ToNaviCtrl.Param.Byte[1] = EE_Parameter.NaviGpsGain;
ToNaviCtrl.Param.Byte[2] = EE_Parameter.NaviGpsP;
ToNaviCtrl.Param.Byte[3] = EE_Parameter.NaviGpsI;
ToNaviCtrl.Param.Byte[4] = EE_Parameter.NaviGpsD;
ToNaviCtrl.Param.Byte[5] = EE_Parameter.NaviGpsACC;
ToNaviCtrl.Param.Byte[6] = EE_Parameter.NaviGpsMinSat;
ToNaviCtrl.Param.Byte[7] = EE_Parameter.NaviStickThreshold;
ToNaviCtrl.Param.Byte[1] = EE_Parameter.NaviGpsGain;
ToNaviCtrl.Param.Byte[2] = EE_Parameter.NaviGpsP;
ToNaviCtrl.Param.Byte[3] = EE_Parameter.NaviGpsI;
ToNaviCtrl.Param.Byte[4] = EE_Parameter.NaviGpsD;
ToNaviCtrl.Param.Byte[5] = EE_Parameter.NaviGpsACC;
ToNaviCtrl.Param.Byte[6] = EE_Parameter.NaviGpsMinSat;
ToNaviCtrl.Param.Byte[7] = EE_Parameter.NaviStickThreshold;
ToNaviCtrl.Param.Byte[8] = EE_Parameter.NaviOperatingRadius;
ToNaviCtrl.Param.Byte[9] = EE_Parameter.NaviWindCorrection;
ToNaviCtrl.Param.Byte[10] = EE_Parameter.NaviSpeedCompensation;
break;
case SPI_CMD_STICK:
case SPI_CMD_STICK:
tmp = PPM_in[EE_Parameter.Kanalbelegung[K_GAS]]; if(tmp > 127) tmp = 127; else if(tmp < -127) tmp = -127;
ToNaviCtrl.Param.Byte[0] = (char) tmp;
tmp = PPM_in[EE_Parameter.Kanalbelegung[K_GIER]]; if(tmp > 127) tmp = 127; else if(tmp < -127) tmp = -127;
210,28 → 216,27
ToNaviCtrl.Param.Byte[8] = (unsigned char) SenderOkay;
break;
case SPI_CMD_MISC:
if(WinkelOut.CalcState > 5)
if(WinkelOut.CalcState > 5)
{
WinkelOut.CalcState = 0;
ToNaviCtrl.Param.Byte[0] = 5;
}
WinkelOut.CalcState = 0;
ToNaviCtrl.Param.Byte[0] = 5;
}
else ToNaviCtrl.Param.Byte[0] = WinkelOut.CalcState;
ToNaviCtrl.Param.Int[1] = HoehenWert;
break;
 
case SPI_CMD_VERSION:
ToNaviCtrl.Param.Byte[0] = VersionInfo.Hauptversion;
ToNaviCtrl.Param.Byte[1] = VersionInfo.Nebenversion;
ToNaviCtrl.Param.Byte[2] = VersionInfo.PCKompatibel;
ToNaviCtrl.Param.Byte[3] = VersionInfo.Patch;
ToNaviCtrl.Param.Byte[4] = VersionInfo.NaviKompatibel;
ToNaviCtrl.Param.Byte[0] = SPI_VersionInfo.Major;
ToNaviCtrl.Param.Byte[1] = SPI_VersionInfo.Minor;
ToNaviCtrl.Param.Byte[2] = SPI_VersionInfo.Patch;
ToNaviCtrl.Param.Byte[3] = SPI_VersionInfo.Compatible;
break;
}
 
sei();
 
if (SPI_RxDataValid)
{
{
if(abs(FromNaviCtrl.GPS_Nick) < 512 && abs(FromNaviCtrl.GPS_Roll) < 512 && (EE_Parameter.GlobalConfig & CFG_GPS_AKTIV))
{
GPS_Nick = FromNaviCtrl.GPS_Nick;
239,9 → 244,9
}
if(FromNaviCtrl.CompassValue <= 360) KompassValue = FromNaviCtrl.CompassValue;
KompassRichtung = ((540 + KompassValue - KompassStartwert) % 360) - 180;
 
if(FromNaviCtrl.BeepTime > beeptime && !WinkelOut.CalcState) beeptime = FromNaviCtrl.BeepTime;
 
switch (FromNaviCtrl.Command)
{
case SPI_KALMAN:
249,7 → 254,7
FromNaviCtrl_Value.Kalman_MaxFusion = FromNaviCtrl.Param.Byte[1];
FromNaviCtrl_Value.Kalman_MaxDrift = FromNaviCtrl.Param.Byte[2];
break;
 
case SPI_CMD_OSD_DATA:
FromNaviCtrl_Value.OsdBar = FromNaviCtrl.Param.Byte[0];
FromNaviCtrl_Value.Distance = FromNaviCtrl.Param.Int[1];
273,7 → 278,7
{
// KompassValue = 0;
// KompassRichtung = 0;
 
GPS_Nick = 0;
GPS_Roll = 0;
}
/trunk/spi.h
4,7 → 4,7
 
#include <util/delay.h>
 
#define USE_SPI_COMMUNICATION
#define USE_SPI_COMMUNICATION
 
#define SPI_PROTOCOL_COMP 1
 
13,36 → 13,36
#define DD_SS PB4
#define DD_SCK PB7
#define DD_MOSI PB5
#define DD_MISO PB6
#define DD_MISO PB6
 
// for compatibility reasons gcc3.x <-> gcc4.x
#ifndef SPCR
// for compatibility reasons gcc3.x <-> gcc4.x
#ifndef SPCR
#define SPCR SPCR0
#endif
#ifndef SPE
#endif
#ifndef SPE
#define SPE SPE0
#endif
#ifndef MSTR
#endif
#ifndef MSTR
#define MSTR MSTR0
#endif
#ifndef SPR1
#endif
#ifndef SPR1
#define SPR1 SPR01
#endif
#ifndef SPR0
#endif
#ifndef SPR0
#define SPR0 SPR00
#endif
#ifndef SPIE
#endif
#ifndef SPIE
#define SPIE SPIE0
#endif
#ifndef SPDR
#endif
#ifndef SPDR
#define SPDR SPDR0
#endif
#ifndef SPIF
#endif
#ifndef SPIF
#define SPIF SPIF0
#endif
#ifndef SPSR
#endif
#ifndef SPSR
#define SPSR SPSR0
#endif
#endif
// -------------------------
 
#define SLAVE_SELECT_DDR_PORT DDRC
68,7 → 68,7
signed int GyroNick;
signed int GyroRoll;
signed int GyroGier;
union
union
{ char Byte[12];
int Int[6];
long Long[3];
75,7 → 75,7
float Float[3];
} Param;
unsigned char Chksum;
};
};
 
#define SPI_CMD_OSD_DATA 100
#define SPI_CMD_GPS_POS 101
91,7 → 91,7
signed int CompassValue;
signed int Status;
unsigned int BeepTime;
union
union
{ char Byte[12];
int Int[6];
long Long[3];
98,7 → 98,7
float Float[3];
} Param;
unsigned char Chksum;
};
};
 
struct str_FromNaviCtrl_Value
{
109,6 → 109,14
signed char Kalman_MaxFusion;
};
 
struct str_SPI_VersionInfo
{
unsigned char Major;
unsigned char Minor;
unsigned char Patch;
unsigned char Compatible;
};
 
#ifdef USE_SPI_COMMUNICATION
 
extern struct str_FromNaviCtrl_Value FromNaviCtrl_Value;
126,7 → 134,7
 
 
// -------------------------------- Dummy -----------------------------------------
#define SPI_MasterInit() ;
#define SPI_MasterInit() ;
#define SPI_StartTransmitPacket() ;
#define UpdateSPI_Buffer() ;
#define SPI_TransmitByte() ;
/trunk/uart.c
4,11 → 4,12
// + www.MikroKopter.com
// + see the File "License.txt" for further Informations
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
#include <stdarg.h>
#include <string.h>
#include "main.h"
#include "uart.h"
 
unsigned char GetExternalControl = 0,DebugDisplayAnforderung = 0,DebugDataAnforderung = 0,GetVersionAnforderung = 0;
unsigned char GetExternalControl = 0,DebugDisplayAnforderung = 0,DebugDataAnforderung = 0,GetVersionAnforderung = 0, GetPPMChannelAnforderung = 0;
unsigned volatile char SioTmp = 0;
unsigned volatile char SendeBuffer[MAX_SENDE_BUFF];
unsigned volatile char RxdBuffer[MAX_EMPFANGS_BUFF];
18,13 → 19,13
unsigned volatile char UebertragungAbgeschlossen = 1;
unsigned volatile char CntCrcError = 0;
unsigned volatile char AnzahlEmpfangsBytes = 0;
unsigned char *pRxData = 0;
unsigned char RxDataLen = 0;
unsigned volatile char PC_DebugTimeout = 0;
unsigned char RemotePollDisplayLine = 0;
unsigned char NurKanalAnforderung = 0;
 
unsigned char DebugTextAnforderung = 255;
unsigned char PcZugriff = 100;
unsigned char MotorTest[4] = {0,0,0,0};
unsigned char DubWiseKeys[4] = {0,0,0,0};
unsigned char MeineSlaveAdresse = 1; // Flight-Ctrl
unsigned char ConfirmFrame;
struct str_DebugOut DebugOut;
33,13 → 34,14
struct str_WinkelOut WinkelOut;
 
int Debug_Timer,Kompass_Timer;
unsigned int DebugDataIntervall = 200;
 
const unsigned char ANALOG_TEXT[32][16] =
{
//1234567890123456
//1234567890123456
"IntegralNick ", //0
"IntegralRoll ",
"AccNick ",
"AccNick ",
"AccRoll ",
"GyroGier ",
"HoehenWert ", //5
80,17 → 82,17
{
static unsigned int ptr = 0;
unsigned char tmp_tx;
if(!UebertragungAbgeschlossen)
if(!UebertragungAbgeschlossen)
{
ptr++; // die [0] wurde schon gesendet
tmp_tx = SendeBuffer[ptr];
tmp_tx = SendeBuffer[ptr];
if((tmp_tx == '\r') || (ptr == MAX_SENDE_BUFF))
{
ptr = 0;
UebertragungAbgeschlossen = 1;
}
UDR = tmp_tx;
}
UDR = tmp_tx;
}
else ptr = 0;
}
 
104,9 → 106,9
static unsigned char UartState = 0;
unsigned char CrcOkay = 0;
 
SioTmp = UDR;
SioTmp = UDR;
if(buf_ptr >= MAX_EMPFANGS_BUFF) UartState = 0;
if(SioTmp == '\r' && UartState == 2)
if(SioTmp == '\r' && UartState == 2)
{
UartState = 0;
crc -= RxdBuffer[buf_ptr-2];
118,11 → 120,11
if((crc1 == RxdBuffer[buf_ptr-2]) && (crc2 == RxdBuffer[buf_ptr-1])) CrcOkay = 1; else { CrcOkay = 0; CntCrcError++;};
if(!NeuerDatensatzEmpfangen && CrcOkay) // Datensatz schon verarbeitet
{
NeuerDatensatzEmpfangen = 1;
AnzahlEmpfangsBytes = buf_ptr;
NeuerDatensatzEmpfangen = 1;
AnzahlEmpfangsBytes = buf_ptr + 1;
RxdBuffer[buf_ptr] = '\r';
if(RxdBuffer[2] == 'R') wdt_enable(WDTO_250MS); // Reset-Commando
}
}
}
else
switch(UartState)
140,12 → 142,12
break;
case 2: // Eingangsdaten sammeln
RxdBuffer[buf_ptr] = SioTmp;
if(buf_ptr < MAX_EMPFANGS_BUFF) buf_ptr++;
if(buf_ptr < MAX_EMPFANGS_BUFF) buf_ptr++;
else UartState = 0;
crc += SioTmp;
break;
default:
UartState = 0;
default:
UartState = 0;
break;
}
}
154,7 → 156,7
// --------------------------------------------------------------------------
void AddCRC(unsigned int wieviele)
{
unsigned int tmpCRC = 0,i;
unsigned int tmpCRC = 0,i;
for(i = 0; i < wieviele;i++)
{
tmpCRC += SendeBuffer[i];
170,36 → 172,88
 
 
// --------------------------------------------------------------------------
void SendOutData(unsigned char cmd,unsigned char modul, unsigned char *snd, unsigned char len)
void SendOutData(unsigned char cmd,unsigned char modul, unsigned char BufferAnzahl, ...) //unsigned char *snd, unsigned char len)
{
va_list ap;
unsigned int pt = 0;
unsigned char a,b,c;
unsigned char ptr = 0;
 
unsigned char *snd = 0;
int len = 0;
 
SendeBuffer[pt++] = '#'; // Startzeichen
SendeBuffer[pt++] = modul; // Adresse (a=0; b=1,...)
SendeBuffer[pt++] = cmd; // Commando
 
va_start(ap, BufferAnzahl);
if(BufferAnzahl)
{
snd = va_arg(ap, unsigned char*);
len = va_arg(ap, int);
ptr = 0;
BufferAnzahl--;
}
while(len)
{
if(len) { a = snd[ptr++]; len--;} else a = 0;
if(len) { b = snd[ptr++]; len--;} else b = 0;
if(len) { c = snd[ptr++]; len--;} else c = 0;
if(len)
{
a = snd[ptr++];
len--;
if((!len) && BufferAnzahl)
{
snd = va_arg(ap, unsigned char*);
len = va_arg(ap, int);
ptr = 0;
BufferAnzahl--;
}
}
else a = 0;
if(len)
{
b = snd[ptr++];
len--;
if((!len) && BufferAnzahl)
{
snd = va_arg(ap, unsigned char*);
len = va_arg(ap, int);
ptr = 0;
BufferAnzahl--;
}
}
else b = 0;
if(len)
{
c = snd[ptr++];
len--;
if((!len) && BufferAnzahl)
{
snd = va_arg(ap, unsigned char*);
len = va_arg(ap, int);
ptr = 0;
BufferAnzahl--;
}
}
else c = 0;
SendeBuffer[pt++] = '=' + (a >> 2);
SendeBuffer[pt++] = '=' + (((a & 0x03) << 4) | ((b & 0xf0) >> 4));
SendeBuffer[pt++] = '=' + (((b & 0x0f) << 2) | ((c & 0xc0) >> 6));
SendeBuffer[pt++] = '=' + ( c & 0x3f);
}
va_end(ap);
AddCRC(pt);
}
 
 
// --------------------------------------------------------------------------
void Decode64(unsigned char *ptrOut, unsigned char len, unsigned char ptrIn,unsigned char max) // Wohin mit den Daten; Wie lang; Wo im RxdBuffer
void Decode64(void) // die daten werden im rx buffer dekodiert, das geht nur, weil aus 4 byte immer 3 gemacht werden.
{
unsigned char a,b,c,d;
unsigned char ptr = 0;
unsigned char x,y,z;
unsigned char ptrIn = 3; // start at begin of data block
unsigned char ptrOut = 3;
unsigned char len = AnzahlEmpfangsBytes - 6; // von der Gesamtbytezahl eines Frames gehen 3 Bytes des Headers ('#',Addr, Cmd) und 3 Bytes des Footers (CRC1, CRC2, '\r') ab.
 
while(len)
{
a = RxdBuffer[ptrIn++] - '=';
206,16 → 260,17
b = RxdBuffer[ptrIn++] - '=';
c = RxdBuffer[ptrIn++] - '=';
d = RxdBuffer[ptrIn++] - '=';
if(ptrIn > max - 2) break; // nicht mehr Daten verarbeiten, als empfangen wurden
 
x = (a << 2) | (b >> 4);
y = ((b & 0x0f) << 4) | (c >> 2);
z = ((c & 0x03) << 6) | d;
 
if(len--) ptrOut[ptr++] = x; else break;
if(len--) ptrOut[ptr++] = y; else break;
if(len--) ptrOut[ptr++] = z; else break;
if(len--) RxdBuffer[ptrOut++] = x; else break;
if(len--) RxdBuffer[ptrOut++] = y; else break;
if(len--) RxdBuffer[ptrOut++] = z; else break;
}
pRxData = (unsigned char*)&RxdBuffer[3]; // decodierte Daten beginnen beim 4. Byte
RxDataLen = ptrOut - 3; // wie viele Bytes wurden dekodiert?
 
}
 
224,92 → 279,82
{
if(!NeuerDatensatzEmpfangen) return;
 
unsigned int tmp_int_arr1[1];
// unsigned int tmp_int_arr2[2];
// unsigned int tmp_int_arr3[3];
unsigned char tmp_char_arr2[2];
// unsigned char tmp_char_arr3[3];
// unsigned char tmp_char_arr4[4];
//if(!MotorenEin)
Decode64(); // dekodiere datenblock im Empfangsbuffer
 
switch(RxdBuffer[2])
{
case 'K':// Kompasswert
Decode64((unsigned char *) &tmp_int_arr1[0],sizeof(tmp_int_arr1),3,AnzahlEmpfangsBytes);
KompassValue = tmp_int_arr1[0];
memcpy((unsigned char *)&KompassValue , (unsigned char *)pRxData, sizeof(KompassValue));
KompassRichtung = ((540 + KompassValue - KompassStartwert) % 360) - 180;
break;
case 'a':// Texte der Analogwerte
Decode64((unsigned char *) &tmp_char_arr2[0],sizeof(tmp_char_arr2),3,AnzahlEmpfangsBytes);
DebugTextAnforderung = tmp_char_arr2[0];
PcZugriff = 255;
DebugTextAnforderung = pRxData[0];
if (DebugTextAnforderung > 31) DebugTextAnforderung = 31;
PcZugriff = 255;
break;
case 'b':
Decode64((unsigned char *) &ExternControl,sizeof(ExternControl),3,AnzahlEmpfangsBytes);
RemoteTasten |= ExternControl.RemoteTasten;
memcpy((unsigned char *)&ExternControl, (unsigned char *)pRxData, sizeof(ExternControl));
ConfirmFrame = ExternControl.Frame;
PcZugriff = 255;
PcZugriff = 255;
break;
case 'c':
Decode64((unsigned char *) &ExternControl,sizeof(ExternControl),3,AnzahlEmpfangsBytes);
RemoteTasten |= ExternControl.RemoteTasten;
ConfirmFrame = ExternControl.Frame;
DebugDataAnforderung = 1;
PcZugriff = 255;
case 'd': // Poll the debug data
DebugDataIntervall = pRxData[0] * 10;
if (DebugDataIntervall) DebugDataAnforderung = 1;
break;
case 'f': // Poll the debug data
DebugDataAnforderung = 1;
break;
case 'h':// x-1 Displayzeilen
Decode64((unsigned char *) &tmp_char_arr2[0],sizeof(tmp_char_arr2),3,AnzahlEmpfangsBytes);
RemoteTasten |= tmp_char_arr2[0];
if(tmp_char_arr2[1] == 255) NurKanalAnforderung = 1; else NurKanalAnforderung = 0; // keine Displaydaten
case 'l':// x-1 Displayzeilen
MenuePunkt = pRxData[0];
DebugDisplayAnforderung = 1;
break;
case 't':// Motortest
Decode64((unsigned char *) &MotorTest[0],sizeof(MotorTest),3,AnzahlEmpfangsBytes);
PcZugriff = 255;
case 'm':// Motortest
memcpy(&MotorTest[0], (unsigned char *)pRxData, sizeof(MotorTest));
while(!UebertragungAbgeschlossen);
SendOutData('M', MeineSlaveAdresse, 0);
PcZugriff = 255;
break;
case 'k':// Keys von DubWise
Decode64((unsigned char *) &DubWiseKeys[0],sizeof(DubWiseKeys),3,AnzahlEmpfangsBytes);
ConfirmFrame = DubWiseKeys[3];
PcZugriff = 255;
break;
case 'v': // Version-Anforderung und Ausbaustufe
GetVersionAnforderung = 1;
break;
case 'g'://
break;
case 'g'://
GetExternalControl = 1;
break;
case 'q':// "Get"-Anforderung für Settings
case 'p': // get PPM Channels
GetPPMChannelAnforderung = 1;
break;
case 't':// "Get"-Anforderung für Settings
// Bei Get werden die vom PC einstellbaren Werte vom PC zurückgelesen
Decode64((unsigned char *) &tmp_char_arr2[0],sizeof(tmp_char_arr2),3,AnzahlEmpfangsBytes);
if(pRxData[0] == 0xFF)
{
pRxData[0] = GetActiveParamSetNumber();
}
else // request active parameter set
{
if(pRxData[0] < 1) pRxData[0] = 1; // limit to 5
else if(pRxData[0] > 5) pRxData[0] = 5; // limit to 5
// load requested parameter set
ReadParameterSet(pRxData[0], (unsigned char *) &EE_Parameter.Kanalbelegung[0], STRUCT_PARAM_LAENGE);
}
while(!UebertragungAbgeschlossen);
if(tmp_char_arr2[0] != 0xff)
{
if(tmp_char_arr2[0] > 5) tmp_char_arr2[0] = 5;
ReadParameterSet(tmp_char_arr2[0], (unsigned char *) &EE_Parameter.Kanalbelegung[0], STRUCT_PARAM_LAENGE);
SendOutData('L' + tmp_char_arr2[0] -1,MeineSlaveAdresse,(unsigned char *) &EE_Parameter.Kanalbelegung[0],STRUCT_PARAM_LAENGE);
}
else
SendOutData('L' + GetActiveParamSetNumber()-1,MeineSlaveAdresse,(unsigned char *) &EE_Parameter.Kanalbelegung[0],STRUCT_PARAM_LAENGE);
SendOutData('T', MeineSlaveAdresse, 2, &pRxData[0], sizeof(unsigned char), (unsigned char *) &EE_Parameter.Kanalbelegung[0], STRUCT_PARAM_LAENGE);
break;
case 'l':
case 'm':
case 'n':
case 'o':
case 'p': // Parametersatz speichern
Decode64((unsigned char *) &EE_Parameter.Kanalbelegung[0],STRUCT_PARAM_LAENGE,3,AnzahlEmpfangsBytes);
WriteParameterSet(RxdBuffer[2] - 'l' + 1, (unsigned char *) &EE_Parameter.Kanalbelegung[0], STRUCT_PARAM_LAENGE);
eeprom_write_byte(&EEPromArray[EEPROM_ADR_ACTIVE_SET], RxdBuffer[2] - 'l' + 1); // aktiven Datensatz merken
Umschlag180Nick = (long) EE_Parameter.WinkelUmschlagNick * 2500L;
Umschlag180Roll = (long) EE_Parameter.WinkelUmschlagRoll * 2500L;
Piep(GetActiveParamSetNumber());
break;
case 's': // Parametersatz speichern
if((1 <= pRxData[0]) && (pRxData[0] <= 5)) // check for setting to be in range
{
memcpy((unsigned char *) &EE_Parameter.Kanalbelegung[0], (unsigned char *)&pRxData[1], STRUCT_PARAM_LAENGE);
WriteParameterSet(pRxData[0], (unsigned char *) &EE_Parameter.Kanalbelegung[0], STRUCT_PARAM_LAENGE);
eeprom_write_byte(&EEPromArray[EEPROM_ADR_ACTIVE_SET], RxdBuffer[2] - 'l' + 1); // aktiven Datensatz merken
Umschlag180Nick = (long) EE_Parameter.WinkelUmschlagNick * 2500L;
Umschlag180Roll = (long) EE_Parameter.WinkelUmschlagRoll * 2500L;
Piep(GetActiveParamSetNumber());
while(!UebertragungAbgeschlossen);
SendOutData('S', MeineSlaveAdresse, 1, &pRxData[0], sizeof(unsigned char));
}
break;
 
}
// DebugOut.AnzahlZyklen = Debug_Timer_Intervall;
NeuerDatensatzEmpfangen = 0;
NeuerDatensatzEmpfangen = 0;
pRxData = 0;
RxDataLen = 0;
}
 
//############################################################################
323,7 → 368,7
loop_until_bit_is_set(USR, UDRE);
//Ausgabe des Zeichens
UDR = c;
 
return (0);
}
 
344,80 → 389,84
 
UCR=(1 << TXEN) | (1 << RXEN);
// UART Double Speed (U2X)
USR |= (1<<U2X);
USR |= (1<<U2X);
// RX-Interrupt Freigabe
UCSRB |= (1<<RXCIE);
UCSRB |= (1<<RXCIE);
// TX-Interrupt Freigabe
UCSRB |= (1<<TXCIE);
UCSRB |= (1<<TXCIE);
 
//Teiler wird gesetzt
//Teiler wird gesetzt
UBRR=(SYSCLK / (BAUD_RATE * 8L) - 1);
//UBRR = 33;
//öffnet einen Kanal für printf (STDOUT)
//fdevopen (uart_putchar, 0);
//sbi(PORTD,4);
Debug_Timer = SetDelay(200);
Kompass_Timer = SetDelay(220);
MeineSlaveAdresse = 1; // Flight-Ctrl
Debug_Timer = SetDelay(DebugDataIntervall);
Kompass_Timer = SetDelay(220);
MeineSlaveAdresse = 1; // Flight-Ctrl
 
VersionInfo.Major = VERSION_MAJOR;
VersionInfo.Minor = VERSION_MINOR;
VersionInfo.Patch = VERSION_PATCH;
VersionInfo.Compatible = VERSION_SERIAL_COMPATIBLE;
 
pRxData = 0;
RxDataLen = 0;
}
 
//---------------------------------------------------------------------------------------------
void DatenUebertragung(void)
void DatenUebertragung(void)
{
if(!UebertragungAbgeschlossen) return;
 
if(GetExternalControl && UebertragungAbgeschlossen) // Bei Get werden die vom PC einstellbaren Werte vom PC zurückgelesen
{
SendOutData('G',MeineSlaveAdresse,(unsigned char *) &ExternControl,sizeof(ExternControl));
{
SendOutData('G',MeineSlaveAdresse, 1, (unsigned char *) &ExternControl, sizeof(ExternControl));
GetExternalControl = 0;
}
 
if((CheckDelay(Kompass_Timer)) && UebertragungAbgeschlossen)
if((CheckDelay(Kompass_Timer)) && UebertragungAbgeschlossen)
{
WinkelOut.Winkel[0] = (int) (IntegralNick / 108); // etwa in 0,1 Grad
WinkelOut.Winkel[1] = (int) (IntegralRoll / 108); // etwa in 0,1 Grad
WinkelOut.UserParameter[0] = Parameter_UserParam1;
WinkelOut.UserParameter[1] = Parameter_UserParam2;
SendOutData('w',MeineSlaveAdresse,(unsigned char *) &WinkelOut,sizeof(WinkelOut));
SendOutData('k',MeineSlaveAdresse, 1, (unsigned char *) &WinkelOut,sizeof(WinkelOut));
if(WinkelOut.CalcState > 4) WinkelOut.CalcState = 6; // wird dann in SPI auf Null gesetzt
Kompass_Timer = SetDelay(99);
}
if((CheckDelay(Debug_Timer) || DebugDataAnforderung) && UebertragungAbgeschlossen)
Kompass_Timer = SetDelay(99);
}
if((( DebugDataIntervall && CheckDelay(Debug_Timer)) || DebugDataAnforderung) && UebertragungAbgeschlossen)
{
SendOutData('D',MeineSlaveAdresse,(unsigned char *) &DebugOut,sizeof(DebugOut));
SendOutData('D',MeineSlaveAdresse, 1, (unsigned char *) &DebugOut,sizeof(DebugOut));
DebugDataAnforderung = 0;
Debug_Timer = SetDelay(MIN_DEBUG_INTERVALL);
}
if(DebugDataIntervall) Debug_Timer = SetDelay(DebugDataIntervall);
}
if(DebugTextAnforderung != 255) // Texte für die Analogdaten
{
SendOutData('A',DebugTextAnforderung + '0',(unsigned char *) ANALOG_TEXT[DebugTextAnforderung],16);
SendOutData('A', MeineSlaveAdresse, 2, (unsigned char *)&DebugTextAnforderung, sizeof(DebugTextAnforderung),(unsigned char *) ANALOG_TEXT[DebugTextAnforderung], 16);
DebugTextAnforderung = 255;
}
if(ConfirmFrame && UebertragungAbgeschlossen) // Datensatz ohne CRC bestätigen
if(ConfirmFrame && UebertragungAbgeschlossen) // Datensatz bestätigen
{
SendeBuffer[0] = '#';
SendeBuffer[1] = ConfirmFrame;
SendeBuffer[2] = '\r';
UebertragungAbgeschlossen = 0;
ConfirmFrame = 0;
UDR = SendeBuffer[0];
SendOutData('B', MeineSlaveAdresse, 1, (uint8_t*)&ConfirmFrame, sizeof(ConfirmFrame));
ConfirmFrame = 0;
}
if(DebugDisplayAnforderung && UebertragungAbgeschlossen)
{
Menu();
SendOutData('L',MeineSlaveAdresse, 3, &MenuePunkt, sizeof(MenuePunkt), &MaxMenue, sizeof(MaxMenue), DisplayBuff, sizeof(DisplayBuff));
DebugDisplayAnforderung = 0;
if(++RemotePollDisplayLine == 4 || NurKanalAnforderung)
{
SendOutData('4',0,(unsigned char *)&PPM_in,sizeof(PPM_in)); // DisplayZeile übertragen
RemotePollDisplayLine = -1;
}
else SendOutData('0' + RemotePollDisplayLine,0,(unsigned char *)&DisplayBuff[20 * RemotePollDisplayLine],20); // DisplayZeile übertragen
}
if(GetVersionAnforderung && UebertragungAbgeschlossen)
{
SendOutData('V',MeineSlaveAdresse,(unsigned char *) &VersionInfo,sizeof(VersionInfo));
}
if(GetVersionAnforderung && UebertragungAbgeschlossen)
{
SendOutData('V',MeineSlaveAdresse, 1, (unsigned char *) &VersionInfo, sizeof(VersionInfo));
GetVersionAnforderung = 0;
}
if(GetPPMChannelAnforderung && UebertragungAbgeschlossen)
{
SendOutData('P',MeineSlaveAdresse, 1, (unsigned char *) &PPM_in, sizeof(PPM_in));
GetPPMChannelAnforderung = 0;
}
 
}
 
/trunk/uart.h
3,11 → 3,6
 
#define MAX_SENDE_BUFF 150
#define MAX_EMPFANGS_BUFF 150
#define DUB_KEY_UP 4
#define DUB_KEY_DOWN 8
#define DUB_KEY_RIGHT 32
#define DUB_KEY_LEFT 16
#define DUB_KEY_FIRE 64
 
void BearbeiteRxDaten(void);
 
28,7 → 23,6
extern void DecodeNMEA(void);
extern void BearbeiteRxDaten(void);
extern unsigned char MotorTest[4];
extern unsigned char DubWiseKeys[4];
struct str_DebugOut
{
unsigned char Digital[2];
41,7 → 35,7
{
signed int Winkel[2];
unsigned char UserParameter[2];
unsigned char CalcState;
unsigned char CalcState;
unsigned char Orientation;
};
extern struct str_WinkelOut WinkelOut;
58,27 → 52,25
unsigned char free;
unsigned char Frame;
unsigned char Config;
};
};
extern struct str_ExternControl ExternControl;
 
struct str_VersionInfo
{
unsigned char Hauptversion;
unsigned char Nebenversion;
unsigned char PCKompatibel;
unsigned char Hardware;
unsigned char Major;
unsigned char Minor;
unsigned char Patch;
unsigned char NaviKompatibel;
unsigned char Reserved[4];
};
unsigned char Compatible;
unsigned char Reserved[6];
};
extern struct str_VersionInfo VersionInfo;
 
//Die Baud_Rate der Seriellen Schnittstelle ist 9600 Baud
//#define BAUD_RATE 9600 //Baud Rate für die Serielle Schnittstelle
//#define BAUD_RATE 14400 //Baud Rate für die Serielle Schnittstelle
//#define BAUD_RATE 28800 //Baud Rate für die Serielle Schnittstelle
//#define BAUD_RATE 38400 //Baud Rate für die Serielle Schnittstelle
#define BAUD_RATE 57600 //Baud Rate für die Serielle Schnittstelle
//#define BAUD_RATE 9600 //Baud Rate für die Serielle Schnittstelle
//#define BAUD_RATE 14400 //Baud Rate für die Serielle Schnittstelle
//#define BAUD_RATE 28800 //Baud Rate für die Serielle Schnittstelle
//#define BAUD_RATE 38400 //Baud Rate für die Serielle Schnittstelle
#define BAUD_RATE 57600 //Baud Rate für die Serielle Schnittstelle
 
//Anpassen der seriellen Schnittstellen Register wenn ein ATMega128 benutzt wird
#if defined (__AVR_ATmega128__)