Subversion Repositories NaviCtrl

Rev

Rev 270 | Rev 275 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + Copyright (c) 2010 Ingo Busker, Holger Buss
6
// + Nur für den privaten Gebrauch / NON-COMMERCIAL USE ONLY
7
// + FOR NON COMMERCIAL USE ONLY
8
// + www.MikroKopter.com
9
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
10
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
11
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
12
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
13
// + bzgl. der Nutzungsbedingungen aufzunehmen.
14
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
15
// + Verkauf von Luftbildaufnahmen, usw.
16
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
17
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
18
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
21
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
22
// + eindeutig als Ursprung verlinkt werden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
25
// + Benutzung auf eigene Gefahr
26
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
27
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// + Die Portierung oder Nutzung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
29
// + mit unserer Zustimmung zulässig
30
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
31
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
32
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
33
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
34
// + this list of conditions and the following disclaimer.
35
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
36
// +     from this software without specific prior written permission.
37
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permitted
38
// +     for non-commercial use (directly or indirectly)
39
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
40
// +     with our written permission
41
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
42
// +     clearly linked as origin
43
// +   * porting the sources to other systems or using the software on other systems (except hardware from www.mikrokopter.de) is not allowed
44
//
45
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
46
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
49
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
50
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
51
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
52
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
53
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
55
// +  POSSIBILITY OF SUCH DAMAGE.
56
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 57
#include <math.h>
242 killagreg 58
#include <string.h>
59
#include "91x_lib.h"
268 killagreg 60
#include "main.h"
253 killagreg 61
#include "ncmag.h"
242 killagreg 62
#include "i2c.h"
63
#include "timer1.h"
64
#include "led.h"
65
#include "spi_slave.h"
66
#include "uart1.h"
254 killagreg 67
#include "eeprom.h"
256 killagreg 68
#include "mymath.h"
242 killagreg 69
 
253 killagreg 70
u8 NCMAG_Present = 0;
254 killagreg 71
u8 NCMAG_IsCalibrated = 0;
242 killagreg 72
 
253 killagreg 73
#define MAG_TYPE_NONE           0
74
#define MAG_TYPE_HMC5843        1
75
#define MAG_TYPE_LSM303DLH      2
254 killagreg 76
u8 NCMAG_MagType = MAG_TYPE_NONE;
242 killagreg 77
 
254 killagreg 78
#define CALIBRATION_VERSION 1
79
#define EEPROM_ADR_MAG_CALIBRATION 50
80
 
256 killagreg 81
#define NCMAG_MIN_RAWVALUE -2047
82
#define NCMAG_MAX_RAWVALUE  2047
83
#define NCMAG_INVALID_DATA -4096
84
 
254 killagreg 85
typedef struct
86
{
87
        s16 Range;
88
        s16 Offset;
256 killagreg 89
} __attribute__((packed)) Scaling_t;
254 killagreg 90
 
91
typedef struct
92
{
93
        Scaling_t MagX;
94
        Scaling_t MagY;
95
        Scaling_t MagZ;
96
        u8 Version;
97
        u8 crc;
256 killagreg 98
} __attribute__((packed)) Calibration_t;
254 killagreg 99
 
100
Calibration_t Calibration;              // calibration data in RAM 
101
 
253 killagreg 102
// i2c MAG interface
103
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 104
 
253 killagreg 105
// register mapping
106
#define REG_MAG_CRA                     0x00
107
#define REG_MAG_CRB                     0x01
108
#define REG_MAG_MODE            0x02
109
#define REG_MAG_DATAX_MSB       0x03
110
#define REG_MAG_DATAX_LSB       0x04
111
#define REG_MAG_DATAY_MSB       0x05
112
#define REG_MAG_DATAY_LSB       0x06
113
#define REG_MAG_DATAZ_MSB       0x07
114
#define REG_MAG_DATAZ_LSB       0x08
115
#define REG_MAG_STATUS          0x09
116
#define REG_MAG_IDA                     0x0A
117
#define REG_MAG_IDB                     0x0B
118
#define REG_MAG_IDC                     0x0C
242 killagreg 119
 
253 killagreg 120
// bit mask for configuration mode
121
#define CRA_MODE_MASK           0x03
122
#define CRA_MODE_NORMAL         0x00    //default
123
#define CRA_MODE_POSBIAS        0x01
124
#define CRA_MODE_NEGBIAS        0x02
125
#define CRA_MODE_SELFTEST       0x03
242 killagreg 126
 
253 killagreg 127
// bit mask for measurement mode
128
#define MODE_MASK                       0xFF
129
#define MODE_CONTINUOUS         0x00
130
#define MODE_SINGLE                     0x01    // default
131
#define MODE_IDLE                       0x02
132
#define MODE_SLEEP                      0x03
133
 
242 killagreg 134
// bit mask for rate
253 killagreg 135
#define CRA_RATE_MASK           0x1C
136
 
137
// bit mask for gain
138
#define CRB_GAIN_MASK           0xE0
139
 
140
// ids
141
#define MAG_IDA         0x48
142
#define MAG_IDB         0x34
143
#define MAG_IDC         0x33
144
 
145
// the special HMC5843 interface
146
// bit mask for rate
242 killagreg 147
#define HMC5843_CRA_RATE_0_5HZ          0x00
148
#define HMC5843_CRA_RATE_1HZ            0x04
149
#define HMC5843_CRA_RATE_2HZ            0x08
150
#define HMC5843_CRA_RATE_5HZ            0x0C
151
#define HMC5843_CRA_RATE_10HZ           0x10    //default
152
#define HMC5843_CRA_RATE_20HZ           0x14
153
#define HMC5843_CRA_RATE_50HZ           0x18
154
// bit mask for gain
155
#define HMC5843_CRB_GAIN_07GA           0x00
156
#define HMC5843_CRB_GAIN_10GA           0x20    //default
157
#define HMC5843_CRB_GAIN_15GA           0x40
158
#define HMC5843_CRB_GAIN_20GA           0x60
159
#define HMC5843_CRB_GAIN_32GA           0x80
160
#define HMC5843_CRB_GAIN_38GA           0xA0
161
#define HMC5843_CRB_GAIN_45GA           0xC0
162
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 163
// self test value
164
#define HMC5843_TEST_XSCALE             715
165
#define HMC5843_TEST_YSCALE             715
166
#define HMC5843_TEST_ZSCALE             715
242 killagreg 167
 
168
 
253 killagreg 169
// the special LSM302DLH interface
170
// bit mask for rate
171
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
172
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
173
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
174
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
175
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
176
#define LSM303DLH_CRA_RATE_30HZ         0x14
177
#define LSM303DLH_CRA_RATE_75HZ         0x18
178
// bit mask for gain
179
#define LSM303DLH_CRB_GAIN_XXGA         0x00
180
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
181
#define LSM303DLH_CRB_GAIN_19GA         0x40
182
#define LSM303DLH_CRB_GAIN_25GA         0x60
183
#define LSM303DLH_CRB_GAIN_40GA         0x80
184
#define LSM303DLH_CRB_GAIN_47GA         0xA0
185
#define LSM303DLH_CRB_GAIN_56GA         0xC0
186
#define LSM303DLH_CRB_GAIN_81GA         0xE0
187
// self test value
188
#define LSM303DLH_TEST_XSCALE   655
189
#define LSM303DLH_TEST_YSCALE   655
190
#define LSM303DLH_TEST_ZSCALE   630
191
 
192
// the i2c ACC interface
193
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
194
// register mapping
195
#define REG_ACC_CTRL1                   0x20
196
#define REG_ACC_CTRL2                   0x21
197
#define REG_ACC_CTRL3                   0x22
198
#define REG_ACC_CTRL4                   0x23
199
#define REG_ACC_CTRL5                   0x24
200
#define REG_ACC_HP_FILTER_RESET 0x25
201
#define REG_ACC_REFERENCE               0x26
202
#define REG_ACC_STATUS                  0x27
203
#define REG_ACC_X_LSB                   0x28
204
#define REG_ACC_X_MSB                   0x29
205
#define REG_ACC_Y_LSB                   0x2A
206
#define REG_ACC_Y_MSB                   0x2B
207
#define REG_ACC_Z_LSB                   0x2C
208
#define REG_ACC_Z_MSB                   0x2D
209
 
210
 
211
 
242 killagreg 212
typedef struct
213
{
253 killagreg 214
        u8 A;
215
        u8 B;
216
        u8 C;
217
} __attribute__((packed)) Identification_t;
242 killagreg 218
 
253 killagreg 219
volatile Identification_t NCMAG_Identification;
242 killagreg 220
 
253 killagreg 221
typedef struct
222
{
223
        u8 cra;
224
        u8 crb;
225
        u8 mode;
226
} __attribute__((packed)) MagConfig_t;
242 killagreg 227
 
253 killagreg 228
volatile MagConfig_t MagConfig;
242 killagreg 229
 
253 killagreg 230
typedef struct
231
{
232
        u8 ctrl_1;
233
        u8 ctrl_2;
234
        u8 ctrl_3;
235
        u8 ctrl_4;
236
        u8 ctrl_5;
237
} __attribute__((packed)) AccConfig_t;
238
 
239
volatile AccConfig_t AccConfig;
240
 
254 killagreg 241
volatile s16vec_t AccRawVector;
242
volatile s16vec_t MagRawVector;
253 killagreg 243
 
244
 
254 killagreg 245
u8 NCMag_CalibrationWrite(void)
246
{
247
        u8 i, crc = 0xAA;
248
        EEPROM_Result_t eres;
249
        u8 *pBuff = (u8*)&Calibration;
250
 
251
        Calibration.Version = CALIBRATION_VERSION;
256 killagreg 252
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 253
        {
254
                crc += pBuff[i];        
255
        }
256
        Calibration.crc = ~crc;
257
        eres = EEPROM_WriteBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration));
258
        if(EEPROM_SUCCESS == eres) i = 1;
259
        else i = 0;
260
        return(i);     
261
}
262
 
263
u8 NCMag_CalibrationRead(void)
264
{
265
        u8 i, crc = 0xAA;
266
        u8 *pBuff = (u8*)&Calibration;
267
 
268
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration)))
269
        {
256 killagreg 270
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 271
                {
272
                        crc += pBuff[i];        
273
                }
274
                crc = ~crc;
275
                if(Calibration.crc != crc) return(0); // crc mismatch
257 killagreg 276
                if(Calibration.Version == CALIBRATION_VERSION) return(1);
254 killagreg 277
        }
278
        return(0);
279
}
280
 
281
 
282
void NCMAG_Calibrate(void)
283
{
271 holgerb 284
u8 new = 1;
254 killagreg 285
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 286
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 287
        static u8 OldCalState = 0;     
288
 
256 killagreg 289
        X = (4*X + MagRawVector.X + 3)/5;
290
        Y = (4*Y + MagRawVector.Y + 3)/5;
291
        Z = (4*Z + MagRawVector.Z + 3)/5;
292
 
254 killagreg 293
        switch(Compass_CalState)
294
        {
295
                case 1:
296
                        // 1st step of calibration
297
                        // initialize ranges
298
                        // used to change the orientation of the NC in the horizontal plane
299
                        Xmin =  10000;
300
                        Xmax = -10000;
301
                        Ymin =  10000;
302
                        Ymax = -10000;
303
                        Zmin =  10000;
304
                        Zmax = -10000;
305
                        break;
306
 
307
                case 2: // 2nd step of calibration
308
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
271 holgerb 309
                        if(X < Xmin)            { Xmin = X; if(new) BeepTime = 20;}
310
                        else if(X > Xmax)       { Xmax = X; if(new) BeepTime = 20;}
311
                        if(Y < Ymin)            { Ymin = Y; if(new) BeepTime = 60;}
312
                        else if(Y > Ymax)       { Ymax = Y; if(new) BeepTime = 60;}
313
 
314
                        if(new)
315
                         {
316
                          if(Z < Zmin)          { Zmin = Z; BeepTime = 100;}
317
                          else if(Z > Zmax) { Zmax = Z; BeepTime = 100;}
318
                         }
319
 
254 killagreg 320
                        break;
321
 
322
                case 3: // 3rd step of calibration
323
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
271 holgerb 324
//                      if(new) Compass_CalState = 5; 
254 killagreg 325
                        break;
326
 
327
                case 4:
328
                        // find Min and Max of the Z-Sensor
271 holgerb 329
                        if(Z < Zmin)      { Zmin = Z; if(new) BeepTime = 80;}
330
                        else if(Z > Zmax) { Zmax = Z; if(new) BeepTime = 80;}
254 killagreg 331
                        break;
332
 
333
                case 5:
334
                        // Save values
335
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
336
                        {
267 holgerb 337
#define MIN_CALIBRATION    256
254 killagreg 338
                                Calibration.MagX.Range = Xmax - Xmin;
339
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
340
                                Calibration.MagY.Range = Ymax - Ymin;
341
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
342
                                Calibration.MagZ.Range = Zmax - Zmin;
343
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
265 holgerb 344
                                if((Calibration.MagX.Range > MIN_CALIBRATION) && (Calibration.MagY.Range > MIN_CALIBRATION) && (Calibration.MagZ.Range > MIN_CALIBRATION))
254 killagreg 345
                                {
346
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite();
270 killagreg 347
                                        BeepTime = 2500;
265 holgerb 348
                                        UART1_PutString("\r\n Calibration okay");
254 killagreg 349
                                }
350
                                else
351
                                {
352
                                        // restore old calibration data from eeprom
353
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
265 holgerb 354
                                        UART1_PutString("\r\n Calibration FAILED - Values too low: ");
355
                                        if(Calibration.MagX.Range < MIN_CALIBRATION) UART1_PutString("X! ");
356
                                        if(Calibration.MagY.Range < MIN_CALIBRATION) UART1_PutString("Y! ");
357
                                        if(Calibration.MagZ.Range < MIN_CALIBRATION) UART1_PutString("Z! ");
254 killagreg 358
                                }
359
                        }
360
                        break;
361
 
362
                default:
363
                        break; 
364
        }
365
        OldCalState = Compass_CalState;
366
}
367
 
242 killagreg 368
// ---------- call back handlers -----------------------------------------
369
 
370
// rx data handler for id info request
253 killagreg 371
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 372
{       // if number of bytes are matching
253 killagreg 373
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 374
        {
253 killagreg 375
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
376
        }
242 killagreg 377
}
254 killagreg 378
// rx data handler for magnetic sensor raw data
253 killagreg 379
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 380
{       // if number of bytes are matching
381
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 382
        {       // byte order from big to little endian
256 killagreg 383
                s16 raw;
384
                raw = pRxBuffer[0]<<8;
385
                raw+= pRxBuffer[1];
386
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
387
                raw = pRxBuffer[2]<<8;
388
                raw+= pRxBuffer[3];
389
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.Y = raw;
390
                raw = pRxBuffer[4]<<8;
391
                raw+= pRxBuffer[5];
392
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.Z = raw;
242 killagreg 393
        }
254 killagreg 394
        if(Compass_CalState || !NCMAG_IsCalibrated)
395
        {       // direct output the raw data
396
                memcpy((u8*)&MagVector,(u8*)&MagRawVector, sizeof(MagVector));
397
                Compass_Heading = -1;
398
        }
399
        else
400
        {
401
                // update MagVector from MagRaw Vector by Scaling
402
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
403
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
404
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
256 killagreg 405
 
406
                if(UART_VersionInfo.HardwareError[0] & NC_ERROR0_SPI_RX)
407
                {
408
                        Compass_Heading = -1;
409
                }
410
                else // fc attitude is avialable
411
                {
412
                        // calculate attitude correction
413
                        // a float implementation takes too long for an ISR call!
414
                        s16 tmp, Hx, Hy;
415
                        s32 sinnick, cosnick, sinroll, cosroll;
416
 
417
                        tmp = FromFlightCtrl.AngleNick/10; // in deg 
418
                        sinnick = (s32)c_sin_8192(tmp);
419
                        cosnick = (s32)c_cos_8192(tmp);
420
                        tmp = FromFlightCtrl.AngleRoll/10; // in deg 
421
                        sinroll = (s32)c_sin_8192(tmp);
422
                        cosroll = (s32)c_cos_8192(tmp);
423
                        // tbd. compensation signs and oriantation has to be fixed 
257 killagreg 424
                        Hx = (s16)((MagVector.Y * cosnick + MagVector.Z * sinnick)/8192L);
425
                        Hy = (s16)((MagVector.X * cosroll - MagVector.Z * sinroll)/8192L);             
256 killagreg 426
                        // calculate heading
427
                        tmp = (s16)(c_tan2_546(Hy, Hx)/546L);
257 killagreg 428
                        if (tmp > 0) tmp = 360 - tmp;
429
                        else tmp = -tmp;
256 killagreg 430
                        Compass_Heading = tmp;
431
                }
254 killagreg 432
        }
242 killagreg 433
}
254 killagreg 434
// rx data handler  for acceleration raw data
253 killagreg 435
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
436
{       // if number of byte are matching
254 killagreg 437
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 438
        {
254 killagreg 439
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 440
        }
441
}
254 killagreg 442
// rx data handler for reading magnetic sensor configuration
253 killagreg 443
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
444
{       // if number of byte are matching
445
        if(RxBufferSize == sizeof(MagConfig) )
446
        {
447
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
448
        }
449
}
254 killagreg 450
// rx data handler for reading acceleration sensor configuration
253 killagreg 451
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
452
{       // if number of byte are matching
453
        if(RxBufferSize == sizeof(AccConfig) )
454
        {
455
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
456
        }
457
}
254 killagreg 458
//----------------------------------------------------------------------
253 killagreg 459
 
254 killagreg 460
 
461
// ---------------------------------------------------------------------
253 killagreg 462
u8 NCMAG_SetMagConfig(void)
463
{
464
        u8 retval = 0;
465
        // try to catch the i2c buffer within 100 ms timeout
466
        if(I2C_LockBuffer(100))
467
        {
468
                u8 TxBytes = 0;
469
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;    
470
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
471
                TxBytes += sizeof(MagConfig);
472
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
473
                {
474
                        if(I2C_WaitForEndOfTransmission(100))
475
                        {
476
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
477
                        }
478
                }
479
        }
480
        return(retval);        
481
}
242 killagreg 482
 
253 killagreg 483
// ----------------------------------------------------------------------------------------
484
u8 NCMAG_GetMagConfig(void)
242 killagreg 485
{
253 killagreg 486
        u8 retval = 0;
252 killagreg 487
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 488
        if(I2C_LockBuffer(100))
242 killagreg 489
        {
253 killagreg 490
                u8 TxBytes = 0;
491
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;
492
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 493
                {
252 killagreg 494
                        if(I2C_WaitForEndOfTransmission(100))
495
                        {
496
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
497
                        }
248 killagreg 498
                }
242 killagreg 499
        }
253 killagreg 500
        return(retval);        
242 killagreg 501
}
502
 
503
// ----------------------------------------------------------------------------------------
253 killagreg 504
u8 NCMAG_SetAccConfig(void)
242 killagreg 505
{
252 killagreg 506
        u8 retval = 0;
253 killagreg 507
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 508
        if(I2C_LockBuffer(100))
242 killagreg 509
        {
253 killagreg 510
                u8 TxBytes = 0;
511
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;  
512
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
513
                TxBytes += sizeof(AccConfig);
514
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
515
                {
516
                        if(I2C_WaitForEndOfTransmission(100))
517
                        {
518
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
519
                        }
520
                }
521
        }
522
        return(retval);        
523
}
524
 
525
// ----------------------------------------------------------------------------------------
526
u8 NCMAG_GetAccConfig(void)
527
{
528
        u8 retval = 0;
529
        // try to catch the i2c buffer within 100 ms timeout
530
        if(I2C_LockBuffer(100))
531
        {
532
                u8 TxBytes = 0;
533
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;
534
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
535
                {
536
                        if(I2C_WaitForEndOfTransmission(100))
537
                        {
538
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
539
                        }
540
                }
541
        }
542
        return(retval);        
543
}
544
 
545
// ----------------------------------------------------------------------------------------
546
u8 NCMAG_GetIdentification(void)
547
{
548
        u8 retval = 0;
549
        // try to catch the i2c buffer within 100 ms timeout
550
        if(I2C_LockBuffer(100))
551
        {
552
                u16 TxBytes = 0;
553
                NCMAG_Identification.A = 0xFF;
554
                NCMAG_Identification.B = 0xFF;
555
                NCMAG_Identification.C = 0xFF;
556
                I2C_Buffer[TxBytes++] = REG_MAG_IDA;
248 killagreg 557
                // initiate transmission
253 killagreg 558
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 559
                {
253 killagreg 560
                        if(I2C_WaitForEndOfTransmission(100))
252 killagreg 561
                        {
562
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
563
                        }
248 killagreg 564
                }
242 killagreg 565
        }
253 killagreg 566
        return(retval);
242 killagreg 567
}
568
 
253 killagreg 569
// ----------------------------------------------------------------------------------------
570
void NCMAG_GetMagVector(void)
571
{
572
        // try to catch the I2C buffer within 0 ms
573
        if(I2C_LockBuffer(0))
574
        {
575
                u16 TxBytes = 0;
576
                // set register pointer
577
                I2C_Buffer[TxBytes++] = REG_MAG_DATAX_MSB;
578
                // initiate transmission
579
                I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
580
        }
581
}
582
 
242 killagreg 583
//----------------------------------------------------------------
253 killagreg 584
void NCMAG_GetAccVector(void)
243 killagreg 585
{
252 killagreg 586
        // try to catch the I2C buffer within 0 ms
587
        if(I2C_LockBuffer(0))
243 killagreg 588
        {
248 killagreg 589
                u16 TxBytes = 0;
243 killagreg 590
                // set register pointer
253 killagreg 591
                I2C_Buffer[TxBytes++] = REG_ACC_X_LSB;
243 killagreg 592
                // initiate transmission
254 killagreg 593
                I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
243 killagreg 594
        }
595
}
596
 
253 killagreg 597
// --------------------------------------------------------
598
void NCMAG_UpdateCompass(void)
243 killagreg 599
{
600
        static u32 TimerCompassUpdate = 0;
601
 
254 killagreg 602
        if( (I2C_State == I2C_STATE_OFF) || !NCMAG_Present )
603
        {
604
                Compass_Heading = -1;
605
                return;
606
        }
253 killagreg 607
 
243 killagreg 608
        if(CheckDelay(TimerCompassUpdate))
609
        {
254 killagreg 610
                // check for new calibration state
611
                Compass_UpdateCalState();
612
                if(Compass_CalState) NCMAG_Calibrate();
613
                NCMAG_GetMagVector(); //Get new data;
243 killagreg 614
                TimerCompassUpdate = SetDelay(20);    // every 20 ms are 50 Hz
615
        }
616
}
617
 
254 killagreg 618
// --------------------------------------------------------
253 killagreg 619
u8 NCMAG_SelfTest(void)
243 killagreg 620
{
266 holgerb 621
        u8 msg[64];
622
 
271 holgerb 623
        #define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
243 killagreg 624
        u32 time;
253 killagreg 625
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
626
        s16 xscale, yscale, zscale, scale_min, scale_max;
627
        u8 crb_gain, cra_rate;
628
        u8 i = 0, retval = 1;
243 killagreg 629
 
253 killagreg 630
        switch(NCMAG_MagType)
631
        {
632
                case MAG_TYPE_HMC5843:
633
                        crb_gain = HMC5843_CRB_GAIN_10GA;
634
                        cra_rate = HMC5843_CRA_RATE_50HZ;
635
                        xscale = HMC5843_TEST_XSCALE;
636
                        yscale = HMC5843_TEST_YSCALE;
637
                        zscale = HMC5843_TEST_ZSCALE;
638
                        break;
639
 
640
                case MAG_TYPE_LSM303DLH:
641
                        crb_gain = LSM303DLH_CRB_GAIN_13GA;
642
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
643
                        xscale = LSM303DLH_TEST_XSCALE;
644
                        yscale = LSM303DLH_TEST_YSCALE;
645
                        zscale = LSM303DLH_TEST_ZSCALE;
646
                        break;
647
 
648
                default:
649
                return(0);
650
        }
651
 
652
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
653
        MagConfig.crb = crb_gain;
654
        MagConfig.mode = MODE_CONTINUOUS;
655
        // activate positive bias field
656
        NCMAG_SetMagConfig();
251 killagreg 657
        // wait for stable readings
658
        time = SetDelay(50);
659
        while(!CheckDelay(time));
243 killagreg 660
        // averaging
253 killagreg 661
        #define AVERAGE 20
662
        for(i = 0; i<AVERAGE; i++)
243 killagreg 663
        {
253 killagreg 664
                NCMAG_GetMagVector();
243 killagreg 665
                time = SetDelay(20);
666
        while(!CheckDelay(time));
254 killagreg 667
                XMax += MagRawVector.X;
668
                YMax += MagRawVector.Y;
669
                ZMax += MagRawVector.Z;
243 killagreg 670
        }
253 killagreg 671
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
672
        // activate positive bias field
673
        NCMAG_SetMagConfig();
251 killagreg 674
    // wait for stable readings
675
        time = SetDelay(50);
676
        while(!CheckDelay(time));
243 killagreg 677
        // averaging
253 killagreg 678
        for(i = 0; i < AVERAGE; i++)
243 killagreg 679
        {
253 killagreg 680
                NCMAG_GetMagVector();
243 killagreg 681
                time = SetDelay(20);
682
        while(!CheckDelay(time));
254 killagreg 683
                XMin += MagRawVector.X;
684
                YMin += MagRawVector.Y;
685
                ZMin += MagRawVector.Z;
243 killagreg 686
        }
687
        // setup final configuration
253 killagreg 688
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
689
        // activate positive bias field
690
        NCMAG_SetMagConfig();
266 holgerb 691
        // check scale for all axes
243 killagreg 692
        // prepare scale limits
253 killagreg 693
        LIMITS(xscale, scale_min, scale_max);
267 holgerb 694
        xscale = (XMax - XMin)/(2*AVERAGE);
266 holgerb 695
        if((xscale > scale_max) || (xscale < scale_min))
696
     {
697
          retval = 0;
698
      sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
699
          UART1_PutString(msg);
700
     }
267 holgerb 701
        LIMITS(yscale, scale_min, scale_max);
266 holgerb 702
        yscale = (YMax - YMin)/(2*AVERAGE);
703
        if((yscale > scale_max) || (yscale < scale_min))
704
     {
705
          retval = 0;
706
      sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
707
          UART1_PutString(msg);
708
     }
267 holgerb 709
        LIMITS(zscale, scale_min, scale_max);
266 holgerb 710
        zscale = (ZMax - ZMin)/(2*AVERAGE);
711
        if((zscale > scale_max) || (zscale < scale_min))      
712
         {
713
          retval = 0;
714
      sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
715
          UART1_PutString(msg);
716
     }
253 killagreg 717
        return(retval);
243 killagreg 718
}
719
 
720
 
721
//----------------------------------------------------------------
253 killagreg 722
u8 NCMAG_Init(void)
242 killagreg 723
{
724
        u8 msg[64];
252 killagreg 725
        u8 retval = 0;
242 killagreg 726
        u8 repeat;
727
 
253 killagreg 728
        NCMAG_Present = 0;
729
        NCMAG_MagType = MAG_TYPE_HMC5843;       // assuming having an HMC5843
730
        // polling for LSM302DLH option
731
        repeat = 0;
732
        do
733
        {
734
                retval = NCMAG_GetAccConfig();
735
                if(retval) break; // break loop on success
736
                UART1_PutString(".");
737
                repeat++;
738
        }while(repeat < 3);
739
        if(retval) NCMAG_MagType = MAG_TYPE_LSM303DLH; // must be a LSM303DLH
242 killagreg 740
        // polling of identification
741
        repeat = 0;
742
        do
743
        {
253 killagreg 744
                retval = NCMAG_GetIdentification();
252 killagreg 745
                if(retval) break; // break loop on success
242 killagreg 746
                UART1_PutString(".");
747
                repeat++;
252 killagreg 748
        }while(repeat < 12);
253 killagreg 749
        // if we got an answer to id request
252 killagreg 750
        if(retval)
242 killagreg 751
        {
253 killagreg 752
                u8 n1[] = "HMC5843";
753
                u8 n2[] = "LSM303DLH";
754
                u8* pn;
755
                if(NCMAG_MagType == MAG_TYPE_LSM303DLH) pn = n2;
756
                else pn = n1;
757
                sprintf(msg, " %s ID%d/%d/%d", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C);
242 killagreg 758
                UART1_PutString(msg);
253 killagreg 759
                if (    (NCMAG_Identification.A == MAG_IDA)
760
                     && (NCMAG_Identification.B == MAG_IDB)
761
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 762
                {
268 killagreg 763
                        NCMAG_Present = 1;
253 killagreg 764
                        if(!NCMAG_SelfTest())
243 killagreg 765
                        {
253 killagreg 766
                                UART1_PutString(" Selftest failed!");
243 killagreg 767
                                LED_RED_ON;
268 killagreg 768
                                NCMAG_IsCalibrated = 0;
243 killagreg 769
                        }
254 killagreg 770
                        else
771
                        {
264 killagreg 772
                                if(EEPROM_Init())
773
                                {
774
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
775
                                        if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
776
                                }
777
                                else UART1_PutString("\r\n Calibration data not available!");
254 killagreg 778
                        }
242 killagreg 779
                }
780
                else
781
                {
254 killagreg 782
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 783
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 784
                        LED_RED_ON;
785
                }
786
        }
253 killagreg 787
        else // nothing found
788
        {
789
                NCMAG_MagType = MAG_TYPE_NONE;
790
                UART1_PutString("not found!");  
791
        }
792
        return(NCMAG_Present);
242 killagreg 793
}
794