Subversion Repositories NaviCtrl

Rev

Rev 472 | Rev 474 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + www.MikroKopter.com
6
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 7
// + Software Nutzungsbedingungen (english version: see below)
8
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
9
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
10
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool 
11
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
12
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
242 killagreg 13
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 14
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
15
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
16
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
17
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
18
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
19
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
20
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
21
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand 
22
// + des Mitverschuldens offen.
23
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
24
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
25
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
26
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
27
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
28
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
29
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
30
// +  Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
242 killagreg 31
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 32
// + Software LICENSING TERMS
242 killagreg 33
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 34
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
35
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware 
36
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
37
// + The Software may only be used with the Licensor's products.
38
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
39
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
40
// + agreement shall be the property of the Licensor.
41
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
42
// + features that can be used to identify the program may not be altered or defaced by the customer.
43
// + The customer shall be responsible for taking reasonable precautions
44
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
45
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
46
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
47
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
48
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
49
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
50
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
51
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
52
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
53
// + #### END OF LICENSING TERMS ####
54
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
242 killagreg 55
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 56
#include <math.h>
292 killagreg 57
#include <stdio.h>
242 killagreg 58
#include <string.h>
59
#include "91x_lib.h"
253 killagreg 60
#include "ncmag.h"
470 killagreg 61
#include "i2c1.h"
465 ingob 62
#include "i2c0.h"
63
 
242 killagreg 64
#include "timer1.h"
65
#include "led.h"
66
#include "uart1.h"
254 killagreg 67
#include "eeprom.h"
256 killagreg 68
#include "mymath.h"
292 killagreg 69
#include "main.h"
454 holgerb 70
#include "spi_slave.h"
242 killagreg 71
 
253 killagreg 72
u8 NCMAG_Present = 0;
254 killagreg 73
u8 NCMAG_IsCalibrated = 0;
242 killagreg 74
 
472 holgerb 75
u8 I2C_CompassPort = 1;
473 holgerb 76
u8 ExtCompassOrientation = 0;
472 holgerb 77
 
465 ingob 78
u8 *I2C_BufferPnt;
79
u8 *I2C_ErrorPnt;
80
I2C_TransmissionFunc_t                          I2C_TransmissionFunc;
81
I2C_LockBufferFunc_t                            I2C_LockBufferFunc;
82
I2C_WaitForEndOfTransmissionFunc_t      I2C_WaitForEndOfTransmissionFunc;
83
 
84
 
394 killagreg 85
// supported magnetic sensor types
86
#define TYPE_NONE                       0
87
#define TYPE_HMC5843            1
88
#define TYPE_LSM303DLH          2
89
#define TYPE_LSM303DLM          3
242 killagreg 90
 
394 killagreg 91
u8 NCMAG_SensorType = TYPE_NONE;
92
 
254 killagreg 93
Calibration_t Calibration;              // calibration data in RAM 
339 holgerb 94
volatile s16vec_t AccRawVector;
95
volatile s16vec_t MagRawVector;
254 killagreg 96
 
253 killagreg 97
// i2c MAG interface
98
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 99
 
253 killagreg 100
// register mapping
101
#define REG_MAG_CRA                     0x00
102
#define REG_MAG_CRB                     0x01
103
#define REG_MAG_MODE            0x02
104
#define REG_MAG_DATAX_MSB       0x03
105
#define REG_MAG_DATAX_LSB       0x04
106
#define REG_MAG_DATAY_MSB       0x05
107
#define REG_MAG_DATAY_LSB       0x06
108
#define REG_MAG_DATAZ_MSB       0x07
109
#define REG_MAG_DATAZ_LSB       0x08
110
#define REG_MAG_STATUS          0x09
329 holgerb 111
 
253 killagreg 112
#define REG_MAG_IDA                     0x0A
113
#define REG_MAG_IDB                     0x0B
114
#define REG_MAG_IDC                     0x0C
394 killagreg 115
#define REG_MAG_IDF                     0x0F  // WHO_AM_I _M = 0x03c when LSM303DLM is connected
242 killagreg 116
 
253 killagreg 117
// bit mask for configuration mode
118
#define CRA_MODE_MASK           0x03
119
#define CRA_MODE_NORMAL         0x00    //default
120
#define CRA_MODE_POSBIAS        0x01
121
#define CRA_MODE_NEGBIAS        0x02
122
#define CRA_MODE_SELFTEST       0x03
242 killagreg 123
 
253 killagreg 124
// bit mask for measurement mode
125
#define MODE_MASK                       0xFF
126
#define MODE_CONTINUOUS         0x00
127
#define MODE_SINGLE                     0x01    // default
128
#define MODE_IDLE                       0x02
129
#define MODE_SLEEP                      0x03
130
 
242 killagreg 131
// bit mask for rate
253 killagreg 132
#define CRA_RATE_MASK           0x1C
133
 
134
// bit mask for gain
135
#define CRB_GAIN_MASK           0xE0
136
 
137
// ids
138
#define MAG_IDA         0x48
139
#define MAG_IDB         0x34
140
#define MAG_IDC         0x33
394 killagreg 141
#define MAG_IDF_LSM303DLM       0x3C
253 killagreg 142
 
143
// the special HMC5843 interface
144
// bit mask for rate
242 killagreg 145
#define HMC5843_CRA_RATE_0_5HZ          0x00
146
#define HMC5843_CRA_RATE_1HZ            0x04
147
#define HMC5843_CRA_RATE_2HZ            0x08
148
#define HMC5843_CRA_RATE_5HZ            0x0C
149
#define HMC5843_CRA_RATE_10HZ           0x10    //default
150
#define HMC5843_CRA_RATE_20HZ           0x14
151
#define HMC5843_CRA_RATE_50HZ           0x18
152
// bit mask for gain
153
#define HMC5843_CRB_GAIN_07GA           0x00
154
#define HMC5843_CRB_GAIN_10GA           0x20    //default
339 holgerb 155
#define HMC5843_CRB_GAIN_15GA           0x40    // <--- we use this     
242 killagreg 156
#define HMC5843_CRB_GAIN_20GA           0x60
157
#define HMC5843_CRB_GAIN_32GA           0x80
158
#define HMC5843_CRB_GAIN_38GA           0xA0
159
#define HMC5843_CRB_GAIN_45GA           0xC0
160
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 161
// self test value
339 holgerb 162
#define HMC5843_TEST_XSCALE             555
163
#define HMC5843_TEST_YSCALE             555
164
#define HMC5843_TEST_ZSCALE             555
394 killagreg 165
// calibration range
342 holgerb 166
#define HMC5843_CALIBRATION_RANGE   600
242 killagreg 167
 
253 killagreg 168
// the special LSM302DLH interface
169
// bit mask for rate
170
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
171
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
172
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
173
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
174
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
175
#define LSM303DLH_CRA_RATE_30HZ         0x14
176
#define LSM303DLH_CRA_RATE_75HZ         0x18
338 holgerb 177
 
253 killagreg 178
// bit mask for gain
179
#define LSM303DLH_CRB_GAIN_XXGA         0x00
180
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
339 holgerb 181
#define LSM303DLH_CRB_GAIN_19GA         0x40    // <--- we use this
253 killagreg 182
#define LSM303DLH_CRB_GAIN_25GA         0x60
183
#define LSM303DLH_CRB_GAIN_40GA         0x80
184
#define LSM303DLH_CRB_GAIN_47GA         0xA0
185
#define LSM303DLH_CRB_GAIN_56GA         0xC0
186
#define LSM303DLH_CRB_GAIN_81GA         0xE0
394 killagreg 187
 
188
typedef struct
189
{
190
        u8 A;
191
        u8 B;
192
        u8 C;
193
} __attribute__((packed)) Identification_t;
194
volatile Identification_t NCMAG_Identification;
195
 
196
typedef struct
197
{
198
        u8 Sub;
199
} __attribute__((packed)) Identification2_t;
200
volatile Identification2_t NCMAG_Identification2;
201
 
202
typedef struct
203
{
204
        u8 cra;
205
        u8 crb;
206
        u8 mode;
207
} __attribute__((packed)) MagConfig_t;
208
 
209
volatile MagConfig_t MagConfig;
210
 
211
 
465 ingob 212
 
213
 
214
 
253 killagreg 215
// self test value
338 holgerb 216
#define LSM303DLH_TEST_XSCALE   495
217
#define LSM303DLH_TEST_YSCALE   495
218
#define LSM303DLH_TEST_ZSCALE   470
339 holgerb 219
// clibration range
342 holgerb 220
#define LSM303_CALIBRATION_RANGE   550
253 killagreg 221
 
222
// the i2c ACC interface
223
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
394 killagreg 224
 
225
// multiple byte read/write mask
226
#define REG_ACC_MASK_AUTOINCREMENT 0x80
227
 
253 killagreg 228
// register mapping
229
#define REG_ACC_CTRL1                   0x20
230
#define REG_ACC_CTRL2                   0x21
231
#define REG_ACC_CTRL3                   0x22
232
#define REG_ACC_CTRL4                   0x23
233
#define REG_ACC_CTRL5                   0x24
234
#define REG_ACC_HP_FILTER_RESET 0x25
235
#define REG_ACC_REFERENCE               0x26
236
#define REG_ACC_STATUS                  0x27
237
#define REG_ACC_X_LSB                   0x28
238
#define REG_ACC_X_MSB                   0x29
239
#define REG_ACC_Y_LSB                   0x2A
240
#define REG_ACC_Y_MSB                   0x2B
241
#define REG_ACC_Z_LSB                   0x2C
242
#define REG_ACC_Z_MSB                   0x2D
243
 
394 killagreg 244
#define ACC_CRTL1_PM_DOWN               0x00
245
#define ACC_CRTL1_PM_NORMAL             0x20
246
#define ACC_CRTL1_PM_LOW_0_5HZ  0x40
247
#define ACC_CRTL1_PM_LOW_1HZ    0x60
248
#define ACC_CRTL1_PM_LOW_2HZ    0x80
249
#define ACC_CRTL1_PM_LOW_5HZ    0xA0
250
#define ACC_CRTL1_PM_LOW_10HZ   0xC0
251
// Output data rate in normal power mode
252
#define ACC_CRTL1_DR_50HZ               0x00
253
#define ACC_CRTL1_DR_100HZ              0x08
254
#define ACC_CRTL1_DR_400HZ              0x10
255
#define ACC_CRTL1_DR_1000HZ             0x18
256
// axis anable flags                    
257
#define ACC_CRTL1_XEN                   0x01
258
#define ACC_CRTL1_YEN                   0x02
259
#define ACC_CRTL1_ZEN                   0x04
253 killagreg 260
 
397 holgerb 261
#define ACC_CRTL2_FILTER8       0x10
262
#define ACC_CRTL2_FILTER16      0x11
263
#define ACC_CRTL2_FILTER32      0x12
264
#define ACC_CRTL2_FILTER64      0x13
395 holgerb 265
 
394 killagreg 266
#define ACC_CTRL4_BDU                   0x80 // Block data update, (0: continuos update; 1: output registers not updated between MSB and LSB reading)
267
#define ACC_CTRL4_BLE                   0x40 // Big/little endian, (0: data LSB @ lower address; 1: data MSB @ lower address)
268
#define ACC_CTRL4_FS_2G                 0x00
269
#define ACC_CTRL4_FS_4G                 0x10
270
#define ACC_CTRL4_FS_8G                 0x30
271
#define ACC_CTRL4_STSIGN_PLUS   0x00
272
#define ACC_CTRL4_STSIGN_MINUS  0x08
273
#define ACC_CTRL4_ST_ENABLE             0x02
253 killagreg 274
 
394 killagreg 275
#define ACC_CTRL5_STW_ON                0x03
276
#define ACC_CTRL5_STW_OFF               0x00
242 killagreg 277
 
253 killagreg 278
typedef struct
279
{
280
        u8 ctrl_1;
281
        u8 ctrl_2;
282
        u8 ctrl_3;
283
        u8 ctrl_4;
284
        u8 ctrl_5;
285
} __attribute__((packed)) AccConfig_t;
286
 
287
volatile AccConfig_t AccConfig;
288
 
472 holgerb 289
u8 NCMag_CalibrationWrite(u8 intern) // two calibrtion sets for extern and intern sensor
254 killagreg 290
{
472 holgerb 291
        u16 address;
394 killagreg 292
        u8 i, crc = MAG_CALIBRATION_COMPATIBLE;
254 killagreg 293
        EEPROM_Result_t eres;
294
        u8 *pBuff = (u8*)&Calibration;
473 holgerb 295
        Calibration.Version = CALIBRATION_VERSION;
254 killagreg 296
 
472 holgerb 297
        if(intern == I2C_INTERN_1) address = EEPROM_ADR_MAG_CALIBRATION_INTERN;
473 holgerb 298
        else
299
        {
300
         address = EEPROM_ADR_MAG_CALIBRATION_EXTERN;
301
         Calibration.Version = CALIBRATION_VERSION + ExtCompassOrientation * 16;
302
        }
256 killagreg 303
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 304
        {
305
                crc += pBuff[i];        
306
        }
307
        Calibration.crc = ~crc;
472 holgerb 308
        eres = EEPROM_WriteBlock(address, pBuff, sizeof(Calibration));
254 killagreg 309
        if(EEPROM_SUCCESS == eres) i = 1;
310
        else i = 0;
311
        return(i);     
312
}
313
 
472 holgerb 314
u8 NCMag_CalibrationRead(u8 intern)     // two calibrtion sets for extern and intern sensor
254 killagreg 315
{
394 killagreg 316
        u8 i, crc = MAG_CALIBRATION_COMPATIBLE;
254 killagreg 317
        u8 *pBuff = (u8*)&Calibration;
472 holgerb 318
        u16 address;
254 killagreg 319
 
472 holgerb 320
        if(intern == I2C_INTERN_1) address = EEPROM_ADR_MAG_CALIBRATION_INTERN;
321
        else address = EEPROM_ADR_MAG_CALIBRATION_EXTERN;
322
 
323
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(address, pBuff, sizeof(Calibration)))
254 killagreg 324
        {
256 killagreg 325
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 326
                {
327
                        crc += pBuff[i];        
328
                }
329
                crc = ~crc;
330
                if(Calibration.crc != crc) return(0); // crc mismatch
473 holgerb 331
                if((Calibration.Version & 0x0f) == CALIBRATION_VERSION) return(1);
254 killagreg 332
        }
333
        return(0);
334
}
335
 
336
 
337
void NCMAG_Calibrate(void)
338
{
330 holgerb 339
        u8 msg[64];
454 holgerb 340
        static u8 speak = 0;
254 killagreg 341
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 342
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 343
        static u8 OldCalState = 0;     
394 killagreg 344
        s16 MinCalibration = 450;
254 killagreg 345
 
256 killagreg 346
        X = (4*X + MagRawVector.X + 3)/5;
347
        Y = (4*Y + MagRawVector.Y + 3)/5;
348
        Z = (4*Z + MagRawVector.Z + 3)/5;
349
 
254 killagreg 350
        switch(Compass_CalState)
351
        {
352
                case 1:
353
                        // 1st step of calibration
354
                        // initialize ranges
355
                        // used to change the orientation of the NC in the horizontal plane
356
                        Xmin =  10000;
357
                        Xmax = -10000;
358
                        Ymin =  10000;
359
                        Ymax = -10000;
360
                        Zmin =  10000;
361
                        Zmax = -10000;
454 holgerb 362
                        speak = 1;
254 killagreg 363
                        break;
364
 
365
                case 2: // 2nd step of calibration
366
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
275 killagreg 367
                        if(X < Xmin)            { Xmin = X; BeepTime = 20;}
368
                        else if(X > Xmax)       { Xmax = X; BeepTime = 20;}
369
                        if(Y < Ymin)            { Ymin = Y; BeepTime = 60;}
370
                        else if(Y > Ymax)       { Ymax = Y; BeepTime = 60;}
454 holgerb 371
                        if(speak) SpeakHoTT = SPEAK_CALIBRATE; speak = 0;
254 killagreg 372
                        break;
373
 
374
                case 3: // 3rd step of calibration
375
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
454 holgerb 376
                        speak = 1;
254 killagreg 377
                        break;
378
 
379
                case 4:
380
                        // find Min and Max of the Z-Sensor
275 killagreg 381
                        if(Z < Zmin)      { Zmin = Z; BeepTime = 80;}
382
                        else if(Z > Zmax) { Zmax = Z; BeepTime = 80;}
454 holgerb 383
                        if(speak) SpeakHoTT = SPEAK_CALIBRATE; speak = 0;
254 killagreg 384
                        break;
385
 
386
                case 5:
387
                        // Save values
388
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
389
                        {
394 killagreg 390
                                switch(NCMAG_SensorType)
391
                                {
392
                                        case TYPE_HMC5843:
393
                                                UART1_PutString("\r\nHMC5843 calibration\n\r");
394
                                                MinCalibration = HMC5843_CALIBRATION_RANGE;
395
                                                break;
396
 
397
                                        case TYPE_LSM303DLH:
398
                                        case TYPE_LSM303DLM:
399
                                                UART1_PutString("\r\n\r\nLSM303 calibration\n\r");
400
                                                MinCalibration = LSM303_CALIBRATION_RANGE;
401
                                        break;
402
                                }
342 holgerb 403
                                if(EarthMagneticStrengthTheoretic)
404
                                 {
394 killagreg 405
                                  MinCalibration = (MinCalibration * EarthMagneticStrengthTheoretic) / 50;
342 holgerb 406
                                  sprintf(msg, "Earth field on your location should be: %iuT\r\n",EarthMagneticStrengthTheoretic);
407
                                  UART1_PutString(msg);
408
                                 }
409
                            else UART1_PutString("without GPS\n\r");
339 holgerb 410
 
254 killagreg 411
                                Calibration.MagX.Range = Xmax - Xmin;
412
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
413
                                Calibration.MagY.Range = Ymax - Ymin;
414
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
415
                                Calibration.MagZ.Range = Zmax - Zmin;
416
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
394 killagreg 417
                                if((Calibration.MagX.Range > MinCalibration) && (Calibration.MagY.Range > MinCalibration) && (Calibration.MagZ.Range > MinCalibration))
254 killagreg 418
                                {
472 holgerb 419
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite(I2C_CompassPort);
270 killagreg 420
                                        BeepTime = 2500;
342 holgerb 421
                                        UART1_PutString("\r\n-> Calibration okay <-\n\r");
454 holgerb 422
SpeakHoTT = SPEAK_MIKROKOPTER;
254 killagreg 423
                                }
424
                                else
425
                                {
454 holgerb 426
SpeakHoTT = SPEAK_ERR_CALIBARTION;
339 holgerb 427
                                        UART1_PutString("\r\nCalibration FAILED - Values too low: ");
394 killagreg 428
                                    if(Calibration.MagX.Range < MinCalibration) UART1_PutString("X! ");
429
                                    if(Calibration.MagY.Range < MinCalibration) UART1_PutString("Y! ");
430
                                    if(Calibration.MagZ.Range < MinCalibration) UART1_PutString("Z! ");
330 holgerb 431
                                        UART1_PutString("\r\n");
339 holgerb 432
 
254 killagreg 433
                                        // restore old calibration data from eeprom
472 holgerb 434
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead(I2C_CompassPort);
254 killagreg 435
                                }
330 holgerb 436
                                        sprintf(msg, "X: (%i - %i = %i)\r\n",Xmax,Xmin,Xmax - Xmin);
437
                                        UART1_PutString(msg);
438
                                        sprintf(msg, "Y: (%i - %i = %i)\r\n",Ymax,Ymin,Ymax - Ymin);
439
                                        UART1_PutString(msg);
440
                                        sprintf(msg, "Z: (%i - %i = %i)\r\n",Zmax,Zmin,Zmax - Zmin);
441
                                        UART1_PutString(msg);
394 killagreg 442
                                        sprintf(msg, "(Minimum ampilitude is: %i)\r\n",MinCalibration);
342 holgerb 443
                                        UART1_PutString(msg);
254 killagreg 444
                        }
445
                        break;
446
 
447
                default:
448
                        break; 
449
        }
450
        OldCalState = Compass_CalState;
451
}
452
 
242 killagreg 453
// ---------- call back handlers -----------------------------------------
454
 
455
// rx data handler for id info request
253 killagreg 456
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 457
{       // if number of bytes are matching
253 killagreg 458
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 459
        {
253 killagreg 460
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
461
        }
242 killagreg 462
}
329 holgerb 463
 
464
void NCMAG_UpdateIdentification_Sub(u8* pRxBuffer, u8 RxBufferSize)
465
{       // if number of bytes are matching
466
        if(RxBufferSize == sizeof(NCMAG_Identification2))
467
        {
468
                memcpy((u8 *)&NCMAG_Identification2, pRxBuffer, sizeof(NCMAG_Identification2));
469
        }
470
}
471
 
254 killagreg 472
// rx data handler for magnetic sensor raw data
253 killagreg 473
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 474
{       // if number of bytes are matching
475
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 476
        {       // byte order from big to little endian
473 holgerb 477
                s16 raw, X = 0, Y = 0, Z = 0;
256 killagreg 478
                raw = pRxBuffer[0]<<8;
479
                raw+= pRxBuffer[1];
473 holgerb 480
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) X = raw;
256 killagreg 481
                raw = pRxBuffer[2]<<8;
482
                raw+= pRxBuffer[3];
330 holgerb 483
            if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
484
                {
473 holgerb 485
                        if(NCMAG_SensorType == TYPE_LSM303DLM)  Z = raw; // here Z and Y are exchanged
486
                        else                                                                    Y = raw;
330 holgerb 487
                }
256 killagreg 488
                raw = pRxBuffer[4]<<8;
489
                raw+= pRxBuffer[5];
330 holgerb 490
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
491
                {
473 holgerb 492
                        if(NCMAG_SensorType == TYPE_LSM303DLM)  Y = raw; // here Z and Y are exchanged
493
                        else                                                                    Z = raw;
330 holgerb 494
                }
473 holgerb 495
          switch(ExtCompassOrientation)
496
                {
497
                 case 0:
498
                 case 1:
499
                 default:
500
                                MagRawVector.X = X;
501
                                MagRawVector.Y = Y;
502
                                MagRawVector.Z = Z;
503
                                break;
504
                 case 2:
505
                                MagRawVector.X = -X;
506
                                MagRawVector.Y = Y;
507
                                MagRawVector.Z = -Z;
508
                                break;
509
                 case 3:
510
                                MagRawVector.X = -Z;
511
                                MagRawVector.Y = Y;
512
                                MagRawVector.Z = X;
513
                                break;
514
                 case 4:
515
                                MagRawVector.X = Z;
516
                                MagRawVector.Y = Y;
517
                                MagRawVector.Z = -X;
518
                                break;
519
                 case 5:
520
                                MagRawVector.X = X;
521
                                MagRawVector.Y = -Z;
522
                                MagRawVector.Z = Y;
523
                                break;
524
                 case 6:
525
                                MagRawVector.X = -X;
526
                                MagRawVector.Y = -Z;
527
                                MagRawVector.Z = -Y;
528
                                break;
529
                }
242 killagreg 530
        }
254 killagreg 531
        if(Compass_CalState || !NCMAG_IsCalibrated)
284 killagreg 532
        {       // mark out data invalid
289 killagreg 533
                MagVector.X = MagRawVector.X;
534
                MagVector.Y = MagRawVector.Y;
535
                MagVector.Z = MagRawVector.Z;
254 killagreg 536
                Compass_Heading = -1;
537
        }
538
        else
539
        {
540
                // update MagVector from MagRaw Vector by Scaling
541
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
542
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
543
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
292 killagreg 544
                Compass_CalcHeading();
254 killagreg 545
        }
242 killagreg 546
}
254 killagreg 547
// rx data handler  for acceleration raw data
253 killagreg 548
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
549
{       // if number of byte are matching
254 killagreg 550
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 551
        {
254 killagreg 552
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 553
        }
473 holgerb 554
}
397 holgerb 555
 
473 holgerb 556
u8 GetExtCompassOrientation(void)
557
{
558
        if(I2C_CompassPort != I2C_EXTERN_0) return(0);
559
        if(abs(FromFlightCtrl.AngleNick) > 300) return(0); // MK tilted
560
        if(abs(FromFlightCtrl.AngleRoll) > 300) return(0);
561
 
562
        if(AccRawVector.Z >  3300) return(1); // Flach - Bestückung oben - Pfeil nach vorn
563
        else
564
        if(AccRawVector.Z < -3300) return(2); // Flach - Bestückung unten - Pfeil nach vorn
565
        else
566
        if(AccRawVector.X >  3300) return(3); // Flach - Bestückung Links - Pfeil nach vorn
567
        else
568
        if(AccRawVector.X < -3300) return(4); // Flach - Bestückung rechts - Pfeil nach vorn
569
        else
570
        if(AccRawVector.Y >  3300) return(5); // Stehend - Pfeil nach oben - 'front' nach vorn
571
        else
572
        if(AccRawVector.Y < -3300) return(6); // Stehend - Pfeil nach unten  - 'front' nach vorn
573
        return(0);
253 killagreg 574
}
473 holgerb 575
 
254 killagreg 576
// rx data handler for reading magnetic sensor configuration
253 killagreg 577
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
578
{       // if number of byte are matching
579
        if(RxBufferSize == sizeof(MagConfig) )
580
        {
581
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
582
        }
583
}
254 killagreg 584
// rx data handler for reading acceleration sensor configuration
253 killagreg 585
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
586
{       // if number of byte are matching
587
        if(RxBufferSize == sizeof(AccConfig) )
588
        {
589
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
590
        }
591
}
254 killagreg 592
//----------------------------------------------------------------------
253 killagreg 593
 
254 killagreg 594
 
595
// ---------------------------------------------------------------------
253 killagreg 596
u8 NCMAG_SetMagConfig(void)
597
{
598
        u8 retval = 0;
599
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 600
        if(I2C_LockBufferFunc(100))
253 killagreg 601
        {
602
                u8 TxBytes = 0;
465 ingob 603
                I2C_BufferPnt[TxBytes++] = REG_MAG_CRA;        
604
                memcpy((u8*)(&I2C_BufferPnt[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
253 killagreg 605
                TxBytes += sizeof(MagConfig);
465 ingob 606
                if(I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
253 killagreg 607
                {
465 ingob 608
                        if(I2C_WaitForEndOfTransmissionFunc(100))
253 killagreg 609
                        {
465 ingob 610
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
253 killagreg 611
                        }
612
                }
613
        }
614
        return(retval);        
615
}
242 killagreg 616
 
253 killagreg 617
// ----------------------------------------------------------------------------------------
618
u8 NCMAG_GetMagConfig(void)
242 killagreg 619
{
253 killagreg 620
        u8 retval = 0;
252 killagreg 621
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 622
        if(I2C_LockBufferFunc(100))
242 killagreg 623
        {
253 killagreg 624
                u8 TxBytes = 0;
465 ingob 625
                I2C_BufferPnt[TxBytes++] = REG_MAG_CRA;
626
                if(I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 627
                {
465 ingob 628
                        if(I2C_WaitForEndOfTransmissionFunc(100))
252 killagreg 629
                        {
465 ingob 630
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
252 killagreg 631
                        }
248 killagreg 632
                }
242 killagreg 633
        }
253 killagreg 634
        return(retval);        
242 killagreg 635
}
636
 
637
// ----------------------------------------------------------------------------------------
253 killagreg 638
u8 NCMAG_SetAccConfig(void)
242 killagreg 639
{
252 killagreg 640
        u8 retval = 0;
253 killagreg 641
        // try to catch the i2c buffer within 100 ms timeout
473 holgerb 642
        if(I2C_LockBufferFunc(50))
242 killagreg 643
        {
253 killagreg 644
                u8 TxBytes = 0;
465 ingob 645
                I2C_BufferPnt[TxBytes++] = REG_ACC_CTRL1|REG_ACC_MASK_AUTOINCREMENT;    
646
                memcpy((u8*)(&I2C_BufferPnt[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
253 killagreg 647
                TxBytes += sizeof(AccConfig);
465 ingob 648
                if(I2C_TransmissionFunc(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
253 killagreg 649
                {
473 holgerb 650
                        if(I2C_WaitForEndOfTransmissionFunc(50))
253 killagreg 651
                        {
465 ingob 652
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
253 killagreg 653
                        }
654
                }
655
        }
656
        return(retval);        
657
}
658
 
659
// ----------------------------------------------------------------------------------------
660
u8 NCMAG_GetAccConfig(void)
661
{
662
        u8 retval = 0;
663
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 664
        if(I2C_LockBufferFunc(100))
253 killagreg 665
        {
666
                u8 TxBytes = 0;
465 ingob 667
                I2C_BufferPnt[TxBytes++] = REG_ACC_CTRL1|REG_ACC_MASK_AUTOINCREMENT;
668
                if(I2C_TransmissionFunc(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
253 killagreg 669
                {
465 ingob 670
                        if(I2C_WaitForEndOfTransmissionFunc(100))
253 killagreg 671
                        {
465 ingob 672
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
253 killagreg 673
                        }
674
                }
675
        }
676
        return(retval);        
677
}
678
 
679
// ----------------------------------------------------------------------------------------
680
u8 NCMAG_GetIdentification(void)
681
{
682
        u8 retval = 0;
683
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 684
        if(I2C_LockBufferFunc(100))
253 killagreg 685
        {
686
                u16 TxBytes = 0;
687
                NCMAG_Identification.A = 0xFF;
688
                NCMAG_Identification.B = 0xFF;
689
                NCMAG_Identification.C = 0xFF;
465 ingob 690
                I2C_BufferPnt[TxBytes++] = REG_MAG_IDA;
248 killagreg 691
                // initiate transmission
465 ingob 692
                if(I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 693
                {
465 ingob 694
                        if(I2C_WaitForEndOfTransmissionFunc(100))
252 killagreg 695
                        {
465 ingob 696
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
252 killagreg 697
                        }
248 killagreg 698
                }
242 killagreg 699
        }
253 killagreg 700
        return(retval);
242 killagreg 701
}
702
 
329 holgerb 703
u8 NCMAG_GetIdentification_Sub(void)
704
{
705
        u8 retval = 0;
706
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 707
        if(I2C_LockBufferFunc(100))
329 holgerb 708
        {
709
                u16 TxBytes = 0;
710
                NCMAG_Identification2.Sub = 0xFF;
465 ingob 711
                I2C_BufferPnt[TxBytes++] = REG_MAG_IDF;
329 holgerb 712
                // initiate transmission
465 ingob 713
                if(I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification_Sub, sizeof(NCMAG_Identification2)))
329 holgerb 714
                {
465 ingob 715
                        if(I2C_WaitForEndOfTransmissionFunc(100))
329 holgerb 716
                        {
465 ingob 717
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
329 holgerb 718
                        }
719
                }
720
        }
721
        return(retval);
722
}
723
 
724
 
253 killagreg 725
// ----------------------------------------------------------------------------------------
726
void NCMAG_GetMagVector(void)
727
{
728
        // try to catch the I2C buffer within 0 ms
465 ingob 729
        if(I2C_LockBufferFunc(0))
253 killagreg 730
        {
731
                u16 TxBytes = 0;
732
                // set register pointer
465 ingob 733
                I2C_BufferPnt[TxBytes++] = REG_MAG_DATAX_MSB;
253 killagreg 734
                // initiate transmission
465 ingob 735
                I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
253 killagreg 736
        }
737
}
738
 
242 killagreg 739
//----------------------------------------------------------------
473 holgerb 740
void NCMAG_GetAccVector(u8 timeout)
243 killagreg 741
{
252 killagreg 742
        // try to catch the I2C buffer within 0 ms
473 holgerb 743
        if(I2C_LockBufferFunc(timeout))
243 killagreg 744
        {
248 killagreg 745
                u16 TxBytes = 0;
243 killagreg 746
                // set register pointer
465 ingob 747
                I2C_BufferPnt[TxBytes++] = REG_ACC_X_LSB|REG_ACC_MASK_AUTOINCREMENT;
243 killagreg 748
                // initiate transmission
465 ingob 749
                I2C_TransmissionFunc(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
473 holgerb 750
//DebugOut.Analog[16] = AccRawVector.X;
751
//DebugOut.Analog[17] = AccRawVector.Y;
752
//DebugOut.Analog[18] = AccRawVector.Z;
243 killagreg 753
        }
754
}
755
 
330 holgerb 756
//----------------------------------------------------------------
394 killagreg 757
u8 InitNC_MagnetSensor(void)
330 holgerb 758
{
759
        u8 crb_gain, cra_rate;
760
 
394 killagreg 761
        switch(NCMAG_SensorType)
330 holgerb 762
        {
394 killagreg 763
                case TYPE_HMC5843:
339 holgerb 764
                        crb_gain = HMC5843_CRB_GAIN_15GA;
330 holgerb 765
                        cra_rate = HMC5843_CRA_RATE_50HZ;
766
                        break;
767
 
394 killagreg 768
                case TYPE_LSM303DLH:
769
                case TYPE_LSM303DLM:
338 holgerb 770
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
330 holgerb 771
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
772
                        break;
773
 
774
                default:
394 killagreg 775
                return(0);
330 holgerb 776
        }
777
 
778
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
779
        MagConfig.crb = crb_gain;
780
        MagConfig.mode = MODE_CONTINUOUS;
394 killagreg 781
        return(NCMAG_SetMagConfig());
330 holgerb 782
}
783
 
395 holgerb 784
 
394 killagreg 785
//----------------------------------------------------------------
786
u8 NCMAG_Init_ACCSensor(void)
787
{
395 holgerb 788
        AccConfig.ctrl_1 = ACC_CRTL1_PM_NORMAL|ACC_CRTL1_DR_50HZ|ACC_CRTL1_XEN|ACC_CRTL1_YEN|ACC_CRTL1_ZEN;
473 holgerb 789
        AccConfig.ctrl_2 = 0;
394 killagreg 790
        AccConfig.ctrl_3 = 0x00;
397 holgerb 791
        AccConfig.ctrl_4 = ACC_CTRL4_BDU | ACC_CTRL4_FS_8G;
394 killagreg 792
        AccConfig.ctrl_5 = ACC_CTRL5_STW_OFF;
793
        return(NCMAG_SetAccConfig());
794
}
253 killagreg 795
// --------------------------------------------------------
292 killagreg 796
void NCMAG_Update(void)
243 killagreg 797
{
292 killagreg 798
        static u32 TimerUpdate = 0;
419 holgerb 799
        static s8 send_config = 0;
394 killagreg 800
        u32 delay = 20;
470 killagreg 801
        // todo State Handling for both busses  !!
472 holgerb 802
        if((I2C1_State == I2C_STATE_OFF) || (I2C_CompassPort == 0 && I2C0_State == I2C_STATE_OFF) || !NCMAG_Present )
254 killagreg 803
        {
804
                Compass_Heading = -1;
326 holgerb 805
                DebugOut.Analog[14]++; // count I2C error
254 killagreg 806
                return;
807
        }
292 killagreg 808
        if(CheckDelay(TimerUpdate))
243 killagreg 809
        {
394 killagreg 810
                if(Compass_Heading != -1) send_config = 0; // no re-configuration if value is valid
811
        if(++send_config == 25)   // 500ms
812
                {
419 holgerb 813
                        send_config = -25;    // next try after 1 second
394 killagreg 814
                InitNC_MagnetSensor();
419 holgerb 815
                        TimerUpdate = SetDelay(20);    // back into the old time-slot
394 killagreg 816
                }
321 holgerb 817
                else
818
                {
473 holgerb 819
                        static u8 s = 0;
394 killagreg 820
                        // check for new calibration state
821
                        Compass_UpdateCalState();
822
                        if(Compass_CalState) NCMAG_Calibrate();
823
 
824
                        // in case of LSM303 type
825
                        switch(NCMAG_SensorType)
826
                        {
827
                                case TYPE_HMC5843:                             
828
                                        NCMAG_GetMagVector();
829
                                        delay = 20;
830
                                        break;
831
                                case TYPE_LSM303DLH:
832
                                case TYPE_LSM303DLM:
397 holgerb 833
                                        delay = 20;
473 holgerb 834
                                        if(s-- || (I2C_CompassPort == I2C_INTERN_1)) NCMAG_GetMagVector();
835
                                        else
836
                                         {
837
                                          if(AccRawVector.X + AccRawVector.Y + AccRawVector.Z == 0) NCMAG_Init_ACCSensor();
838
                                          NCMAG_GetAccVector(0);
839
                                          delay = 3;
840
                                          s = 50;
841
                                         };
842
 
394 killagreg 843
                                        break;                           
844
                        }
419 holgerb 845
                        if(send_config == 24) TimerUpdate = SetDelay(15);    // next event is the re-configuration
394 killagreg 846
                        else TimerUpdate = SetDelay(delay);    // every 20 ms are 50 Hz
321 holgerb 847
                }
243 killagreg 848
        }
849
}
850
 
330 holgerb 851
 
254 killagreg 852
// --------------------------------------------------------
253 killagreg 853
u8 NCMAG_SelfTest(void)
243 killagreg 854
{
266 holgerb 855
        u8 msg[64];
275 killagreg 856
        static u8 done = 0;
266 holgerb 857
 
287 holgerb 858
        if(done) return(1);        // just make it once
275 killagreg 859
 
271 holgerb 860
        #define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
243 killagreg 861
        u32 time;
253 killagreg 862
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
863
        s16 xscale, yscale, zscale, scale_min, scale_max;
864
        u8 crb_gain, cra_rate;
865
        u8 i = 0, retval = 1;
243 killagreg 866
 
394 killagreg 867
        switch(NCMAG_SensorType)
253 killagreg 868
        {
394 killagreg 869
                case TYPE_HMC5843:
339 holgerb 870
                        crb_gain = HMC5843_CRB_GAIN_15GA;
253 killagreg 871
                        cra_rate = HMC5843_CRA_RATE_50HZ;
872
                        xscale = HMC5843_TEST_XSCALE;
873
                        yscale = HMC5843_TEST_YSCALE;
874
                        zscale = HMC5843_TEST_ZSCALE;
875
                        break;
876
 
394 killagreg 877
                case TYPE_LSM303DLH:
338 holgerb 878
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
253 killagreg 879
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
880
                        xscale = LSM303DLH_TEST_XSCALE;
881
                        yscale = LSM303DLH_TEST_YSCALE;
882
                        zscale = LSM303DLH_TEST_ZSCALE;
883
                        break;
884
 
394 killagreg 885
                case TYPE_LSM303DLM:
886
                        // does not support self test feature 
887
                        done = retval;
888
                        return(retval);
889
                        break;
890
 
253 killagreg 891
                default:
394 killagreg 892
                        return(0);
253 killagreg 893
        }
894
 
895
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
896
        MagConfig.crb = crb_gain;
897
        MagConfig.mode = MODE_CONTINUOUS;
898
        // activate positive bias field
899
        NCMAG_SetMagConfig();
251 killagreg 900
        // wait for stable readings
901
        time = SetDelay(50);
902
        while(!CheckDelay(time));
243 killagreg 903
        // averaging
253 killagreg 904
        #define AVERAGE 20
905
        for(i = 0; i<AVERAGE; i++)
243 killagreg 906
        {
253 killagreg 907
                NCMAG_GetMagVector();
243 killagreg 908
                time = SetDelay(20);
909
        while(!CheckDelay(time));
254 killagreg 910
                XMax += MagRawVector.X;
911
                YMax += MagRawVector.Y;
912
                ZMax += MagRawVector.Z;
243 killagreg 913
        }
253 killagreg 914
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
915
        // activate positive bias field
916
        NCMAG_SetMagConfig();
251 killagreg 917
    // wait for stable readings
918
        time = SetDelay(50);
919
        while(!CheckDelay(time));
243 killagreg 920
        // averaging
253 killagreg 921
        for(i = 0; i < AVERAGE; i++)
243 killagreg 922
        {
253 killagreg 923
                NCMAG_GetMagVector();
243 killagreg 924
                time = SetDelay(20);
925
        while(!CheckDelay(time));
254 killagreg 926
                XMin += MagRawVector.X;
927
                YMin += MagRawVector.Y;
928
                ZMin += MagRawVector.Z;
243 killagreg 929
        }
930
        // setup final configuration
253 killagreg 931
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
932
        // activate positive bias field
933
        NCMAG_SetMagConfig();
266 holgerb 934
        // check scale for all axes
243 killagreg 935
        // prepare scale limits
253 killagreg 936
        LIMITS(xscale, scale_min, scale_max);
267 holgerb 937
        xscale = (XMax - XMin)/(2*AVERAGE);
266 holgerb 938
        if((xscale > scale_max) || (xscale < scale_min))
394 killagreg 939
    {
940
                retval = 0;
941
        sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
942
                UART1_PutString(msg);
943
    }
267 holgerb 944
        LIMITS(yscale, scale_min, scale_max);
266 holgerb 945
        yscale = (YMax - YMin)/(2*AVERAGE);
946
        if((yscale > scale_max) || (yscale < scale_min))
394 killagreg 947
    {
948
                retval = 0;
949
        sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
950
                UART1_PutString(msg);
951
    }
267 holgerb 952
        LIMITS(zscale, scale_min, scale_max);
266 holgerb 953
        zscale = (ZMax - ZMin)/(2*AVERAGE);
954
        if((zscale > scale_max) || (zscale < scale_min))      
394 killagreg 955
        {
956
                retval = 0;
957
        sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
958
                UART1_PutString(msg);
959
    }
275 killagreg 960
        done = retval;
253 killagreg 961
        return(retval);
243 killagreg 962
}
963
 
964
 
965
//----------------------------------------------------------------
465 ingob 966
void NCMAG_SelectI2CBus(u8 busno)
967
{
968
  if (busno == 0)
969
  {
970
    I2C_WaitForEndOfTransmissionFunc = &I2C0_WaitForEndOfTransmission;
971
        I2C_LockBufferFunc = &I2C0_LockBuffer;
972
        I2C_TransmissionFunc = &I2C0_Transmission;
973
        I2C_BufferPnt = I2C0_Buffer;
974
        I2C_ErrorPnt = &I2C0_Error;
975
  }
976
   else
977
  {
470 killagreg 978
    I2C_WaitForEndOfTransmissionFunc = &I2C1_WaitForEndOfTransmission;
979
        I2C_LockBufferFunc = &I2C1_LockBuffer;
980
        I2C_TransmissionFunc = &I2C1_Transmission;
981
        I2C_BufferPnt = I2C1_Buffer;
982
        I2C_ErrorPnt = &I2C1_Error;
465 ingob 983
  }
984
}
985
 
986
//----------------------------------------------------------------
253 killagreg 987
u8 NCMAG_Init(void)
242 killagreg 988
{
989
        u8 msg[64];
252 killagreg 990
        u8 retval = 0;
242 killagreg 991
        u8 repeat;
992
 
472 holgerb 993
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
994
// Search external sensor
995
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
996
        I2C_CompassPort = I2C_EXTERN_0;
997
        NCMAG_SelectI2CBus(I2C_CompassPort);
465 ingob 998
 
472 holgerb 999
        // get id bytes
1000
        retval = 0;
1001
        do
1002
        {
473 holgerb 1003
//              retval = NCMAG_GetIdentification();
1004
                retval = NCMAG_GetAccConfig();            // only the sensor with ACC is supported
472 holgerb 1005
                if(retval) break; // break loop on success
1006
//              UART1_PutString("+");
1007
                repeat++;
1008
        } while(repeat < 5);
1009
 
1010
        if(!retval)
1011
        {
1012
         UART1_PutString(" internal sensor");
1013
         I2C_CompassPort = I2C_INTERN_1;
1014
         NCMAG_SelectI2CBus(I2C_CompassPort);
1015
        }
1016
        else
1017
        {
1018
         UART1_PutString(" external sensor ");
473 holgerb 1019
         NCMAG_Init_ACCSensor();
1020
 
1021
         for(repeat = 0; repeat < 100; repeat++)
1022
          {
1023
           NCMAG_GetAccVector(10); // only the sensor with ACC is supported
1024
       ExtCompassOrientation = GetExtCompassOrientation();       
1025
           if(ExtCompassOrientation) break;
1026
          }
1027
//DebugOut.Analog[19] = repeat;
1028
 
1029
     if(!ExtCompassOrientation) UART1_PutString(" (Orientation unknown!)");
1030
         else
1031
         {
1032
          NCMag_CalibrationRead(I2C_CompassPort);
1033
          sprintf(msg, "with orientation: %d ",ExtCompassOrientation );
1034
          UART1_PutString(msg);
1035
          if(ExtCompassOrientation != Calibration.Version / 16)
1036
           {
1037
            sprintf(msg, "\n\r! Warining: calibrated orientation was %d !",Calibration.Version / 16);
1038
            UART1_PutString(msg);
1039
           }
1040
          else UART1_PutString("ok");
1041
         }
1042
 
472 holgerb 1043
        }
1044
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1045
 
253 killagreg 1046
        NCMAG_Present = 0;
394 killagreg 1047
        NCMAG_SensorType = TYPE_HMC5843;        // assuming having an HMC5843
1048
        // polling for LSM302DLH/DLM option by ACC address ack
253 killagreg 1049
        repeat = 0;
1050
        do
1051
        {
1052
                retval = NCMAG_GetAccConfig();
1053
                if(retval) break; // break loop on success
472 holgerb 1054
//              UART1_PutString("*");
253 killagreg 1055
                repeat++;
472 holgerb 1056
        } while(repeat < 3);
394 killagreg 1057
        if(retval)
242 killagreg 1058
        {
394 killagreg 1059
                // initialize ACC sensor
1060
                NCMAG_Init_ACCSensor();
1061
 
1062
                NCMAG_SensorType = TYPE_LSM303DLH;     
1063
                // polling of sub identification
1064
                repeat = 0;
1065
                do
1066
                {
1067
                        retval = NCMAG_GetIdentification_Sub();
1068
                        if(retval) break; // break loop on success
472 holgerb 1069
//                      UART1_PutString(".");
394 killagreg 1070
                        repeat++;
1071
                }while(repeat < 12);
1072
                if(retval)
1073
                {
1074
                        if(NCMAG_Identification2.Sub == MAG_IDF_LSM303DLM)      NCMAG_SensorType = TYPE_LSM303DLM;
1075
                }      
1076
        }
1077
        // get id bytes
329 holgerb 1078
        retval = 0;
1079
        do
1080
        {
253 killagreg 1081
                retval = NCMAG_GetIdentification();
252 killagreg 1082
                if(retval) break; // break loop on success
472 holgerb 1083
//              UART1_PutString("#");
242 killagreg 1084
                repeat++;
472 holgerb 1085
        } while(repeat < 12);
329 holgerb 1086
 
253 killagreg 1087
        // if we got an answer to id request
252 killagreg 1088
        if(retval)
242 killagreg 1089
        {
329 holgerb 1090
                u8 n1[] = "\n\r HMC5843";
1091
                u8 n2[] = "\n\r LSM303DLH";
1092
                u8 n3[] = "\n\r LSM303DLM";
394 killagreg 1093
                u8* pn = n1;
329 holgerb 1094
 
394 killagreg 1095
                switch(NCMAG_SensorType)
329 holgerb 1096
                {
394 killagreg 1097
                        case TYPE_HMC5843:
1098
                                pn = n1;
1099
                                break;
1100
                        case TYPE_LSM303DLH:
1101
                                pn = n2;
1102
                                break;
1103
                        case TYPE_LSM303DLM:
1104
                                pn = n3;
1105
                                break;
329 holgerb 1106
                }
1107
 
1108
                sprintf(msg, " %s ID 0x%02x/%02x/%02x-%02x", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C,NCMAG_Identification2.Sub);
242 killagreg 1109
                UART1_PutString(msg);
253 killagreg 1110
                if (    (NCMAG_Identification.A == MAG_IDA)
1111
                     && (NCMAG_Identification.B == MAG_IDB)
1112
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 1113
                {
268 killagreg 1114
                        NCMAG_Present = 1;
329 holgerb 1115
 
1116
                        if(EEPROM_Init())
394 killagreg 1117
                        {
472 holgerb 1118
                                NCMAG_IsCalibrated = NCMag_CalibrationRead(I2C_CompassPort);
394 killagreg 1119
                                if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
1120
                        }
329 holgerb 1121
                        else UART1_PutString("\r\n EEPROM data not available!!!!!!!!!!!!!!!");
394 killagreg 1122
                        // perform self test
1123
                        if(!NCMAG_SelfTest())
1124
                        {
329 holgerb 1125
                                UART1_PutString("\r\n Selftest failed!!!!!!!!!!!!!!!!!!!!\r\n");
1126
                                LED_RED_ON;
472 holgerb 1127
//                              NCMAG_IsCalibrated = 0;
394 killagreg 1128
                        }
1129
                        else UART1_PutString("\r\n Selftest ok");
1130
 
1131
                        // initialize magnetic sensor configuration
1132
                        InitNC_MagnetSensor();
242 killagreg 1133
                }
1134
                else
1135
                {
254 killagreg 1136
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 1137
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 1138
                        LED_RED_ON;
1139
                }
1140
        }
253 killagreg 1141
        else // nothing found
1142
        {
394 killagreg 1143
                NCMAG_SensorType = TYPE_NONE;
253 killagreg 1144
                UART1_PutString("not found!");  
1145
        }
1146
        return(NCMAG_Present);
242 killagreg 1147
}
1148