Subversion Repositories NaviCtrl

Rev

Rev 470 | Rev 473 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + www.MikroKopter.com
6
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 7
// + Software Nutzungsbedingungen (english version: see below)
8
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
9
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
10
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool 
11
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
12
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
242 killagreg 13
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 14
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
15
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
16
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
17
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
18
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
19
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
20
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
21
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand 
22
// + des Mitverschuldens offen.
23
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
24
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
25
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
26
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
27
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
28
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
29
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
30
// +  Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
242 killagreg 31
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 32
// + Software LICENSING TERMS
242 killagreg 33
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 34
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
35
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware 
36
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
37
// + The Software may only be used with the Licensor's products.
38
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
39
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
40
// + agreement shall be the property of the Licensor.
41
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
42
// + features that can be used to identify the program may not be altered or defaced by the customer.
43
// + The customer shall be responsible for taking reasonable precautions
44
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
45
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
46
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
47
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
48
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
49
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
50
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
51
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
52
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
53
// + #### END OF LICENSING TERMS ####
54
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
242 killagreg 55
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 56
#include <math.h>
292 killagreg 57
#include <stdio.h>
242 killagreg 58
#include <string.h>
59
#include "91x_lib.h"
253 killagreg 60
#include "ncmag.h"
470 killagreg 61
#include "i2c1.h"
465 ingob 62
#include "i2c0.h"
63
 
242 killagreg 64
#include "timer1.h"
65
#include "led.h"
66
#include "uart1.h"
254 killagreg 67
#include "eeprom.h"
256 killagreg 68
#include "mymath.h"
292 killagreg 69
#include "main.h"
454 holgerb 70
#include "spi_slave.h"
242 killagreg 71
 
253 killagreg 72
u8 NCMAG_Present = 0;
254 killagreg 73
u8 NCMAG_IsCalibrated = 0;
242 killagreg 74
 
472 holgerb 75
u8 I2C_CompassPort = 1;
76
 
465 ingob 77
u8 *I2C_BufferPnt;
78
u8 *I2C_ErrorPnt;
79
I2C_TransmissionFunc_t                          I2C_TransmissionFunc;
80
I2C_LockBufferFunc_t                            I2C_LockBufferFunc;
81
I2C_WaitForEndOfTransmissionFunc_t      I2C_WaitForEndOfTransmissionFunc;
82
 
83
 
394 killagreg 84
// supported magnetic sensor types
85
#define TYPE_NONE                       0
86
#define TYPE_HMC5843            1
87
#define TYPE_LSM303DLH          2
88
#define TYPE_LSM303DLM          3
242 killagreg 89
 
394 killagreg 90
u8 NCMAG_SensorType = TYPE_NONE;
91
 
472 holgerb 92
#define EEPROM_ADR_MAG_CALIBRATION_INTERN       50      // two calibrtion sets for extern and intern sensor
93
#define EEPROM_ADR_MAG_CALIBRATION_EXTERN   70
94
 
338 holgerb 95
#define CALIBRATION_VERSION                     1
394 killagreg 96
#define MAG_CALIBRATION_COMPATIBLE              0xA2
254 killagreg 97
 
256 killagreg 98
#define NCMAG_MIN_RAWVALUE -2047
99
#define NCMAG_MAX_RAWVALUE  2047
100
#define NCMAG_INVALID_DATA -4096
101
 
254 killagreg 102
typedef struct
103
{
104
        s16 Range;
105
        s16 Offset;
256 killagreg 106
} __attribute__((packed)) Scaling_t;
254 killagreg 107
 
108
typedef struct
109
{
110
        Scaling_t MagX;
111
        Scaling_t MagY;
112
        Scaling_t MagZ;
113
        u8 Version;
114
        u8 crc;
256 killagreg 115
} __attribute__((packed)) Calibration_t;
254 killagreg 116
 
117
Calibration_t Calibration;              // calibration data in RAM 
339 holgerb 118
volatile s16vec_t AccRawVector;
119
volatile s16vec_t MagRawVector;
254 killagreg 120
 
253 killagreg 121
// i2c MAG interface
122
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 123
 
253 killagreg 124
// register mapping
125
#define REG_MAG_CRA                     0x00
126
#define REG_MAG_CRB                     0x01
127
#define REG_MAG_MODE            0x02
128
#define REG_MAG_DATAX_MSB       0x03
129
#define REG_MAG_DATAX_LSB       0x04
130
#define REG_MAG_DATAY_MSB       0x05
131
#define REG_MAG_DATAY_LSB       0x06
132
#define REG_MAG_DATAZ_MSB       0x07
133
#define REG_MAG_DATAZ_LSB       0x08
134
#define REG_MAG_STATUS          0x09
329 holgerb 135
 
253 killagreg 136
#define REG_MAG_IDA                     0x0A
137
#define REG_MAG_IDB                     0x0B
138
#define REG_MAG_IDC                     0x0C
394 killagreg 139
#define REG_MAG_IDF                     0x0F  // WHO_AM_I _M = 0x03c when LSM303DLM is connected
242 killagreg 140
 
253 killagreg 141
// bit mask for configuration mode
142
#define CRA_MODE_MASK           0x03
143
#define CRA_MODE_NORMAL         0x00    //default
144
#define CRA_MODE_POSBIAS        0x01
145
#define CRA_MODE_NEGBIAS        0x02
146
#define CRA_MODE_SELFTEST       0x03
242 killagreg 147
 
253 killagreg 148
// bit mask for measurement mode
149
#define MODE_MASK                       0xFF
150
#define MODE_CONTINUOUS         0x00
151
#define MODE_SINGLE                     0x01    // default
152
#define MODE_IDLE                       0x02
153
#define MODE_SLEEP                      0x03
154
 
242 killagreg 155
// bit mask for rate
253 killagreg 156
#define CRA_RATE_MASK           0x1C
157
 
158
// bit mask for gain
159
#define CRB_GAIN_MASK           0xE0
160
 
161
// ids
162
#define MAG_IDA         0x48
163
#define MAG_IDB         0x34
164
#define MAG_IDC         0x33
394 killagreg 165
#define MAG_IDF_LSM303DLM       0x3C
253 killagreg 166
 
167
// the special HMC5843 interface
168
// bit mask for rate
242 killagreg 169
#define HMC5843_CRA_RATE_0_5HZ          0x00
170
#define HMC5843_CRA_RATE_1HZ            0x04
171
#define HMC5843_CRA_RATE_2HZ            0x08
172
#define HMC5843_CRA_RATE_5HZ            0x0C
173
#define HMC5843_CRA_RATE_10HZ           0x10    //default
174
#define HMC5843_CRA_RATE_20HZ           0x14
175
#define HMC5843_CRA_RATE_50HZ           0x18
176
// bit mask for gain
177
#define HMC5843_CRB_GAIN_07GA           0x00
178
#define HMC5843_CRB_GAIN_10GA           0x20    //default
339 holgerb 179
#define HMC5843_CRB_GAIN_15GA           0x40    // <--- we use this     
242 killagreg 180
#define HMC5843_CRB_GAIN_20GA           0x60
181
#define HMC5843_CRB_GAIN_32GA           0x80
182
#define HMC5843_CRB_GAIN_38GA           0xA0
183
#define HMC5843_CRB_GAIN_45GA           0xC0
184
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 185
// self test value
339 holgerb 186
#define HMC5843_TEST_XSCALE             555
187
#define HMC5843_TEST_YSCALE             555
188
#define HMC5843_TEST_ZSCALE             555
394 killagreg 189
// calibration range
342 holgerb 190
#define HMC5843_CALIBRATION_RANGE   600
242 killagreg 191
 
253 killagreg 192
// the special LSM302DLH interface
193
// bit mask for rate
194
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
195
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
196
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
197
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
198
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
199
#define LSM303DLH_CRA_RATE_30HZ         0x14
200
#define LSM303DLH_CRA_RATE_75HZ         0x18
338 holgerb 201
 
253 killagreg 202
// bit mask for gain
203
#define LSM303DLH_CRB_GAIN_XXGA         0x00
204
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
339 holgerb 205
#define LSM303DLH_CRB_GAIN_19GA         0x40    // <--- we use this
253 killagreg 206
#define LSM303DLH_CRB_GAIN_25GA         0x60
207
#define LSM303DLH_CRB_GAIN_40GA         0x80
208
#define LSM303DLH_CRB_GAIN_47GA         0xA0
209
#define LSM303DLH_CRB_GAIN_56GA         0xC0
210
#define LSM303DLH_CRB_GAIN_81GA         0xE0
394 killagreg 211
 
212
typedef struct
213
{
214
        u8 A;
215
        u8 B;
216
        u8 C;
217
} __attribute__((packed)) Identification_t;
218
volatile Identification_t NCMAG_Identification;
219
 
220
typedef struct
221
{
222
        u8 Sub;
223
} __attribute__((packed)) Identification2_t;
224
volatile Identification2_t NCMAG_Identification2;
225
 
226
typedef struct
227
{
228
        u8 cra;
229
        u8 crb;
230
        u8 mode;
231
} __attribute__((packed)) MagConfig_t;
232
 
233
volatile MagConfig_t MagConfig;
234
 
235
 
465 ingob 236
 
237
 
238
 
253 killagreg 239
// self test value
338 holgerb 240
#define LSM303DLH_TEST_XSCALE   495
241
#define LSM303DLH_TEST_YSCALE   495
242
#define LSM303DLH_TEST_ZSCALE   470
339 holgerb 243
// clibration range
342 holgerb 244
#define LSM303_CALIBRATION_RANGE   550
253 killagreg 245
 
246
// the i2c ACC interface
247
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
394 killagreg 248
 
249
// multiple byte read/write mask
250
#define REG_ACC_MASK_AUTOINCREMENT 0x80
251
 
253 killagreg 252
// register mapping
253
#define REG_ACC_CTRL1                   0x20
254
#define REG_ACC_CTRL2                   0x21
255
#define REG_ACC_CTRL3                   0x22
256
#define REG_ACC_CTRL4                   0x23
257
#define REG_ACC_CTRL5                   0x24
258
#define REG_ACC_HP_FILTER_RESET 0x25
259
#define REG_ACC_REFERENCE               0x26
260
#define REG_ACC_STATUS                  0x27
261
#define REG_ACC_X_LSB                   0x28
262
#define REG_ACC_X_MSB                   0x29
263
#define REG_ACC_Y_LSB                   0x2A
264
#define REG_ACC_Y_MSB                   0x2B
265
#define REG_ACC_Z_LSB                   0x2C
266
#define REG_ACC_Z_MSB                   0x2D
267
 
394 killagreg 268
#define ACC_CRTL1_PM_DOWN               0x00
269
#define ACC_CRTL1_PM_NORMAL             0x20
270
#define ACC_CRTL1_PM_LOW_0_5HZ  0x40
271
#define ACC_CRTL1_PM_LOW_1HZ    0x60
272
#define ACC_CRTL1_PM_LOW_2HZ    0x80
273
#define ACC_CRTL1_PM_LOW_5HZ    0xA0
274
#define ACC_CRTL1_PM_LOW_10HZ   0xC0
275
// Output data rate in normal power mode
276
#define ACC_CRTL1_DR_50HZ               0x00
277
#define ACC_CRTL1_DR_100HZ              0x08
278
#define ACC_CRTL1_DR_400HZ              0x10
279
#define ACC_CRTL1_DR_1000HZ             0x18
280
// axis anable flags                    
281
#define ACC_CRTL1_XEN                   0x01
282
#define ACC_CRTL1_YEN                   0x02
283
#define ACC_CRTL1_ZEN                   0x04
253 killagreg 284
 
397 holgerb 285
#define ACC_CRTL2_FILTER8       0x10
286
#define ACC_CRTL2_FILTER16      0x11
287
#define ACC_CRTL2_FILTER32      0x12
288
#define ACC_CRTL2_FILTER64      0x13
395 holgerb 289
 
394 killagreg 290
#define ACC_CTRL4_BDU                   0x80 // Block data update, (0: continuos update; 1: output registers not updated between MSB and LSB reading)
291
#define ACC_CTRL4_BLE                   0x40 // Big/little endian, (0: data LSB @ lower address; 1: data MSB @ lower address)
292
#define ACC_CTRL4_FS_2G                 0x00
293
#define ACC_CTRL4_FS_4G                 0x10
294
#define ACC_CTRL4_FS_8G                 0x30
295
#define ACC_CTRL4_STSIGN_PLUS   0x00
296
#define ACC_CTRL4_STSIGN_MINUS  0x08
297
#define ACC_CTRL4_ST_ENABLE             0x02
253 killagreg 298
 
394 killagreg 299
#define ACC_CTRL5_STW_ON                0x03
300
#define ACC_CTRL5_STW_OFF               0x00
242 killagreg 301
 
253 killagreg 302
typedef struct
303
{
304
        u8 ctrl_1;
305
        u8 ctrl_2;
306
        u8 ctrl_3;
307
        u8 ctrl_4;
308
        u8 ctrl_5;
309
} __attribute__((packed)) AccConfig_t;
310
 
311
volatile AccConfig_t AccConfig;
312
 
472 holgerb 313
u8 NCMag_CalibrationWrite(u8 intern) // two calibrtion sets for extern and intern sensor
254 killagreg 314
{
472 holgerb 315
        u16 address;
394 killagreg 316
        u8 i, crc = MAG_CALIBRATION_COMPATIBLE;
254 killagreg 317
        EEPROM_Result_t eres;
318
        u8 *pBuff = (u8*)&Calibration;
319
 
472 holgerb 320
        if(intern == I2C_INTERN_1) address = EEPROM_ADR_MAG_CALIBRATION_INTERN;
321
        else address = EEPROM_ADR_MAG_CALIBRATION_EXTERN;
322
 
254 killagreg 323
        Calibration.Version = CALIBRATION_VERSION;
256 killagreg 324
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 325
        {
326
                crc += pBuff[i];        
327
        }
328
        Calibration.crc = ~crc;
472 holgerb 329
        eres = EEPROM_WriteBlock(address, pBuff, sizeof(Calibration));
254 killagreg 330
        if(EEPROM_SUCCESS == eres) i = 1;
331
        else i = 0;
332
        return(i);     
333
}
334
 
472 holgerb 335
u8 NCMag_CalibrationRead(u8 intern)     // two calibrtion sets for extern and intern sensor
254 killagreg 336
{
394 killagreg 337
        u8 i, crc = MAG_CALIBRATION_COMPATIBLE;
254 killagreg 338
        u8 *pBuff = (u8*)&Calibration;
472 holgerb 339
        u16 address;
254 killagreg 340
 
472 holgerb 341
        if(intern == I2C_INTERN_1) address = EEPROM_ADR_MAG_CALIBRATION_INTERN;
342
        else address = EEPROM_ADR_MAG_CALIBRATION_EXTERN;
343
 
344
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(address, pBuff, sizeof(Calibration)))
254 killagreg 345
        {
256 killagreg 346
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 347
                {
348
                        crc += pBuff[i];        
349
                }
350
                crc = ~crc;
351
                if(Calibration.crc != crc) return(0); // crc mismatch
257 killagreg 352
                if(Calibration.Version == CALIBRATION_VERSION) return(1);
254 killagreg 353
        }
354
        return(0);
355
}
356
 
357
 
358
void NCMAG_Calibrate(void)
359
{
330 holgerb 360
        u8 msg[64];
454 holgerb 361
        static u8 speak = 0;
254 killagreg 362
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 363
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 364
        static u8 OldCalState = 0;     
394 killagreg 365
        s16 MinCalibration = 450;
254 killagreg 366
 
256 killagreg 367
        X = (4*X + MagRawVector.X + 3)/5;
368
        Y = (4*Y + MagRawVector.Y + 3)/5;
369
        Z = (4*Z + MagRawVector.Z + 3)/5;
370
 
254 killagreg 371
        switch(Compass_CalState)
372
        {
373
                case 1:
374
                        // 1st step of calibration
375
                        // initialize ranges
376
                        // used to change the orientation of the NC in the horizontal plane
377
                        Xmin =  10000;
378
                        Xmax = -10000;
379
                        Ymin =  10000;
380
                        Ymax = -10000;
381
                        Zmin =  10000;
382
                        Zmax = -10000;
454 holgerb 383
                        speak = 1;
254 killagreg 384
                        break;
385
 
386
                case 2: // 2nd step of calibration
387
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
275 killagreg 388
                        if(X < Xmin)            { Xmin = X; BeepTime = 20;}
389
                        else if(X > Xmax)       { Xmax = X; BeepTime = 20;}
390
                        if(Y < Ymin)            { Ymin = Y; BeepTime = 60;}
391
                        else if(Y > Ymax)       { Ymax = Y; BeepTime = 60;}
454 holgerb 392
                        if(speak) SpeakHoTT = SPEAK_CALIBRATE; speak = 0;
254 killagreg 393
                        break;
394
 
395
                case 3: // 3rd step of calibration
396
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
454 holgerb 397
                        speak = 1;
254 killagreg 398
                        break;
399
 
400
                case 4:
401
                        // find Min and Max of the Z-Sensor
275 killagreg 402
                        if(Z < Zmin)      { Zmin = Z; BeepTime = 80;}
403
                        else if(Z > Zmax) { Zmax = Z; BeepTime = 80;}
454 holgerb 404
                        if(speak) SpeakHoTT = SPEAK_CALIBRATE; speak = 0;
254 killagreg 405
                        break;
406
 
407
                case 5:
408
                        // Save values
409
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
410
                        {
394 killagreg 411
                                switch(NCMAG_SensorType)
412
                                {
413
                                        case TYPE_HMC5843:
414
                                                UART1_PutString("\r\nHMC5843 calibration\n\r");
415
                                                MinCalibration = HMC5843_CALIBRATION_RANGE;
416
                                                break;
417
 
418
                                        case TYPE_LSM303DLH:
419
                                        case TYPE_LSM303DLM:
420
                                                UART1_PutString("\r\n\r\nLSM303 calibration\n\r");
421
                                                MinCalibration = LSM303_CALIBRATION_RANGE;
422
                                        break;
423
                                }
342 holgerb 424
                                if(EarthMagneticStrengthTheoretic)
425
                                 {
394 killagreg 426
                                  MinCalibration = (MinCalibration * EarthMagneticStrengthTheoretic) / 50;
342 holgerb 427
                                  sprintf(msg, "Earth field on your location should be: %iuT\r\n",EarthMagneticStrengthTheoretic);
428
                                  UART1_PutString(msg);
429
                                 }
430
                            else UART1_PutString("without GPS\n\r");
339 holgerb 431
 
254 killagreg 432
                                Calibration.MagX.Range = Xmax - Xmin;
433
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
434
                                Calibration.MagY.Range = Ymax - Ymin;
435
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
436
                                Calibration.MagZ.Range = Zmax - Zmin;
437
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
394 killagreg 438
                                if((Calibration.MagX.Range > MinCalibration) && (Calibration.MagY.Range > MinCalibration) && (Calibration.MagZ.Range > MinCalibration))
254 killagreg 439
                                {
472 holgerb 440
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite(I2C_CompassPort);
270 killagreg 441
                                        BeepTime = 2500;
342 holgerb 442
                                        UART1_PutString("\r\n-> Calibration okay <-\n\r");
454 holgerb 443
SpeakHoTT = SPEAK_MIKROKOPTER;
254 killagreg 444
                                }
445
                                else
446
                                {
454 holgerb 447
SpeakHoTT = SPEAK_ERR_CALIBARTION;
339 holgerb 448
                                        UART1_PutString("\r\nCalibration FAILED - Values too low: ");
394 killagreg 449
                                    if(Calibration.MagX.Range < MinCalibration) UART1_PutString("X! ");
450
                                    if(Calibration.MagY.Range < MinCalibration) UART1_PutString("Y! ");
451
                                    if(Calibration.MagZ.Range < MinCalibration) UART1_PutString("Z! ");
330 holgerb 452
                                        UART1_PutString("\r\n");
339 holgerb 453
 
254 killagreg 454
                                        // restore old calibration data from eeprom
472 holgerb 455
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead(I2C_CompassPort);
254 killagreg 456
                                }
330 holgerb 457
                                        sprintf(msg, "X: (%i - %i = %i)\r\n",Xmax,Xmin,Xmax - Xmin);
458
                                        UART1_PutString(msg);
459
                                        sprintf(msg, "Y: (%i - %i = %i)\r\n",Ymax,Ymin,Ymax - Ymin);
460
                                        UART1_PutString(msg);
461
                                        sprintf(msg, "Z: (%i - %i = %i)\r\n",Zmax,Zmin,Zmax - Zmin);
462
                                        UART1_PutString(msg);
394 killagreg 463
                                        sprintf(msg, "(Minimum ampilitude is: %i)\r\n",MinCalibration);
342 holgerb 464
                                        UART1_PutString(msg);
254 killagreg 465
                        }
466
                        break;
467
 
468
                default:
469
                        break; 
470
        }
471
        OldCalState = Compass_CalState;
472
}
473
 
242 killagreg 474
// ---------- call back handlers -----------------------------------------
475
 
476
// rx data handler for id info request
253 killagreg 477
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 478
{       // if number of bytes are matching
253 killagreg 479
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 480
        {
253 killagreg 481
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
482
        }
242 killagreg 483
}
329 holgerb 484
 
485
void NCMAG_UpdateIdentification_Sub(u8* pRxBuffer, u8 RxBufferSize)
486
{       // if number of bytes are matching
487
        if(RxBufferSize == sizeof(NCMAG_Identification2))
488
        {
489
                memcpy((u8 *)&NCMAG_Identification2, pRxBuffer, sizeof(NCMAG_Identification2));
490
        }
491
}
492
 
254 killagreg 493
// rx data handler for magnetic sensor raw data
253 killagreg 494
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 495
{       // if number of bytes are matching
496
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 497
        {       // byte order from big to little endian
256 killagreg 498
                s16 raw;
499
                raw = pRxBuffer[0]<<8;
500
                raw+= pRxBuffer[1];
501
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
502
                raw = pRxBuffer[2]<<8;
503
                raw+= pRxBuffer[3];
330 holgerb 504
            if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
505
                {
394 killagreg 506
                        if(NCMAG_SensorType == TYPE_LSM303DLM)  MagRawVector.Z = raw; // here Z and Y are exchanged
507
                        else                                                                    MagRawVector.Y = raw;
330 holgerb 508
                }
256 killagreg 509
                raw = pRxBuffer[4]<<8;
510
                raw+= pRxBuffer[5];
330 holgerb 511
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
512
                {
394 killagreg 513
                        if(NCMAG_SensorType == TYPE_LSM303DLM)  MagRawVector.Y = raw; // here Z and Y are exchanged
514
                        else                                                                    MagRawVector.Z = raw;
330 holgerb 515
                }
242 killagreg 516
        }
254 killagreg 517
        if(Compass_CalState || !NCMAG_IsCalibrated)
284 killagreg 518
        {       // mark out data invalid
289 killagreg 519
                MagVector.X = MagRawVector.X;
520
                MagVector.Y = MagRawVector.Y;
521
                MagVector.Z = MagRawVector.Z;
254 killagreg 522
                Compass_Heading = -1;
523
        }
524
        else
525
        {
526
                // update MagVector from MagRaw Vector by Scaling
527
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
528
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
529
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
292 killagreg 530
                Compass_CalcHeading();
254 killagreg 531
        }
242 killagreg 532
}
254 killagreg 533
// rx data handler  for acceleration raw data
253 killagreg 534
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
535
{       // if number of byte are matching
397 holgerb 536
static s32 filter_z;
254 killagreg 537
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 538
        {
254 killagreg 539
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 540
        }
416 holgerb 541
//      DebugOut.Analog[16] = AccRawVector.X;
542
//      DebugOut.Analog[17] = AccRawVector.Y;
543
        filter_z = (filter_z * 7 + AccRawVector.Z) / 8;
397 holgerb 544
 
416 holgerb 545
//      DebugOut.Analog[18] = filter_z;
546
//      DebugOut.Analog[19] = AccRawVector.Z;
253 killagreg 547
}
254 killagreg 548
// rx data handler for reading magnetic sensor configuration
253 killagreg 549
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
550
{       // if number of byte are matching
551
        if(RxBufferSize == sizeof(MagConfig) )
552
        {
553
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
554
        }
555
}
254 killagreg 556
// rx data handler for reading acceleration sensor configuration
253 killagreg 557
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
558
{       // if number of byte are matching
559
        if(RxBufferSize == sizeof(AccConfig) )
560
        {
561
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
562
        }
563
}
254 killagreg 564
//----------------------------------------------------------------------
253 killagreg 565
 
254 killagreg 566
 
567
// ---------------------------------------------------------------------
253 killagreg 568
u8 NCMAG_SetMagConfig(void)
569
{
570
        u8 retval = 0;
571
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 572
        if(I2C_LockBufferFunc(100))
253 killagreg 573
        {
574
                u8 TxBytes = 0;
465 ingob 575
                I2C_BufferPnt[TxBytes++] = REG_MAG_CRA;        
576
                memcpy((u8*)(&I2C_BufferPnt[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
253 killagreg 577
                TxBytes += sizeof(MagConfig);
465 ingob 578
                if(I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
253 killagreg 579
                {
465 ingob 580
                        if(I2C_WaitForEndOfTransmissionFunc(100))
253 killagreg 581
                        {
465 ingob 582
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
253 killagreg 583
                        }
584
                }
585
        }
586
        return(retval);        
587
}
242 killagreg 588
 
253 killagreg 589
// ----------------------------------------------------------------------------------------
590
u8 NCMAG_GetMagConfig(void)
242 killagreg 591
{
253 killagreg 592
        u8 retval = 0;
252 killagreg 593
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 594
        if(I2C_LockBufferFunc(100))
242 killagreg 595
        {
253 killagreg 596
                u8 TxBytes = 0;
465 ingob 597
                I2C_BufferPnt[TxBytes++] = REG_MAG_CRA;
598
                if(I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 599
                {
465 ingob 600
                        if(I2C_WaitForEndOfTransmissionFunc(100))
252 killagreg 601
                        {
465 ingob 602
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
252 killagreg 603
                        }
248 killagreg 604
                }
242 killagreg 605
        }
253 killagreg 606
        return(retval);        
242 killagreg 607
}
608
 
609
// ----------------------------------------------------------------------------------------
253 killagreg 610
u8 NCMAG_SetAccConfig(void)
242 killagreg 611
{
252 killagreg 612
        u8 retval = 0;
253 killagreg 613
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 614
        if(I2C_LockBufferFunc(100))
242 killagreg 615
        {
253 killagreg 616
                u8 TxBytes = 0;
465 ingob 617
                I2C_BufferPnt[TxBytes++] = REG_ACC_CTRL1|REG_ACC_MASK_AUTOINCREMENT;    
618
                memcpy((u8*)(&I2C_BufferPnt[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
253 killagreg 619
                TxBytes += sizeof(AccConfig);
465 ingob 620
                if(I2C_TransmissionFunc(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
253 killagreg 621
                {
465 ingob 622
                        if(I2C_WaitForEndOfTransmissionFunc(100))
253 killagreg 623
                        {
465 ingob 624
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
253 killagreg 625
                        }
626
                }
627
        }
628
        return(retval);        
629
}
630
 
631
// ----------------------------------------------------------------------------------------
632
u8 NCMAG_GetAccConfig(void)
633
{
634
        u8 retval = 0;
635
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 636
        if(I2C_LockBufferFunc(100))
253 killagreg 637
        {
638
                u8 TxBytes = 0;
465 ingob 639
                I2C_BufferPnt[TxBytes++] = REG_ACC_CTRL1|REG_ACC_MASK_AUTOINCREMENT;
640
                if(I2C_TransmissionFunc(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
253 killagreg 641
                {
465 ingob 642
                        if(I2C_WaitForEndOfTransmissionFunc(100))
253 killagreg 643
                        {
465 ingob 644
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
253 killagreg 645
                        }
646
                }
647
        }
648
        return(retval);        
649
}
650
 
651
// ----------------------------------------------------------------------------------------
652
u8 NCMAG_GetIdentification(void)
653
{
654
        u8 retval = 0;
655
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 656
        if(I2C_LockBufferFunc(100))
253 killagreg 657
        {
658
                u16 TxBytes = 0;
659
                NCMAG_Identification.A = 0xFF;
660
                NCMAG_Identification.B = 0xFF;
661
                NCMAG_Identification.C = 0xFF;
465 ingob 662
                I2C_BufferPnt[TxBytes++] = REG_MAG_IDA;
248 killagreg 663
                // initiate transmission
465 ingob 664
                if(I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 665
                {
465 ingob 666
                        if(I2C_WaitForEndOfTransmissionFunc(100))
252 killagreg 667
                        {
465 ingob 668
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
252 killagreg 669
                        }
248 killagreg 670
                }
242 killagreg 671
        }
253 killagreg 672
        return(retval);
242 killagreg 673
}
674
 
329 holgerb 675
u8 NCMAG_GetIdentification_Sub(void)
676
{
677
        u8 retval = 0;
678
        // try to catch the i2c buffer within 100 ms timeout
465 ingob 679
        if(I2C_LockBufferFunc(100))
329 holgerb 680
        {
681
                u16 TxBytes = 0;
682
                NCMAG_Identification2.Sub = 0xFF;
465 ingob 683
                I2C_BufferPnt[TxBytes++] = REG_MAG_IDF;
329 holgerb 684
                // initiate transmission
465 ingob 685
                if(I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification_Sub, sizeof(NCMAG_Identification2)))
329 holgerb 686
                {
465 ingob 687
                        if(I2C_WaitForEndOfTransmissionFunc(100))
329 holgerb 688
                        {
465 ingob 689
                                if(*I2C_ErrorPnt == I2C_ERROR_NONE) retval = 1;
329 holgerb 690
                        }
691
                }
692
        }
693
        return(retval);
694
}
695
 
696
 
253 killagreg 697
// ----------------------------------------------------------------------------------------
698
void NCMAG_GetMagVector(void)
699
{
700
        // try to catch the I2C buffer within 0 ms
465 ingob 701
        if(I2C_LockBufferFunc(0))
253 killagreg 702
        {
703
                u16 TxBytes = 0;
704
                // set register pointer
465 ingob 705
                I2C_BufferPnt[TxBytes++] = REG_MAG_DATAX_MSB;
253 killagreg 706
                // initiate transmission
465 ingob 707
                I2C_TransmissionFunc(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
253 killagreg 708
        }
709
}
710
 
242 killagreg 711
//----------------------------------------------------------------
253 killagreg 712
void NCMAG_GetAccVector(void)
243 killagreg 713
{
252 killagreg 714
        // try to catch the I2C buffer within 0 ms
465 ingob 715
        if(I2C_LockBufferFunc(0))
243 killagreg 716
        {
248 killagreg 717
                u16 TxBytes = 0;
243 killagreg 718
                // set register pointer
465 ingob 719
                I2C_BufferPnt[TxBytes++] = REG_ACC_X_LSB|REG_ACC_MASK_AUTOINCREMENT;
243 killagreg 720
                // initiate transmission
465 ingob 721
                I2C_TransmissionFunc(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
243 killagreg 722
        }
723
}
724
 
330 holgerb 725
//----------------------------------------------------------------
394 killagreg 726
u8 InitNC_MagnetSensor(void)
330 holgerb 727
{
728
        u8 crb_gain, cra_rate;
729
 
394 killagreg 730
        switch(NCMAG_SensorType)
330 holgerb 731
        {
394 killagreg 732
                case TYPE_HMC5843:
339 holgerb 733
                        crb_gain = HMC5843_CRB_GAIN_15GA;
330 holgerb 734
                        cra_rate = HMC5843_CRA_RATE_50HZ;
735
                        break;
736
 
394 killagreg 737
                case TYPE_LSM303DLH:
738
                case TYPE_LSM303DLM:
338 holgerb 739
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
330 holgerb 740
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
741
                        break;
742
 
743
                default:
394 killagreg 744
                return(0);
330 holgerb 745
        }
746
 
747
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
748
        MagConfig.crb = crb_gain;
749
        MagConfig.mode = MODE_CONTINUOUS;
394 killagreg 750
        return(NCMAG_SetMagConfig());
330 holgerb 751
}
752
 
395 holgerb 753
 
394 killagreg 754
//----------------------------------------------------------------
755
u8 NCMAG_Init_ACCSensor(void)
756
{
395 holgerb 757
        AccConfig.ctrl_1 = ACC_CRTL1_PM_NORMAL|ACC_CRTL1_DR_50HZ|ACC_CRTL1_XEN|ACC_CRTL1_YEN|ACC_CRTL1_ZEN;
397 holgerb 758
        AccConfig.ctrl_2 = 0;//ACC_CRTL2_FILTER32;
394 killagreg 759
        AccConfig.ctrl_3 = 0x00;
397 holgerb 760
        AccConfig.ctrl_4 = ACC_CTRL4_BDU | ACC_CTRL4_FS_8G;
394 killagreg 761
        AccConfig.ctrl_5 = ACC_CTRL5_STW_OFF;
762
        return(NCMAG_SetAccConfig());
763
}
253 killagreg 764
// --------------------------------------------------------
292 killagreg 765
void NCMAG_Update(void)
243 killagreg 766
{
292 killagreg 767
        static u32 TimerUpdate = 0;
419 holgerb 768
        static s8 send_config = 0;
394 killagreg 769
        u32 delay = 20;
470 killagreg 770
        // todo State Handling for both busses  !!
472 holgerb 771
        if((I2C1_State == I2C_STATE_OFF) || (I2C_CompassPort == 0 && I2C0_State == I2C_STATE_OFF) || !NCMAG_Present )
254 killagreg 772
        {
773
                Compass_Heading = -1;
326 holgerb 774
                DebugOut.Analog[14]++; // count I2C error
254 killagreg 775
                return;
776
        }
292 killagreg 777
        if(CheckDelay(TimerUpdate))
243 killagreg 778
        {
394 killagreg 779
                if(Compass_Heading != -1) send_config = 0; // no re-configuration if value is valid
780
        if(++send_config == 25)   // 500ms
781
                {
419 holgerb 782
                        send_config = -25;    // next try after 1 second
394 killagreg 783
                InitNC_MagnetSensor();
419 holgerb 784
                        TimerUpdate = SetDelay(20);    // back into the old time-slot
394 killagreg 785
                }
321 holgerb 786
                else
787
                {
398 holgerb 788
//                      static u8 s = 0;
394 killagreg 789
                        // check for new calibration state
790
                        Compass_UpdateCalState();
791
                        if(Compass_CalState) NCMAG_Calibrate();
792
 
793
                        // in case of LSM303 type
794
                        switch(NCMAG_SensorType)
795
                        {
796
                                case TYPE_HMC5843:                             
797
                                        NCMAG_GetMagVector();
798
                                        delay = 20;
799
                                        break;
800
                                case TYPE_LSM303DLH:
801
                                case TYPE_LSM303DLM:
397 holgerb 802
                                        NCMAG_GetMagVector();
803
                                        delay = 20;
804
/*                                      if(s){ NCMAG_GetMagVector(); s = 0;}
394 killagreg 805
                                        else { NCMAG_GetAccVector(); s = 1;}
806
                                        delay = 10;
397 holgerb 807
*/
394 killagreg 808
                                        break;                           
809
                        }
419 holgerb 810
                        if(send_config == 24) TimerUpdate = SetDelay(15);    // next event is the re-configuration
394 killagreg 811
                        else TimerUpdate = SetDelay(delay);    // every 20 ms are 50 Hz
321 holgerb 812
                }
243 killagreg 813
        }
814
}
815
 
330 holgerb 816
 
254 killagreg 817
// --------------------------------------------------------
253 killagreg 818
u8 NCMAG_SelfTest(void)
243 killagreg 819
{
266 holgerb 820
        u8 msg[64];
275 killagreg 821
        static u8 done = 0;
266 holgerb 822
 
287 holgerb 823
        if(done) return(1);        // just make it once
275 killagreg 824
 
271 holgerb 825
        #define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
243 killagreg 826
        u32 time;
253 killagreg 827
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
828
        s16 xscale, yscale, zscale, scale_min, scale_max;
829
        u8 crb_gain, cra_rate;
830
        u8 i = 0, retval = 1;
243 killagreg 831
 
394 killagreg 832
        switch(NCMAG_SensorType)
253 killagreg 833
        {
394 killagreg 834
                case TYPE_HMC5843:
339 holgerb 835
                        crb_gain = HMC5843_CRB_GAIN_15GA;
253 killagreg 836
                        cra_rate = HMC5843_CRA_RATE_50HZ;
837
                        xscale = HMC5843_TEST_XSCALE;
838
                        yscale = HMC5843_TEST_YSCALE;
839
                        zscale = HMC5843_TEST_ZSCALE;
840
                        break;
841
 
394 killagreg 842
                case TYPE_LSM303DLH:
338 holgerb 843
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
253 killagreg 844
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
845
                        xscale = LSM303DLH_TEST_XSCALE;
846
                        yscale = LSM303DLH_TEST_YSCALE;
847
                        zscale = LSM303DLH_TEST_ZSCALE;
848
                        break;
849
 
394 killagreg 850
                case TYPE_LSM303DLM:
851
                        // does not support self test feature 
852
                        done = retval;
853
                        return(retval);
854
                        break;
855
 
253 killagreg 856
                default:
394 killagreg 857
                        return(0);
253 killagreg 858
        }
859
 
860
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
861
        MagConfig.crb = crb_gain;
862
        MagConfig.mode = MODE_CONTINUOUS;
863
        // activate positive bias field
864
        NCMAG_SetMagConfig();
251 killagreg 865
        // wait for stable readings
866
        time = SetDelay(50);
867
        while(!CheckDelay(time));
243 killagreg 868
        // averaging
253 killagreg 869
        #define AVERAGE 20
870
        for(i = 0; i<AVERAGE; i++)
243 killagreg 871
        {
253 killagreg 872
                NCMAG_GetMagVector();
243 killagreg 873
                time = SetDelay(20);
874
        while(!CheckDelay(time));
254 killagreg 875
                XMax += MagRawVector.X;
876
                YMax += MagRawVector.Y;
877
                ZMax += MagRawVector.Z;
243 killagreg 878
        }
253 killagreg 879
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
880
        // activate positive bias field
881
        NCMAG_SetMagConfig();
251 killagreg 882
    // wait for stable readings
883
        time = SetDelay(50);
884
        while(!CheckDelay(time));
243 killagreg 885
        // averaging
253 killagreg 886
        for(i = 0; i < AVERAGE; i++)
243 killagreg 887
        {
253 killagreg 888
                NCMAG_GetMagVector();
243 killagreg 889
                time = SetDelay(20);
890
        while(!CheckDelay(time));
254 killagreg 891
                XMin += MagRawVector.X;
892
                YMin += MagRawVector.Y;
893
                ZMin += MagRawVector.Z;
243 killagreg 894
        }
895
        // setup final configuration
253 killagreg 896
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
897
        // activate positive bias field
898
        NCMAG_SetMagConfig();
266 holgerb 899
        // check scale for all axes
243 killagreg 900
        // prepare scale limits
253 killagreg 901
        LIMITS(xscale, scale_min, scale_max);
267 holgerb 902
        xscale = (XMax - XMin)/(2*AVERAGE);
266 holgerb 903
        if((xscale > scale_max) || (xscale < scale_min))
394 killagreg 904
    {
905
                retval = 0;
906
        sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
907
                UART1_PutString(msg);
908
    }
267 holgerb 909
        LIMITS(yscale, scale_min, scale_max);
266 holgerb 910
        yscale = (YMax - YMin)/(2*AVERAGE);
911
        if((yscale > scale_max) || (yscale < scale_min))
394 killagreg 912
    {
913
                retval = 0;
914
        sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
915
                UART1_PutString(msg);
916
    }
267 holgerb 917
        LIMITS(zscale, scale_min, scale_max);
266 holgerb 918
        zscale = (ZMax - ZMin)/(2*AVERAGE);
919
        if((zscale > scale_max) || (zscale < scale_min))      
394 killagreg 920
        {
921
                retval = 0;
922
        sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
923
                UART1_PutString(msg);
924
    }
275 killagreg 925
        done = retval;
253 killagreg 926
        return(retval);
243 killagreg 927
}
928
 
929
 
930
//----------------------------------------------------------------
465 ingob 931
void NCMAG_SelectI2CBus(u8 busno)
932
{
933
  if (busno == 0)
934
  {
935
    I2C_WaitForEndOfTransmissionFunc = &I2C0_WaitForEndOfTransmission;
936
        I2C_LockBufferFunc = &I2C0_LockBuffer;
937
        I2C_TransmissionFunc = &I2C0_Transmission;
938
        I2C_BufferPnt = I2C0_Buffer;
939
        I2C_ErrorPnt = &I2C0_Error;
940
  }
941
   else
942
  {
470 killagreg 943
    I2C_WaitForEndOfTransmissionFunc = &I2C1_WaitForEndOfTransmission;
944
        I2C_LockBufferFunc = &I2C1_LockBuffer;
945
        I2C_TransmissionFunc = &I2C1_Transmission;
946
        I2C_BufferPnt = I2C1_Buffer;
947
        I2C_ErrorPnt = &I2C1_Error;
465 ingob 948
  }
949
}
950
 
951
//----------------------------------------------------------------
253 killagreg 952
u8 NCMAG_Init(void)
242 killagreg 953
{
954
        u8 msg[64];
252 killagreg 955
        u8 retval = 0;
242 killagreg 956
        u8 repeat;
957
 
472 holgerb 958
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
959
// Search external sensor
960
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
961
        I2C_CompassPort = I2C_EXTERN_0;
962
        NCMAG_SelectI2CBus(I2C_CompassPort);
465 ingob 963
 
472 holgerb 964
        // get id bytes
965
        retval = 0;
966
        do
967
        {
968
                retval = NCMAG_GetIdentification();
969
                if(retval) break; // break loop on success
970
//              UART1_PutString("+");
971
                repeat++;
972
        } while(repeat < 5);
973
 
974
        if(!retval)
975
        {
976
         UART1_PutString(" internal sensor");
977
         I2C_CompassPort = I2C_INTERN_1;
978
         NCMAG_SelectI2CBus(I2C_CompassPort);
979
        }
980
        else
981
        {
982
         UART1_PutString(" external sensor ");
983
        }
984
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
985
 
253 killagreg 986
        NCMAG_Present = 0;
394 killagreg 987
        NCMAG_SensorType = TYPE_HMC5843;        // assuming having an HMC5843
988
        // polling for LSM302DLH/DLM option by ACC address ack
253 killagreg 989
        repeat = 0;
990
        do
991
        {
992
                retval = NCMAG_GetAccConfig();
993
                if(retval) break; // break loop on success
472 holgerb 994
//              UART1_PutString("*");
253 killagreg 995
                repeat++;
472 holgerb 996
        } while(repeat < 3);
394 killagreg 997
        if(retval)
242 killagreg 998
        {
394 killagreg 999
                // initialize ACC sensor
1000
                NCMAG_Init_ACCSensor();
1001
 
1002
                NCMAG_SensorType = TYPE_LSM303DLH;     
1003
                // polling of sub identification
1004
                repeat = 0;
1005
                do
1006
                {
1007
                        retval = NCMAG_GetIdentification_Sub();
1008
                        if(retval) break; // break loop on success
472 holgerb 1009
//                      UART1_PutString(".");
394 killagreg 1010
                        repeat++;
1011
                }while(repeat < 12);
1012
                if(retval)
1013
                {
1014
                        if(NCMAG_Identification2.Sub == MAG_IDF_LSM303DLM)      NCMAG_SensorType = TYPE_LSM303DLM;
1015
                }      
1016
        }
1017
        // get id bytes
329 holgerb 1018
        retval = 0;
1019
        do
1020
        {
253 killagreg 1021
                retval = NCMAG_GetIdentification();
252 killagreg 1022
                if(retval) break; // break loop on success
472 holgerb 1023
//              UART1_PutString("#");
242 killagreg 1024
                repeat++;
472 holgerb 1025
        } while(repeat < 12);
329 holgerb 1026
 
253 killagreg 1027
        // if we got an answer to id request
252 killagreg 1028
        if(retval)
242 killagreg 1029
        {
329 holgerb 1030
                u8 n1[] = "\n\r HMC5843";
1031
                u8 n2[] = "\n\r LSM303DLH";
1032
                u8 n3[] = "\n\r LSM303DLM";
394 killagreg 1033
                u8* pn = n1;
329 holgerb 1034
 
394 killagreg 1035
                switch(NCMAG_SensorType)
329 holgerb 1036
                {
394 killagreg 1037
                        case TYPE_HMC5843:
1038
                                pn = n1;
1039
                                break;
1040
                        case TYPE_LSM303DLH:
1041
                                pn = n2;
1042
                                break;
1043
                        case TYPE_LSM303DLM:
1044
                                pn = n3;
1045
                                break;
329 holgerb 1046
                }
1047
 
1048
                sprintf(msg, " %s ID 0x%02x/%02x/%02x-%02x", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C,NCMAG_Identification2.Sub);
242 killagreg 1049
                UART1_PutString(msg);
253 killagreg 1050
                if (    (NCMAG_Identification.A == MAG_IDA)
1051
                     && (NCMAG_Identification.B == MAG_IDB)
1052
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 1053
                {
268 killagreg 1054
                        NCMAG_Present = 1;
329 holgerb 1055
 
1056
                        if(EEPROM_Init())
394 killagreg 1057
                        {
472 holgerb 1058
                                NCMAG_IsCalibrated = NCMag_CalibrationRead(I2C_CompassPort);
394 killagreg 1059
                                if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
1060
                        }
329 holgerb 1061
                        else UART1_PutString("\r\n EEPROM data not available!!!!!!!!!!!!!!!");
394 killagreg 1062
                        // perform self test
1063
                        if(!NCMAG_SelfTest())
1064
                        {
329 holgerb 1065
                                UART1_PutString("\r\n Selftest failed!!!!!!!!!!!!!!!!!!!!\r\n");
1066
                                LED_RED_ON;
472 holgerb 1067
//                              NCMAG_IsCalibrated = 0;
394 killagreg 1068
                        }
1069
                        else UART1_PutString("\r\n Selftest ok");
1070
 
1071
                        // initialize magnetic sensor configuration
1072
                        InitNC_MagnetSensor();
242 killagreg 1073
                }
1074
                else
1075
                {
254 killagreg 1076
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 1077
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 1078
                        LED_RED_ON;
1079
                }
1080
        }
253 killagreg 1081
        else // nothing found
1082
        {
394 killagreg 1083
                NCMAG_SensorType = TYPE_NONE;
253 killagreg 1084
                UART1_PutString("not found!");  
1085
        }
1086
        return(NCMAG_Present);
242 killagreg 1087
}
1088