Subversion Repositories NaviCtrl

Rev

Rev 329 | Rev 338 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + Copyright (c) 2010 Ingo Busker, Holger Buss
6
// + Nur für den privaten Gebrauch / NON-COMMERCIAL USE ONLY
7
// + FOR NON COMMERCIAL USE ONLY
8
// + www.MikroKopter.com
9
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
10
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
11
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
12
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
13
// + bzgl. der Nutzungsbedingungen aufzunehmen.
14
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
15
// + Verkauf von Luftbildaufnahmen, usw.
16
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
17
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
18
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
21
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
22
// + eindeutig als Ursprung verlinkt werden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
25
// + Benutzung auf eigene Gefahr
26
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
27
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// + Die Portierung oder Nutzung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
29
// + mit unserer Zustimmung zulässig
30
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
31
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
32
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
33
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
34
// + this list of conditions and the following disclaimer.
35
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
36
// +     from this software without specific prior written permission.
37
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permitted
38
// +     for non-commercial use (directly or indirectly)
39
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
40
// +     with our written permission
41
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
42
// +     clearly linked as origin
43
// +   * porting the sources to other systems or using the software on other systems (except hardware from www.mikrokopter.de) is not allowed
44
//
45
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
46
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
49
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
50
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
51
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
52
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
53
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
55
// +  POSSIBILITY OF SUCH DAMAGE.
56
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 57
#include <math.h>
292 killagreg 58
#include <stdio.h>
242 killagreg 59
#include <string.h>
60
#include "91x_lib.h"
253 killagreg 61
#include "ncmag.h"
242 killagreg 62
#include "i2c.h"
63
#include "timer1.h"
64
#include "led.h"
65
#include "uart1.h"
254 killagreg 66
#include "eeprom.h"
256 killagreg 67
#include "mymath.h"
292 killagreg 68
#include "main.h"
242 killagreg 69
 
253 killagreg 70
u8 NCMAG_Present = 0;
254 killagreg 71
u8 NCMAG_IsCalibrated = 0;
242 killagreg 72
 
253 killagreg 73
#define MAG_TYPE_NONE           0
74
#define MAG_TYPE_HMC5843        1
75
#define MAG_TYPE_LSM303DLH      2
254 killagreg 76
u8 NCMAG_MagType = MAG_TYPE_NONE;
242 killagreg 77
 
254 killagreg 78
#define CALIBRATION_VERSION 1
79
#define EEPROM_ADR_MAG_CALIBRATION 50
80
 
256 killagreg 81
#define NCMAG_MIN_RAWVALUE -2047
82
#define NCMAG_MAX_RAWVALUE  2047
83
#define NCMAG_INVALID_DATA -4096
84
 
254 killagreg 85
typedef struct
86
{
87
        s16 Range;
88
        s16 Offset;
256 killagreg 89
} __attribute__((packed)) Scaling_t;
254 killagreg 90
 
91
typedef struct
92
{
93
        Scaling_t MagX;
94
        Scaling_t MagY;
95
        Scaling_t MagZ;
96
        u8 Version;
97
        u8 crc;
256 killagreg 98
} __attribute__((packed)) Calibration_t;
254 killagreg 99
 
100
Calibration_t Calibration;              // calibration data in RAM 
101
 
253 killagreg 102
// i2c MAG interface
103
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 104
 
253 killagreg 105
// register mapping
106
#define REG_MAG_CRA                     0x00
107
#define REG_MAG_CRB                     0x01
108
#define REG_MAG_MODE            0x02
109
#define REG_MAG_DATAX_MSB       0x03
110
#define REG_MAG_DATAX_LSB       0x04
111
#define REG_MAG_DATAY_MSB       0x05
112
#define REG_MAG_DATAY_LSB       0x06
113
#define REG_MAG_DATAZ_MSB       0x07
114
#define REG_MAG_DATAZ_LSB       0x08
115
#define REG_MAG_STATUS          0x09
329 holgerb 116
 
253 killagreg 117
#define REG_MAG_IDA                     0x0A
118
#define REG_MAG_IDB                     0x0B
119
#define REG_MAG_IDC                     0x0C
329 holgerb 120
#define REG_MAG_IDF                     0x0F
242 killagreg 121
 
253 killagreg 122
// bit mask for configuration mode
123
#define CRA_MODE_MASK           0x03
124
#define CRA_MODE_NORMAL         0x00    //default
125
#define CRA_MODE_POSBIAS        0x01
126
#define CRA_MODE_NEGBIAS        0x02
127
#define CRA_MODE_SELFTEST       0x03
242 killagreg 128
 
253 killagreg 129
// bit mask for measurement mode
130
#define MODE_MASK                       0xFF
131
#define MODE_CONTINUOUS         0x00
132
#define MODE_SINGLE                     0x01    // default
133
#define MODE_IDLE                       0x02
134
#define MODE_SLEEP                      0x03
135
 
242 killagreg 136
// bit mask for rate
253 killagreg 137
#define CRA_RATE_MASK           0x1C
138
 
139
// bit mask for gain
140
#define CRB_GAIN_MASK           0xE0
141
 
142
// ids
143
#define MAG_IDA         0x48
144
#define MAG_IDB         0x34
145
#define MAG_IDC         0x33
146
 
147
// the special HMC5843 interface
148
// bit mask for rate
242 killagreg 149
#define HMC5843_CRA_RATE_0_5HZ          0x00
150
#define HMC5843_CRA_RATE_1HZ            0x04
151
#define HMC5843_CRA_RATE_2HZ            0x08
152
#define HMC5843_CRA_RATE_5HZ            0x0C
153
#define HMC5843_CRA_RATE_10HZ           0x10    //default
154
#define HMC5843_CRA_RATE_20HZ           0x14
155
#define HMC5843_CRA_RATE_50HZ           0x18
156
// bit mask for gain
157
#define HMC5843_CRB_GAIN_07GA           0x00
158
#define HMC5843_CRB_GAIN_10GA           0x20    //default
159
#define HMC5843_CRB_GAIN_15GA           0x40
160
#define HMC5843_CRB_GAIN_20GA           0x60
161
#define HMC5843_CRB_GAIN_32GA           0x80
162
#define HMC5843_CRB_GAIN_38GA           0xA0
163
#define HMC5843_CRB_GAIN_45GA           0xC0
164
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 165
// self test value
166
#define HMC5843_TEST_XSCALE             715
167
#define HMC5843_TEST_YSCALE             715
168
#define HMC5843_TEST_ZSCALE             715
242 killagreg 169
 
170
 
253 killagreg 171
// the special LSM302DLH interface
172
// bit mask for rate
173
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
174
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
175
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
176
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
177
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
178
#define LSM303DLH_CRA_RATE_30HZ         0x14
179
#define LSM303DLH_CRA_RATE_75HZ         0x18
180
// bit mask for gain
181
#define LSM303DLH_CRB_GAIN_XXGA         0x00
182
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
183
#define LSM303DLH_CRB_GAIN_19GA         0x40
184
#define LSM303DLH_CRB_GAIN_25GA         0x60
185
#define LSM303DLH_CRB_GAIN_40GA         0x80
186
#define LSM303DLH_CRB_GAIN_47GA         0xA0
187
#define LSM303DLH_CRB_GAIN_56GA         0xC0
188
#define LSM303DLH_CRB_GAIN_81GA         0xE0
189
// self test value
190
#define LSM303DLH_TEST_XSCALE   655
191
#define LSM303DLH_TEST_YSCALE   655
192
#define LSM303DLH_TEST_ZSCALE   630
193
 
194
// the i2c ACC interface
195
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
196
// register mapping
197
#define REG_ACC_CTRL1                   0x20
198
#define REG_ACC_CTRL2                   0x21
199
#define REG_ACC_CTRL3                   0x22
200
#define REG_ACC_CTRL4                   0x23
201
#define REG_ACC_CTRL5                   0x24
202
#define REG_ACC_HP_FILTER_RESET 0x25
203
#define REG_ACC_REFERENCE               0x26
204
#define REG_ACC_STATUS                  0x27
205
#define REG_ACC_X_LSB                   0x28
206
#define REG_ACC_X_MSB                   0x29
207
#define REG_ACC_Y_LSB                   0x2A
208
#define REG_ACC_Y_MSB                   0x2B
209
#define REG_ACC_Z_LSB                   0x2C
210
#define REG_ACC_Z_MSB                   0x2D
211
 
212
 
213
 
242 killagreg 214
typedef struct
215
{
253 killagreg 216
        u8 A;
217
        u8 B;
218
        u8 C;
219
} __attribute__((packed)) Identification_t;
220
volatile Identification_t NCMAG_Identification;
242 killagreg 221
 
253 killagreg 222
typedef struct
223
{
329 holgerb 224
        u8 Sub;
225
} __attribute__((packed)) Identification2_t;
226
volatile Identification2_t NCMAG_Identification2;
227
 
228
typedef struct
229
{
253 killagreg 230
        u8 cra;
231
        u8 crb;
232
        u8 mode;
233
} __attribute__((packed)) MagConfig_t;
242 killagreg 234
 
253 killagreg 235
volatile MagConfig_t MagConfig;
242 killagreg 236
 
253 killagreg 237
typedef struct
238
{
239
        u8 ctrl_1;
240
        u8 ctrl_2;
241
        u8 ctrl_3;
242
        u8 ctrl_4;
243
        u8 ctrl_5;
244
} __attribute__((packed)) AccConfig_t;
245
 
246
volatile AccConfig_t AccConfig;
247
 
254 killagreg 248
volatile s16vec_t AccRawVector;
249
volatile s16vec_t MagRawVector;
253 killagreg 250
 
251
 
254 killagreg 252
u8 NCMag_CalibrationWrite(void)
253
{
254
        u8 i, crc = 0xAA;
255
        EEPROM_Result_t eres;
256
        u8 *pBuff = (u8*)&Calibration;
257
 
258
        Calibration.Version = CALIBRATION_VERSION;
256 killagreg 259
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 260
        {
261
                crc += pBuff[i];        
262
        }
263
        Calibration.crc = ~crc;
264
        eres = EEPROM_WriteBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration));
265
        if(EEPROM_SUCCESS == eres) i = 1;
266
        else i = 0;
267
        return(i);     
268
}
269
 
270
u8 NCMag_CalibrationRead(void)
271
{
272
        u8 i, crc = 0xAA;
273
        u8 *pBuff = (u8*)&Calibration;
274
 
275
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration)))
276
        {
256 killagreg 277
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 278
                {
279
                        crc += pBuff[i];        
280
                }
281
                crc = ~crc;
282
                if(Calibration.crc != crc) return(0); // crc mismatch
257 killagreg 283
                if(Calibration.Version == CALIBRATION_VERSION) return(1);
254 killagreg 284
        }
285
        return(0);
286
}
287
 
288
 
289
void NCMAG_Calibrate(void)
290
{
330 holgerb 291
        u8 msg[64];
254 killagreg 292
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 293
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 294
        static u8 OldCalState = 0;     
295
 
256 killagreg 296
        X = (4*X + MagRawVector.X + 3)/5;
297
        Y = (4*Y + MagRawVector.Y + 3)/5;
298
        Z = (4*Z + MagRawVector.Z + 3)/5;
299
 
254 killagreg 300
        switch(Compass_CalState)
301
        {
302
                case 1:
303
                        // 1st step of calibration
304
                        // initialize ranges
305
                        // used to change the orientation of the NC in the horizontal plane
306
                        Xmin =  10000;
307
                        Xmax = -10000;
308
                        Ymin =  10000;
309
                        Ymax = -10000;
310
                        Zmin =  10000;
311
                        Zmax = -10000;
312
                        break;
313
 
314
                case 2: // 2nd step of calibration
315
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
275 killagreg 316
                        if(X < Xmin)            { Xmin = X; BeepTime = 20;}
317
                        else if(X > Xmax)       { Xmax = X; BeepTime = 20;}
318
                        if(Y < Ymin)            { Ymin = Y; BeepTime = 60;}
319
                        else if(Y > Ymax)       { Ymax = Y; BeepTime = 60;}
254 killagreg 320
                        break;
321
 
322
                case 3: // 3rd step of calibration
323
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
324
                        break;
325
 
326
                case 4:
327
                        // find Min and Max of the Z-Sensor
275 killagreg 328
                        if(Z < Zmin)      { Zmin = Z; BeepTime = 80;}
329
                        else if(Z > Zmax) { Zmax = Z; BeepTime = 80;}
254 killagreg 330
                        break;
331
 
332
                case 5:
333
                        // Save values
334
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
335
                        {
292 killagreg 336
                                #define MIN_CALIBRATION    256
254 killagreg 337
                                Calibration.MagX.Range = Xmax - Xmin;
338
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
339
                                Calibration.MagY.Range = Ymax - Ymin;
340
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
341
                                Calibration.MagZ.Range = Zmax - Zmin;
342
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
265 holgerb 343
                                if((Calibration.MagX.Range > MIN_CALIBRATION) && (Calibration.MagY.Range > MIN_CALIBRATION) && (Calibration.MagZ.Range > MIN_CALIBRATION))
254 killagreg 344
                                {
345
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite();
270 killagreg 346
                                        BeepTime = 2500;
330 holgerb 347
                                        UART1_PutString("\r\n Calibration okay\n\r");
254 killagreg 348
                                }
349
                                else
350
                                {
330 holgerb 351
                                        UART1_PutString("\r\n Calibration FAILED - Values too low");
352
                                    if(Calibration.MagX.Range < MIN_CALIBRATION) UART1_PutString("X! ");
353
                                    if(Calibration.MagY.Range < MIN_CALIBRATION) UART1_PutString("y! ");
354
                                    if(Calibration.MagZ.Range < MIN_CALIBRATION) UART1_PutString("Z! ");
355
                                        UART1_PutString("\r\n");
254 killagreg 356
                                        // restore old calibration data from eeprom
357
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
358
                                }
330 holgerb 359
                                        sprintf(msg, "X: (%i - %i = %i)\r\n",Xmax,Xmin,Xmax - Xmin);
360
                                        UART1_PutString(msg);
361
                                        sprintf(msg, "Y: (%i - %i = %i)\r\n",Ymax,Ymin,Ymax - Ymin);
362
                                        UART1_PutString(msg);
363
                                        sprintf(msg, "Z: (%i - %i = %i)\r\n",Zmax,Zmin,Zmax - Zmin);
364
                                        UART1_PutString(msg);
254 killagreg 365
                        }
366
                        break;
367
 
368
                default:
369
                        break; 
370
        }
371
        OldCalState = Compass_CalState;
372
}
373
 
242 killagreg 374
// ---------- call back handlers -----------------------------------------
375
 
376
// rx data handler for id info request
253 killagreg 377
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 378
{       // if number of bytes are matching
253 killagreg 379
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 380
        {
253 killagreg 381
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
382
        }
242 killagreg 383
}
329 holgerb 384
 
385
void NCMAG_UpdateIdentification_Sub(u8* pRxBuffer, u8 RxBufferSize)
386
{       // if number of bytes are matching
387
        if(RxBufferSize == sizeof(NCMAG_Identification2))
388
        {
389
                memcpy((u8 *)&NCMAG_Identification2, pRxBuffer, sizeof(NCMAG_Identification2));
390
        }
391
}
392
 
254 killagreg 393
// rx data handler for magnetic sensor raw data
253 killagreg 394
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 395
{       // if number of bytes are matching
396
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 397
        {       // byte order from big to little endian
256 killagreg 398
                s16 raw;
399
                raw = pRxBuffer[0]<<8;
400
                raw+= pRxBuffer[1];
401
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
402
                raw = pRxBuffer[2]<<8;
403
                raw+= pRxBuffer[3];
330 holgerb 404
            if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
405
                {
406
                  if(NCMAG_Identification2.Sub == 0x3c) MagRawVector.Z = raw; // here Z and Y are exchanged
407
                  else MagRawVector.Y = raw;
408
                }
256 killagreg 409
                raw = pRxBuffer[4]<<8;
410
                raw+= pRxBuffer[5];
330 holgerb 411
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
412
                {
413
                  if(NCMAG_Identification2.Sub == 0x3c) MagRawVector.Y = raw; // here Z and Y are exchanged
414
                  else MagRawVector.Z = raw;
415
                }
416
 
242 killagreg 417
        }
254 killagreg 418
        if(Compass_CalState || !NCMAG_IsCalibrated)
284 killagreg 419
        {       // mark out data invalid
289 killagreg 420
                MagVector.X = MagRawVector.X;
421
                MagVector.Y = MagRawVector.Y;
422
                MagVector.Z = MagRawVector.Z;
254 killagreg 423
                Compass_Heading = -1;
424
        }
425
        else
426
        {
427
                // update MagVector from MagRaw Vector by Scaling
428
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
429
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
430
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
292 killagreg 431
                Compass_CalcHeading();
254 killagreg 432
        }
242 killagreg 433
}
254 killagreg 434
// rx data handler  for acceleration raw data
253 killagreg 435
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
436
{       // if number of byte are matching
254 killagreg 437
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 438
        {
254 killagreg 439
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 440
        }
441
}
254 killagreg 442
// rx data handler for reading magnetic sensor configuration
253 killagreg 443
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
444
{       // if number of byte are matching
445
        if(RxBufferSize == sizeof(MagConfig) )
446
        {
447
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
448
        }
449
}
254 killagreg 450
// rx data handler for reading acceleration sensor configuration
253 killagreg 451
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
452
{       // if number of byte are matching
453
        if(RxBufferSize == sizeof(AccConfig) )
454
        {
455
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
456
        }
457
}
254 killagreg 458
//----------------------------------------------------------------------
253 killagreg 459
 
254 killagreg 460
 
461
// ---------------------------------------------------------------------
253 killagreg 462
u8 NCMAG_SetMagConfig(void)
463
{
464
        u8 retval = 0;
465
        // try to catch the i2c buffer within 100 ms timeout
466
        if(I2C_LockBuffer(100))
467
        {
468
                u8 TxBytes = 0;
469
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;    
470
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
471
                TxBytes += sizeof(MagConfig);
472
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
473
                {
474
                        if(I2C_WaitForEndOfTransmission(100))
475
                        {
476
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
477
                        }
478
                }
479
        }
480
        return(retval);        
481
}
242 killagreg 482
 
253 killagreg 483
// ----------------------------------------------------------------------------------------
484
u8 NCMAG_GetMagConfig(void)
242 killagreg 485
{
253 killagreg 486
        u8 retval = 0;
252 killagreg 487
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 488
        if(I2C_LockBuffer(100))
242 killagreg 489
        {
253 killagreg 490
                u8 TxBytes = 0;
491
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;
492
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 493
                {
252 killagreg 494
                        if(I2C_WaitForEndOfTransmission(100))
495
                        {
496
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
497
                        }
248 killagreg 498
                }
242 killagreg 499
        }
253 killagreg 500
        return(retval);        
242 killagreg 501
}
502
 
503
// ----------------------------------------------------------------------------------------
253 killagreg 504
u8 NCMAG_SetAccConfig(void)
242 killagreg 505
{
252 killagreg 506
        u8 retval = 0;
253 killagreg 507
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 508
        if(I2C_LockBuffer(100))
242 killagreg 509
        {
253 killagreg 510
                u8 TxBytes = 0;
511
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;  
512
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
513
                TxBytes += sizeof(AccConfig);
514
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
515
                {
516
                        if(I2C_WaitForEndOfTransmission(100))
517
                        {
518
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
519
                        }
520
                }
521
        }
522
        return(retval);        
523
}
524
 
525
// ----------------------------------------------------------------------------------------
526
u8 NCMAG_GetAccConfig(void)
527
{
528
        u8 retval = 0;
529
        // try to catch the i2c buffer within 100 ms timeout
530
        if(I2C_LockBuffer(100))
531
        {
532
                u8 TxBytes = 0;
533
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;
534
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
535
                {
536
                        if(I2C_WaitForEndOfTransmission(100))
537
                        {
538
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
539
                        }
540
                }
541
        }
542
        return(retval);        
543
}
544
 
545
// ----------------------------------------------------------------------------------------
546
u8 NCMAG_GetIdentification(void)
547
{
548
        u8 retval = 0;
549
        // try to catch the i2c buffer within 100 ms timeout
550
        if(I2C_LockBuffer(100))
551
        {
552
                u16 TxBytes = 0;
553
                NCMAG_Identification.A = 0xFF;
554
                NCMAG_Identification.B = 0xFF;
555
                NCMAG_Identification.C = 0xFF;
556
                I2C_Buffer[TxBytes++] = REG_MAG_IDA;
248 killagreg 557
                // initiate transmission
253 killagreg 558
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 559
                {
253 killagreg 560
                        if(I2C_WaitForEndOfTransmission(100))
252 killagreg 561
                        {
562
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
563
                        }
248 killagreg 564
                }
242 killagreg 565
        }
253 killagreg 566
        return(retval);
242 killagreg 567
}
568
 
329 holgerb 569
u8 NCMAG_GetIdentification_Sub(void)
570
{
571
        u8 retval = 0;
572
        // try to catch the i2c buffer within 100 ms timeout
573
        if(I2C_LockBuffer(100))
574
        {
575
                u16 TxBytes = 0;
576
                NCMAG_Identification2.Sub = 0xFF;
577
                I2C_Buffer[TxBytes++] = REG_MAG_IDF;
578
                // initiate transmission
579
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification_Sub, sizeof(NCMAG_Identification2)))
580
                {
581
                        if(I2C_WaitForEndOfTransmission(100))
582
                        {
583
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
584
                        }
585
                }
586
        }
587
        return(retval);
588
}
589
 
590
 
253 killagreg 591
// ----------------------------------------------------------------------------------------
592
void NCMAG_GetMagVector(void)
593
{
594
        // try to catch the I2C buffer within 0 ms
595
        if(I2C_LockBuffer(0))
596
        {
330 holgerb 597
//       s16 tmp;
253 killagreg 598
                u16 TxBytes = 0;
599
                // set register pointer
600
                I2C_Buffer[TxBytes++] = REG_MAG_DATAX_MSB;
601
                // initiate transmission
602
                I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
603
        }
604
}
605
 
242 killagreg 606
//----------------------------------------------------------------
253 killagreg 607
void NCMAG_GetAccVector(void)
243 killagreg 608
{
252 killagreg 609
        // try to catch the I2C buffer within 0 ms
610
        if(I2C_LockBuffer(0))
243 killagreg 611
        {
248 killagreg 612
                u16 TxBytes = 0;
243 killagreg 613
                // set register pointer
253 killagreg 614
                I2C_Buffer[TxBytes++] = REG_ACC_X_LSB;
243 killagreg 615
                // initiate transmission
254 killagreg 616
                I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
243 killagreg 617
        }
618
}
619
 
330 holgerb 620
//----------------------------------------------------------------
621
void InitNC_MagnetSensor(void)
622
{
623
        s16 xscale, yscale, zscale;
624
        u8 crb_gain, cra_rate;
625
        u8 i = 0, retval = 1;
626
 
627
        switch(NCMAG_MagType)
628
        {
629
                case MAG_TYPE_HMC5843:
630
                        crb_gain = HMC5843_CRB_GAIN_10GA;
631
                        cra_rate = HMC5843_CRA_RATE_50HZ;
632
                        xscale = HMC5843_TEST_XSCALE;
633
                        yscale = HMC5843_TEST_YSCALE;
634
                        zscale = HMC5843_TEST_ZSCALE;
635
                        break;
636
 
637
                case MAG_TYPE_LSM303DLH:
638
                        crb_gain = LSM303DLH_CRB_GAIN_13GA;
639
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
640
                        xscale = LSM303DLH_TEST_XSCALE;
641
                        yscale = LSM303DLH_TEST_YSCALE;
642
                        zscale = LSM303DLH_TEST_ZSCALE;
643
                        break;
644
 
645
                default:
646
                return(0);
647
        }
648
 
649
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
650
        MagConfig.crb = crb_gain;
651
        MagConfig.mode = MODE_CONTINUOUS;
652
        NCMAG_SetMagConfig();
653
}
654
 
655
 
253 killagreg 656
// --------------------------------------------------------
292 killagreg 657
void NCMAG_Update(void)
243 killagreg 658
{
292 killagreg 659
        static u32 TimerUpdate = 0;
321 holgerb 660
        static u8 send_config = 0;
243 killagreg 661
 
254 killagreg 662
        if( (I2C_State == I2C_STATE_OFF) || !NCMAG_Present )
663
        {
664
                Compass_Heading = -1;
326 holgerb 665
                DebugOut.Analog[14]++; // count I2C error
254 killagreg 666
                return;
667
        }
292 killagreg 668
        if(CheckDelay(TimerUpdate))
243 killagreg 669
        {
326 holgerb 670
           if(Compass_Heading != -1) send_config = 0; // no re-configuration if value is valid
671
       if(++send_config == 25)   // 500ms
321 holgerb 672
            {
673
                 send_config = 0;
330 holgerb 674
             InitNC_MagnetSensor();
321 holgerb 675
                 TimerUpdate = SetDelay(15);    // back into the old time-slot
676
            }
677
                else
678
                {
254 killagreg 679
                // check for new calibration state
680
                Compass_UpdateCalState();
681
                if(Compass_CalState) NCMAG_Calibrate();
682
                NCMAG_GetMagVector(); //Get new data;
326 holgerb 683
                if(send_config == 24) TimerUpdate = SetDelay(5);    // next event is the re-configuration
321 holgerb 684
                else TimerUpdate = SetDelay(20);    // every 20 ms are 50 Hz
685
                }
243 killagreg 686
        }
687
}
688
 
330 holgerb 689
 
254 killagreg 690
// --------------------------------------------------------
253 killagreg 691
u8 NCMAG_SelfTest(void)
243 killagreg 692
{
266 holgerb 693
        u8 msg[64];
275 killagreg 694
        static u8 done = 0;
266 holgerb 695
 
287 holgerb 696
        if(done) return(1);        // just make it once
275 killagreg 697
 
271 holgerb 698
        #define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
243 killagreg 699
        u32 time;
253 killagreg 700
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
701
        s16 xscale, yscale, zscale, scale_min, scale_max;
702
        u8 crb_gain, cra_rate;
703
        u8 i = 0, retval = 1;
243 killagreg 704
 
253 killagreg 705
        switch(NCMAG_MagType)
706
        {
707
                case MAG_TYPE_HMC5843:
708
                        crb_gain = HMC5843_CRB_GAIN_10GA;
709
                        cra_rate = HMC5843_CRA_RATE_50HZ;
710
                        xscale = HMC5843_TEST_XSCALE;
711
                        yscale = HMC5843_TEST_YSCALE;
712
                        zscale = HMC5843_TEST_ZSCALE;
713
                        break;
714
 
715
                case MAG_TYPE_LSM303DLH:
716
                        crb_gain = LSM303DLH_CRB_GAIN_13GA;
717
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
718
                        xscale = LSM303DLH_TEST_XSCALE;
719
                        yscale = LSM303DLH_TEST_YSCALE;
720
                        zscale = LSM303DLH_TEST_ZSCALE;
721
                        break;
722
 
723
                default:
724
                return(0);
725
        }
726
 
727
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
728
        MagConfig.crb = crb_gain;
729
        MagConfig.mode = MODE_CONTINUOUS;
730
        // activate positive bias field
731
        NCMAG_SetMagConfig();
251 killagreg 732
        // wait for stable readings
733
        time = SetDelay(50);
734
        while(!CheckDelay(time));
243 killagreg 735
        // averaging
253 killagreg 736
        #define AVERAGE 20
737
        for(i = 0; i<AVERAGE; i++)
243 killagreg 738
        {
253 killagreg 739
                NCMAG_GetMagVector();
243 killagreg 740
                time = SetDelay(20);
741
        while(!CheckDelay(time));
254 killagreg 742
                XMax += MagRawVector.X;
743
                YMax += MagRawVector.Y;
744
                ZMax += MagRawVector.Z;
243 killagreg 745
        }
253 killagreg 746
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
747
        // activate positive bias field
748
        NCMAG_SetMagConfig();
251 killagreg 749
    // wait for stable readings
750
        time = SetDelay(50);
751
        while(!CheckDelay(time));
243 killagreg 752
        // averaging
253 killagreg 753
        for(i = 0; i < AVERAGE; i++)
243 killagreg 754
        {
253 killagreg 755
                NCMAG_GetMagVector();
243 killagreg 756
                time = SetDelay(20);
757
        while(!CheckDelay(time));
254 killagreg 758
                XMin += MagRawVector.X;
759
                YMin += MagRawVector.Y;
760
                ZMin += MagRawVector.Z;
243 killagreg 761
        }
762
        // setup final configuration
253 killagreg 763
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
764
        // activate positive bias field
765
        NCMAG_SetMagConfig();
266 holgerb 766
        // check scale for all axes
243 killagreg 767
        // prepare scale limits
253 killagreg 768
        LIMITS(xscale, scale_min, scale_max);
267 holgerb 769
        xscale = (XMax - XMin)/(2*AVERAGE);
266 holgerb 770
        if((xscale > scale_max) || (xscale < scale_min))
771
     {
772
          retval = 0;
773
      sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
774
          UART1_PutString(msg);
775
     }
267 holgerb 776
        LIMITS(yscale, scale_min, scale_max);
266 holgerb 777
        yscale = (YMax - YMin)/(2*AVERAGE);
778
        if((yscale > scale_max) || (yscale < scale_min))
779
     {
780
          retval = 0;
781
      sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
782
          UART1_PutString(msg);
783
     }
267 holgerb 784
        LIMITS(zscale, scale_min, scale_max);
266 holgerb 785
        zscale = (ZMax - ZMin)/(2*AVERAGE);
786
        if((zscale > scale_max) || (zscale < scale_min))      
787
         {
788
          retval = 0;
789
      sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
790
          UART1_PutString(msg);
791
     }
275 killagreg 792
        done = retval;
253 killagreg 793
        return(retval);
243 killagreg 794
}
795
 
796
 
797
//----------------------------------------------------------------
253 killagreg 798
u8 NCMAG_Init(void)
242 killagreg 799
{
800
        u8 msg[64];
252 killagreg 801
        u8 retval = 0;
242 killagreg 802
        u8 repeat;
803
 
253 killagreg 804
        NCMAG_Present = 0;
805
        NCMAG_MagType = MAG_TYPE_HMC5843;       // assuming having an HMC5843
806
        // polling for LSM302DLH option
807
        repeat = 0;
808
        do
809
        {
810
                retval = NCMAG_GetAccConfig();
811
                if(retval) break; // break loop on success
812
                UART1_PutString(".");
813
                repeat++;
814
        }while(repeat < 3);
815
        if(retval) NCMAG_MagType = MAG_TYPE_LSM303DLH; // must be a LSM303DLH
242 killagreg 816
        // polling of identification
817
        repeat = 0;
818
        do
819
        {
329 holgerb 820
                retval = NCMAG_GetIdentification_Sub();
821
                if(retval) break; // break loop on success
822
                UART1_PutString(".");
823
                repeat++;
824
        }while(repeat < 12);
825
        retval = 0;
826
        do
827
        {
253 killagreg 828
                retval = NCMAG_GetIdentification();
252 killagreg 829
                if(retval) break; // break loop on success
242 killagreg 830
                UART1_PutString(".");
831
                repeat++;
252 killagreg 832
        }while(repeat < 12);
329 holgerb 833
 
253 killagreg 834
        // if we got an answer to id request
252 killagreg 835
        if(retval)
242 killagreg 836
        {
329 holgerb 837
                u8 n1[] = "\n\r HMC5843";
838
                u8 n2[] = "\n\r LSM303DLH";
839
                u8 n3[] = "\n\r LSM303DLM";
253 killagreg 840
                u8* pn;
329 holgerb 841
 
842
                pn = n1;
843
                if(NCMAG_MagType == MAG_TYPE_LSM303DLH)
844
                {
845
                 if(NCMAG_Identification2.Sub == 0x3c) pn = n3;
846
                 else pn = n2;
847
                }
848
 
849
                sprintf(msg, " %s ID 0x%02x/%02x/%02x-%02x", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C,NCMAG_Identification2.Sub);
242 killagreg 850
                UART1_PutString(msg);
253 killagreg 851
                if (    (NCMAG_Identification.A == MAG_IDA)
852
                     && (NCMAG_Identification.B == MAG_IDB)
853
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 854
                {
268 killagreg 855
                        NCMAG_Present = 1;
329 holgerb 856
 
857
                        if(EEPROM_Init())
264 killagreg 858
                                {
859
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
860
                                        if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
861
                                }
329 holgerb 862
                        else UART1_PutString("\r\n EEPROM data not available!!!!!!!!!!!!!!!");
863
 
864
                        if(NCMAG_Identification2.Sub == 0x00)
865
                        {
866
                         if(!NCMAG_SelfTest())
867
                         {
868
                                UART1_PutString("\r\n Selftest failed!!!!!!!!!!!!!!!!!!!!\r\n");
869
                                LED_RED_ON;
870
                                NCMAG_IsCalibrated = 0;
871
                         }      else UART1_PutString("\r\n Selftest ok");
254 killagreg 872
                        }
330 holgerb 873
                        else InitNC_MagnetSensor();
242 killagreg 874
                }
875
                else
876
                {
254 killagreg 877
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 878
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 879
                        LED_RED_ON;
880
                }
881
        }
253 killagreg 882
        else // nothing found
883
        {
884
                NCMAG_MagType = MAG_TYPE_NONE;
885
                UART1_PutString("not found!");  
886
        }
887
        return(NCMAG_Present);
242 killagreg 888
}
889