Subversion Repositories NaviCtrl

Rev

Rev 398 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + www.MikroKopter.com
6
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 7
// + Software Nutzungsbedingungen (english version: see below)
8
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
9
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
10
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool 
11
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
12
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
242 killagreg 13
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 14
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
15
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
16
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
17
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
18
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
19
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
20
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
21
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand 
22
// + des Mitverschuldens offen.
23
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
24
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
25
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
26
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
27
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
28
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
29
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
30
// +  Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
242 killagreg 31
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 32
// + Software LICENSING TERMS
242 killagreg 33
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 34
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
35
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware 
36
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
37
// + The Software may only be used with the Licensor's products.
38
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
39
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
40
// + agreement shall be the property of the Licensor.
41
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
42
// + features that can be used to identify the program may not be altered or defaced by the customer.
43
// + The customer shall be responsible for taking reasonable precautions
44
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
45
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
46
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
47
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
48
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
49
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
50
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
51
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
52
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
53
// + #### END OF LICENSING TERMS ####
54
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
242 killagreg 55
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 56
#include <math.h>
292 killagreg 57
#include <stdio.h>
242 killagreg 58
#include <string.h>
59
#include "91x_lib.h"
253 killagreg 60
#include "ncmag.h"
242 killagreg 61
#include "i2c.h"
62
#include "timer1.h"
63
#include "led.h"
64
#include "uart1.h"
254 killagreg 65
#include "eeprom.h"
256 killagreg 66
#include "mymath.h"
292 killagreg 67
#include "main.h"
242 killagreg 68
 
253 killagreg 69
u8 NCMAG_Present = 0;
254 killagreg 70
u8 NCMAG_IsCalibrated = 0;
242 killagreg 71
 
394 killagreg 72
// supported magnetic sensor types
73
#define TYPE_NONE                       0
74
#define TYPE_HMC5843            1
75
#define TYPE_LSM303DLH          2
76
#define TYPE_LSM303DLM          3
242 killagreg 77
 
394 killagreg 78
u8 NCMAG_SensorType = TYPE_NONE;
79
 
80
#define EEPROM_ADR_MAG_CALIBRATION              50
338 holgerb 81
#define CALIBRATION_VERSION                     1
394 killagreg 82
#define MAG_CALIBRATION_COMPATIBLE              0xA2
254 killagreg 83
 
256 killagreg 84
#define NCMAG_MIN_RAWVALUE -2047
85
#define NCMAG_MAX_RAWVALUE  2047
86
#define NCMAG_INVALID_DATA -4096
87
 
254 killagreg 88
typedef struct
89
{
90
        s16 Range;
91
        s16 Offset;
256 killagreg 92
} __attribute__((packed)) Scaling_t;
254 killagreg 93
 
94
typedef struct
95
{
96
        Scaling_t MagX;
97
        Scaling_t MagY;
98
        Scaling_t MagZ;
99
        u8 Version;
100
        u8 crc;
256 killagreg 101
} __attribute__((packed)) Calibration_t;
254 killagreg 102
 
103
Calibration_t Calibration;              // calibration data in RAM 
339 holgerb 104
volatile s16vec_t AccRawVector;
105
volatile s16vec_t MagRawVector;
254 killagreg 106
 
253 killagreg 107
// i2c MAG interface
108
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 109
 
253 killagreg 110
// register mapping
111
#define REG_MAG_CRA                     0x00
112
#define REG_MAG_CRB                     0x01
113
#define REG_MAG_MODE            0x02
114
#define REG_MAG_DATAX_MSB       0x03
115
#define REG_MAG_DATAX_LSB       0x04
116
#define REG_MAG_DATAY_MSB       0x05
117
#define REG_MAG_DATAY_LSB       0x06
118
#define REG_MAG_DATAZ_MSB       0x07
119
#define REG_MAG_DATAZ_LSB       0x08
120
#define REG_MAG_STATUS          0x09
329 holgerb 121
 
253 killagreg 122
#define REG_MAG_IDA                     0x0A
123
#define REG_MAG_IDB                     0x0B
124
#define REG_MAG_IDC                     0x0C
394 killagreg 125
#define REG_MAG_IDF                     0x0F  // WHO_AM_I _M = 0x03c when LSM303DLM is connected
242 killagreg 126
 
253 killagreg 127
// bit mask for configuration mode
128
#define CRA_MODE_MASK           0x03
129
#define CRA_MODE_NORMAL         0x00    //default
130
#define CRA_MODE_POSBIAS        0x01
131
#define CRA_MODE_NEGBIAS        0x02
132
#define CRA_MODE_SELFTEST       0x03
242 killagreg 133
 
253 killagreg 134
// bit mask for measurement mode
135
#define MODE_MASK                       0xFF
136
#define MODE_CONTINUOUS         0x00
137
#define MODE_SINGLE                     0x01    // default
138
#define MODE_IDLE                       0x02
139
#define MODE_SLEEP                      0x03
140
 
242 killagreg 141
// bit mask for rate
253 killagreg 142
#define CRA_RATE_MASK           0x1C
143
 
144
// bit mask for gain
145
#define CRB_GAIN_MASK           0xE0
146
 
147
// ids
148
#define MAG_IDA         0x48
149
#define MAG_IDB         0x34
150
#define MAG_IDC         0x33
394 killagreg 151
#define MAG_IDF_LSM303DLM       0x3C
253 killagreg 152
 
153
// the special HMC5843 interface
154
// bit mask for rate
242 killagreg 155
#define HMC5843_CRA_RATE_0_5HZ          0x00
156
#define HMC5843_CRA_RATE_1HZ            0x04
157
#define HMC5843_CRA_RATE_2HZ            0x08
158
#define HMC5843_CRA_RATE_5HZ            0x0C
159
#define HMC5843_CRA_RATE_10HZ           0x10    //default
160
#define HMC5843_CRA_RATE_20HZ           0x14
161
#define HMC5843_CRA_RATE_50HZ           0x18
162
// bit mask for gain
163
#define HMC5843_CRB_GAIN_07GA           0x00
164
#define HMC5843_CRB_GAIN_10GA           0x20    //default
339 holgerb 165
#define HMC5843_CRB_GAIN_15GA           0x40    // <--- we use this     
242 killagreg 166
#define HMC5843_CRB_GAIN_20GA           0x60
167
#define HMC5843_CRB_GAIN_32GA           0x80
168
#define HMC5843_CRB_GAIN_38GA           0xA0
169
#define HMC5843_CRB_GAIN_45GA           0xC0
170
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 171
// self test value
339 holgerb 172
#define HMC5843_TEST_XSCALE             555
173
#define HMC5843_TEST_YSCALE             555
174
#define HMC5843_TEST_ZSCALE             555
394 killagreg 175
// calibration range
342 holgerb 176
#define HMC5843_CALIBRATION_RANGE   600
242 killagreg 177
 
253 killagreg 178
// the special LSM302DLH interface
179
// bit mask for rate
180
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
181
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
182
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
183
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
184
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
185
#define LSM303DLH_CRA_RATE_30HZ         0x14
186
#define LSM303DLH_CRA_RATE_75HZ         0x18
338 holgerb 187
 
253 killagreg 188
// bit mask for gain
189
#define LSM303DLH_CRB_GAIN_XXGA         0x00
190
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
339 holgerb 191
#define LSM303DLH_CRB_GAIN_19GA         0x40    // <--- we use this
253 killagreg 192
#define LSM303DLH_CRB_GAIN_25GA         0x60
193
#define LSM303DLH_CRB_GAIN_40GA         0x80
194
#define LSM303DLH_CRB_GAIN_47GA         0xA0
195
#define LSM303DLH_CRB_GAIN_56GA         0xC0
196
#define LSM303DLH_CRB_GAIN_81GA         0xE0
394 killagreg 197
 
198
typedef struct
199
{
200
        u8 A;
201
        u8 B;
202
        u8 C;
203
} __attribute__((packed)) Identification_t;
204
volatile Identification_t NCMAG_Identification;
205
 
206
typedef struct
207
{
208
        u8 Sub;
209
} __attribute__((packed)) Identification2_t;
210
volatile Identification2_t NCMAG_Identification2;
211
 
212
typedef struct
213
{
214
        u8 cra;
215
        u8 crb;
216
        u8 mode;
217
} __attribute__((packed)) MagConfig_t;
218
 
219
volatile MagConfig_t MagConfig;
220
 
221
 
253 killagreg 222
// self test value
338 holgerb 223
#define LSM303DLH_TEST_XSCALE   495
224
#define LSM303DLH_TEST_YSCALE   495
225
#define LSM303DLH_TEST_ZSCALE   470
339 holgerb 226
// clibration range
342 holgerb 227
#define LSM303_CALIBRATION_RANGE   550
253 killagreg 228
 
229
// the i2c ACC interface
230
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
394 killagreg 231
 
232
// multiple byte read/write mask
233
#define REG_ACC_MASK_AUTOINCREMENT 0x80
234
 
253 killagreg 235
// register mapping
236
#define REG_ACC_CTRL1                   0x20
237
#define REG_ACC_CTRL2                   0x21
238
#define REG_ACC_CTRL3                   0x22
239
#define REG_ACC_CTRL4                   0x23
240
#define REG_ACC_CTRL5                   0x24
241
#define REG_ACC_HP_FILTER_RESET 0x25
242
#define REG_ACC_REFERENCE               0x26
243
#define REG_ACC_STATUS                  0x27
244
#define REG_ACC_X_LSB                   0x28
245
#define REG_ACC_X_MSB                   0x29
246
#define REG_ACC_Y_LSB                   0x2A
247
#define REG_ACC_Y_MSB                   0x2B
248
#define REG_ACC_Z_LSB                   0x2C
249
#define REG_ACC_Z_MSB                   0x2D
250
 
394 killagreg 251
#define ACC_CRTL1_PM_DOWN               0x00
252
#define ACC_CRTL1_PM_NORMAL             0x20
253
#define ACC_CRTL1_PM_LOW_0_5HZ  0x40
254
#define ACC_CRTL1_PM_LOW_1HZ    0x60
255
#define ACC_CRTL1_PM_LOW_2HZ    0x80
256
#define ACC_CRTL1_PM_LOW_5HZ    0xA0
257
#define ACC_CRTL1_PM_LOW_10HZ   0xC0
258
// Output data rate in normal power mode
259
#define ACC_CRTL1_DR_50HZ               0x00
260
#define ACC_CRTL1_DR_100HZ              0x08
261
#define ACC_CRTL1_DR_400HZ              0x10
262
#define ACC_CRTL1_DR_1000HZ             0x18
263
// axis anable flags                    
264
#define ACC_CRTL1_XEN                   0x01
265
#define ACC_CRTL1_YEN                   0x02
266
#define ACC_CRTL1_ZEN                   0x04
253 killagreg 267
 
397 holgerb 268
#define ACC_CRTL2_FILTER8       0x10
269
#define ACC_CRTL2_FILTER16      0x11
270
#define ACC_CRTL2_FILTER32      0x12
271
#define ACC_CRTL2_FILTER64      0x13
395 holgerb 272
 
394 killagreg 273
#define ACC_CTRL4_BDU                   0x80 // Block data update, (0: continuos update; 1: output registers not updated between MSB and LSB reading)
274
#define ACC_CTRL4_BLE                   0x40 // Big/little endian, (0: data LSB @ lower address; 1: data MSB @ lower address)
275
#define ACC_CTRL4_FS_2G                 0x00
276
#define ACC_CTRL4_FS_4G                 0x10
277
#define ACC_CTRL4_FS_8G                 0x30
278
#define ACC_CTRL4_STSIGN_PLUS   0x00
279
#define ACC_CTRL4_STSIGN_MINUS  0x08
280
#define ACC_CTRL4_ST_ENABLE             0x02
253 killagreg 281
 
394 killagreg 282
#define ACC_CTRL5_STW_ON                0x03
283
#define ACC_CTRL5_STW_OFF               0x00
242 killagreg 284
 
253 killagreg 285
typedef struct
286
{
287
        u8 ctrl_1;
288
        u8 ctrl_2;
289
        u8 ctrl_3;
290
        u8 ctrl_4;
291
        u8 ctrl_5;
292
} __attribute__((packed)) AccConfig_t;
293
 
294
volatile AccConfig_t AccConfig;
295
 
254 killagreg 296
u8 NCMag_CalibrationWrite(void)
297
{
394 killagreg 298
        u8 i, crc = MAG_CALIBRATION_COMPATIBLE;
254 killagreg 299
        EEPROM_Result_t eres;
300
        u8 *pBuff = (u8*)&Calibration;
301
 
302
        Calibration.Version = CALIBRATION_VERSION;
256 killagreg 303
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 304
        {
305
                crc += pBuff[i];        
306
        }
307
        Calibration.crc = ~crc;
308
        eres = EEPROM_WriteBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration));
309
        if(EEPROM_SUCCESS == eres) i = 1;
310
        else i = 0;
311
        return(i);     
312
}
313
 
314
u8 NCMag_CalibrationRead(void)
315
{
394 killagreg 316
        u8 i, crc = MAG_CALIBRATION_COMPATIBLE;
254 killagreg 317
        u8 *pBuff = (u8*)&Calibration;
318
 
319
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration)))
320
        {
256 killagreg 321
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 322
                {
323
                        crc += pBuff[i];        
324
                }
325
                crc = ~crc;
326
                if(Calibration.crc != crc) return(0); // crc mismatch
257 killagreg 327
                if(Calibration.Version == CALIBRATION_VERSION) return(1);
254 killagreg 328
        }
329
        return(0);
330
}
331
 
332
 
333
void NCMAG_Calibrate(void)
334
{
330 holgerb 335
        u8 msg[64];
254 killagreg 336
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 337
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 338
        static u8 OldCalState = 0;     
394 killagreg 339
        s16 MinCalibration = 450;
254 killagreg 340
 
256 killagreg 341
        X = (4*X + MagRawVector.X + 3)/5;
342
        Y = (4*Y + MagRawVector.Y + 3)/5;
343
        Z = (4*Z + MagRawVector.Z + 3)/5;
344
 
254 killagreg 345
        switch(Compass_CalState)
346
        {
347
                case 1:
348
                        // 1st step of calibration
349
                        // initialize ranges
350
                        // used to change the orientation of the NC in the horizontal plane
351
                        Xmin =  10000;
352
                        Xmax = -10000;
353
                        Ymin =  10000;
354
                        Ymax = -10000;
355
                        Zmin =  10000;
356
                        Zmax = -10000;
357
                        break;
358
 
359
                case 2: // 2nd step of calibration
360
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
275 killagreg 361
                        if(X < Xmin)            { Xmin = X; BeepTime = 20;}
362
                        else if(X > Xmax)       { Xmax = X; BeepTime = 20;}
363
                        if(Y < Ymin)            { Ymin = Y; BeepTime = 60;}
364
                        else if(Y > Ymax)       { Ymax = Y; BeepTime = 60;}
254 killagreg 365
                        break;
366
 
367
                case 3: // 3rd step of calibration
368
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
369
                        break;
370
 
371
                case 4:
372
                        // find Min and Max of the Z-Sensor
275 killagreg 373
                        if(Z < Zmin)      { Zmin = Z; BeepTime = 80;}
374
                        else if(Z > Zmax) { Zmax = Z; BeepTime = 80;}
254 killagreg 375
                        break;
376
 
377
                case 5:
378
                        // Save values
379
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
380
                        {
394 killagreg 381
                                switch(NCMAG_SensorType)
382
                                {
383
                                        case TYPE_HMC5843:
384
                                                UART1_PutString("\r\nHMC5843 calibration\n\r");
385
                                                MinCalibration = HMC5843_CALIBRATION_RANGE;
386
                                                break;
387
 
388
                                        case TYPE_LSM303DLH:
389
                                        case TYPE_LSM303DLM:
390
                                                UART1_PutString("\r\n\r\nLSM303 calibration\n\r");
391
                                                MinCalibration = LSM303_CALIBRATION_RANGE;
392
                                        break;
393
                                }
342 holgerb 394
                                if(EarthMagneticStrengthTheoretic)
395
                                 {
394 killagreg 396
                                  MinCalibration = (MinCalibration * EarthMagneticStrengthTheoretic) / 50;
342 holgerb 397
                                  sprintf(msg, "Earth field on your location should be: %iuT\r\n",EarthMagneticStrengthTheoretic);
398
                                  UART1_PutString(msg);
399
                                 }
400
                            else UART1_PutString("without GPS\n\r");
339 holgerb 401
 
254 killagreg 402
                                Calibration.MagX.Range = Xmax - Xmin;
403
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
404
                                Calibration.MagY.Range = Ymax - Ymin;
405
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
406
                                Calibration.MagZ.Range = Zmax - Zmin;
407
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
394 killagreg 408
                                if((Calibration.MagX.Range > MinCalibration) && (Calibration.MagY.Range > MinCalibration) && (Calibration.MagZ.Range > MinCalibration))
254 killagreg 409
                                {
410
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite();
270 killagreg 411
                                        BeepTime = 2500;
342 holgerb 412
                                        UART1_PutString("\r\n-> Calibration okay <-\n\r");
254 killagreg 413
                                }
414
                                else
415
                                {
339 holgerb 416
                                        UART1_PutString("\r\nCalibration FAILED - Values too low: ");
394 killagreg 417
                                    if(Calibration.MagX.Range < MinCalibration) UART1_PutString("X! ");
418
                                    if(Calibration.MagY.Range < MinCalibration) UART1_PutString("Y! ");
419
                                    if(Calibration.MagZ.Range < MinCalibration) UART1_PutString("Z! ");
330 holgerb 420
                                        UART1_PutString("\r\n");
339 holgerb 421
 
254 killagreg 422
                                        // restore old calibration data from eeprom
423
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
424
                                }
330 holgerb 425
                                        sprintf(msg, "X: (%i - %i = %i)\r\n",Xmax,Xmin,Xmax - Xmin);
426
                                        UART1_PutString(msg);
427
                                        sprintf(msg, "Y: (%i - %i = %i)\r\n",Ymax,Ymin,Ymax - Ymin);
428
                                        UART1_PutString(msg);
429
                                        sprintf(msg, "Z: (%i - %i = %i)\r\n",Zmax,Zmin,Zmax - Zmin);
430
                                        UART1_PutString(msg);
394 killagreg 431
                                        sprintf(msg, "(Minimum ampilitude is: %i)\r\n",MinCalibration);
342 holgerb 432
                                        UART1_PutString(msg);
254 killagreg 433
                        }
434
                        break;
435
 
436
                default:
437
                        break; 
438
        }
439
        OldCalState = Compass_CalState;
440
}
441
 
242 killagreg 442
// ---------- call back handlers -----------------------------------------
443
 
444
// rx data handler for id info request
253 killagreg 445
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 446
{       // if number of bytes are matching
253 killagreg 447
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 448
        {
253 killagreg 449
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
450
        }
242 killagreg 451
}
329 holgerb 452
 
453
void NCMAG_UpdateIdentification_Sub(u8* pRxBuffer, u8 RxBufferSize)
454
{       // if number of bytes are matching
455
        if(RxBufferSize == sizeof(NCMAG_Identification2))
456
        {
457
                memcpy((u8 *)&NCMAG_Identification2, pRxBuffer, sizeof(NCMAG_Identification2));
458
        }
459
}
460
 
254 killagreg 461
// rx data handler for magnetic sensor raw data
253 killagreg 462
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 463
{       // if number of bytes are matching
464
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 465
        {       // byte order from big to little endian
256 killagreg 466
                s16 raw;
467
                raw = pRxBuffer[0]<<8;
468
                raw+= pRxBuffer[1];
469
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
470
                raw = pRxBuffer[2]<<8;
471
                raw+= pRxBuffer[3];
330 holgerb 472
            if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
473
                {
394 killagreg 474
                        if(NCMAG_SensorType == TYPE_LSM303DLM)  MagRawVector.Z = raw; // here Z and Y are exchanged
475
                        else                                                                    MagRawVector.Y = raw;
330 holgerb 476
                }
256 killagreg 477
                raw = pRxBuffer[4]<<8;
478
                raw+= pRxBuffer[5];
330 holgerb 479
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
480
                {
394 killagreg 481
                        if(NCMAG_SensorType == TYPE_LSM303DLM)  MagRawVector.Y = raw; // here Z and Y are exchanged
482
                        else                                                                    MagRawVector.Z = raw;
330 holgerb 483
                }
242 killagreg 484
        }
254 killagreg 485
        if(Compass_CalState || !NCMAG_IsCalibrated)
284 killagreg 486
        {       // mark out data invalid
289 killagreg 487
                MagVector.X = MagRawVector.X;
488
                MagVector.Y = MagRawVector.Y;
489
                MagVector.Z = MagRawVector.Z;
254 killagreg 490
                Compass_Heading = -1;
491
        }
492
        else
493
        {
494
                // update MagVector from MagRaw Vector by Scaling
495
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
496
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
497
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
292 killagreg 498
                Compass_CalcHeading();
254 killagreg 499
        }
242 killagreg 500
}
254 killagreg 501
// rx data handler  for acceleration raw data
253 killagreg 502
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
503
{       // if number of byte are matching
397 holgerb 504
static s32 filter_z;
254 killagreg 505
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 506
        {
254 killagreg 507
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 508
        }
394 killagreg 509
        DebugOut.Analog[16] = AccRawVector.X;
510
        DebugOut.Analog[17] = AccRawVector.Y;
397 holgerb 511
filter_z = (filter_z * 7 + AccRawVector.Z) / 8;
512
 
513
        DebugOut.Analog[18] = filter_z;
514
        DebugOut.Analog[19] = AccRawVector.Z;
253 killagreg 515
}
254 killagreg 516
// rx data handler for reading magnetic sensor configuration
253 killagreg 517
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
518
{       // if number of byte are matching
519
        if(RxBufferSize == sizeof(MagConfig) )
520
        {
521
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
522
        }
523
}
254 killagreg 524
// rx data handler for reading acceleration sensor configuration
253 killagreg 525
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
526
{       // if number of byte are matching
527
        if(RxBufferSize == sizeof(AccConfig) )
528
        {
529
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
530
        }
531
}
254 killagreg 532
//----------------------------------------------------------------------
253 killagreg 533
 
254 killagreg 534
 
535
// ---------------------------------------------------------------------
253 killagreg 536
u8 NCMAG_SetMagConfig(void)
537
{
538
        u8 retval = 0;
539
        // try to catch the i2c buffer within 100 ms timeout
540
        if(I2C_LockBuffer(100))
541
        {
542
                u8 TxBytes = 0;
543
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;    
544
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
545
                TxBytes += sizeof(MagConfig);
546
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
547
                {
548
                        if(I2C_WaitForEndOfTransmission(100))
549
                        {
550
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
551
                        }
552
                }
553
        }
554
        return(retval);        
555
}
242 killagreg 556
 
253 killagreg 557
// ----------------------------------------------------------------------------------------
558
u8 NCMAG_GetMagConfig(void)
242 killagreg 559
{
253 killagreg 560
        u8 retval = 0;
252 killagreg 561
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 562
        if(I2C_LockBuffer(100))
242 killagreg 563
        {
253 killagreg 564
                u8 TxBytes = 0;
565
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;
566
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 567
                {
252 killagreg 568
                        if(I2C_WaitForEndOfTransmission(100))
569
                        {
570
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
571
                        }
248 killagreg 572
                }
242 killagreg 573
        }
253 killagreg 574
        return(retval);        
242 killagreg 575
}
576
 
577
// ----------------------------------------------------------------------------------------
253 killagreg 578
u8 NCMAG_SetAccConfig(void)
242 killagreg 579
{
252 killagreg 580
        u8 retval = 0;
253 killagreg 581
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 582
        if(I2C_LockBuffer(100))
242 killagreg 583
        {
253 killagreg 584
                u8 TxBytes = 0;
394 killagreg 585
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1|REG_ACC_MASK_AUTOINCREMENT;      
253 killagreg 586
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
587
                TxBytes += sizeof(AccConfig);
588
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
589
                {
590
                        if(I2C_WaitForEndOfTransmission(100))
591
                        {
592
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
593
                        }
594
                }
595
        }
596
        return(retval);        
597
}
598
 
599
// ----------------------------------------------------------------------------------------
600
u8 NCMAG_GetAccConfig(void)
601
{
602
        u8 retval = 0;
603
        // try to catch the i2c buffer within 100 ms timeout
604
        if(I2C_LockBuffer(100))
605
        {
606
                u8 TxBytes = 0;
394 killagreg 607
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1|REG_ACC_MASK_AUTOINCREMENT;
253 killagreg 608
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
609
                {
610
                        if(I2C_WaitForEndOfTransmission(100))
611
                        {
612
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
613
                        }
614
                }
615
        }
616
        return(retval);        
617
}
618
 
619
// ----------------------------------------------------------------------------------------
620
u8 NCMAG_GetIdentification(void)
621
{
622
        u8 retval = 0;
623
        // try to catch the i2c buffer within 100 ms timeout
624
        if(I2C_LockBuffer(100))
625
        {
626
                u16 TxBytes = 0;
627
                NCMAG_Identification.A = 0xFF;
628
                NCMAG_Identification.B = 0xFF;
629
                NCMAG_Identification.C = 0xFF;
630
                I2C_Buffer[TxBytes++] = REG_MAG_IDA;
248 killagreg 631
                // initiate transmission
253 killagreg 632
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 633
                {
253 killagreg 634
                        if(I2C_WaitForEndOfTransmission(100))
252 killagreg 635
                        {
636
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
637
                        }
248 killagreg 638
                }
242 killagreg 639
        }
253 killagreg 640
        return(retval);
242 killagreg 641
}
642
 
329 holgerb 643
u8 NCMAG_GetIdentification_Sub(void)
644
{
645
        u8 retval = 0;
646
        // try to catch the i2c buffer within 100 ms timeout
647
        if(I2C_LockBuffer(100))
648
        {
649
                u16 TxBytes = 0;
650
                NCMAG_Identification2.Sub = 0xFF;
651
                I2C_Buffer[TxBytes++] = REG_MAG_IDF;
652
                // initiate transmission
653
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification_Sub, sizeof(NCMAG_Identification2)))
654
                {
655
                        if(I2C_WaitForEndOfTransmission(100))
656
                        {
657
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
658
                        }
659
                }
660
        }
661
        return(retval);
662
}
663
 
664
 
253 killagreg 665
// ----------------------------------------------------------------------------------------
666
void NCMAG_GetMagVector(void)
667
{
668
        // try to catch the I2C buffer within 0 ms
669
        if(I2C_LockBuffer(0))
670
        {
671
                u16 TxBytes = 0;
672
                // set register pointer
673
                I2C_Buffer[TxBytes++] = REG_MAG_DATAX_MSB;
674
                // initiate transmission
675
                I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
676
        }
677
}
678
 
242 killagreg 679
//----------------------------------------------------------------
253 killagreg 680
void NCMAG_GetAccVector(void)
243 killagreg 681
{
252 killagreg 682
        // try to catch the I2C buffer within 0 ms
683
        if(I2C_LockBuffer(0))
243 killagreg 684
        {
248 killagreg 685
                u16 TxBytes = 0;
243 killagreg 686
                // set register pointer
394 killagreg 687
                I2C_Buffer[TxBytes++] = REG_ACC_X_LSB|REG_ACC_MASK_AUTOINCREMENT;
243 killagreg 688
                // initiate transmission
254 killagreg 689
                I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
243 killagreg 690
        }
691
}
692
 
330 holgerb 693
//----------------------------------------------------------------
394 killagreg 694
u8 InitNC_MagnetSensor(void)
330 holgerb 695
{
696
        u8 crb_gain, cra_rate;
697
 
394 killagreg 698
        switch(NCMAG_SensorType)
330 holgerb 699
        {
394 killagreg 700
                case TYPE_HMC5843:
339 holgerb 701
                        crb_gain = HMC5843_CRB_GAIN_15GA;
330 holgerb 702
                        cra_rate = HMC5843_CRA_RATE_50HZ;
703
                        break;
704
 
394 killagreg 705
                case TYPE_LSM303DLH:
706
                case TYPE_LSM303DLM:
338 holgerb 707
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
330 holgerb 708
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
709
                        break;
710
 
711
                default:
394 killagreg 712
                return(0);
330 holgerb 713
        }
714
 
715
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
716
        MagConfig.crb = crb_gain;
717
        MagConfig.mode = MODE_CONTINUOUS;
394 killagreg 718
        return(NCMAG_SetMagConfig());
330 holgerb 719
}
720
 
395 holgerb 721
 
394 killagreg 722
//----------------------------------------------------------------
723
u8 NCMAG_Init_ACCSensor(void)
724
{
395 holgerb 725
        AccConfig.ctrl_1 = ACC_CRTL1_PM_NORMAL|ACC_CRTL1_DR_50HZ|ACC_CRTL1_XEN|ACC_CRTL1_YEN|ACC_CRTL1_ZEN;
397 holgerb 726
        AccConfig.ctrl_2 = 0;//ACC_CRTL2_FILTER32;
394 killagreg 727
        AccConfig.ctrl_3 = 0x00;
397 holgerb 728
        AccConfig.ctrl_4 = ACC_CTRL4_BDU | ACC_CTRL4_FS_8G;
394 killagreg 729
        AccConfig.ctrl_5 = ACC_CTRL5_STW_OFF;
730
        return(NCMAG_SetAccConfig());
731
}
253 killagreg 732
// --------------------------------------------------------
292 killagreg 733
void NCMAG_Update(void)
243 killagreg 734
{
292 killagreg 735
        static u32 TimerUpdate = 0;
321 holgerb 736
        static u8 send_config = 0;
394 killagreg 737
        u32 delay = 20;
243 killagreg 738
 
254 killagreg 739
        if( (I2C_State == I2C_STATE_OFF) || !NCMAG_Present )
740
        {
741
                Compass_Heading = -1;
326 holgerb 742
                DebugOut.Analog[14]++; // count I2C error
254 killagreg 743
                return;
744
        }
292 killagreg 745
        if(CheckDelay(TimerUpdate))
243 killagreg 746
        {
394 killagreg 747
                if(Compass_Heading != -1) send_config = 0; // no re-configuration if value is valid
748
        if(++send_config == 25)   // 500ms
749
                {
750
                        send_config = 0;
751
                InitNC_MagnetSensor();
752
                        TimerUpdate = SetDelay(15);    // back into the old time-slot
753
                }
321 holgerb 754
                else
755
                {
398 holgerb 756
//                      static u8 s = 0;
394 killagreg 757
                        // check for new calibration state
758
                        Compass_UpdateCalState();
759
                        if(Compass_CalState) NCMAG_Calibrate();
760
 
761
                        // in case of LSM303 type
762
                        switch(NCMAG_SensorType)
763
                        {
764
                                case TYPE_HMC5843:                             
765
                                        NCMAG_GetMagVector();
766
                                        delay = 20;
767
                                        break;
768
                                case TYPE_LSM303DLH:
769
                                case TYPE_LSM303DLM:
397 holgerb 770
                                        NCMAG_GetMagVector();
771
                                        delay = 20;
772
/*                                      if(s){ NCMAG_GetMagVector(); s = 0;}
394 killagreg 773
                                        else { NCMAG_GetAccVector(); s = 1;}
774
                                        delay = 10;
397 holgerb 775
*/
394 killagreg 776
                                        break;                           
777
                        }
778
                        if(send_config == 24) TimerUpdate = SetDelay(5);    // next event is the re-configuration
779
                        else TimerUpdate = SetDelay(delay);    // every 20 ms are 50 Hz
321 holgerb 780
                }
243 killagreg 781
        }
782
}
783
 
330 holgerb 784
 
254 killagreg 785
// --------------------------------------------------------
253 killagreg 786
u8 NCMAG_SelfTest(void)
243 killagreg 787
{
266 holgerb 788
        u8 msg[64];
275 killagreg 789
        static u8 done = 0;
266 holgerb 790
 
287 holgerb 791
        if(done) return(1);        // just make it once
275 killagreg 792
 
271 holgerb 793
        #define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
243 killagreg 794
        u32 time;
253 killagreg 795
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
796
        s16 xscale, yscale, zscale, scale_min, scale_max;
797
        u8 crb_gain, cra_rate;
798
        u8 i = 0, retval = 1;
243 killagreg 799
 
394 killagreg 800
        switch(NCMAG_SensorType)
253 killagreg 801
        {
394 killagreg 802
                case TYPE_HMC5843:
339 holgerb 803
                        crb_gain = HMC5843_CRB_GAIN_15GA;
253 killagreg 804
                        cra_rate = HMC5843_CRA_RATE_50HZ;
805
                        xscale = HMC5843_TEST_XSCALE;
806
                        yscale = HMC5843_TEST_YSCALE;
807
                        zscale = HMC5843_TEST_ZSCALE;
808
                        break;
809
 
394 killagreg 810
                case TYPE_LSM303DLH:
338 holgerb 811
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
253 killagreg 812
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
813
                        xscale = LSM303DLH_TEST_XSCALE;
814
                        yscale = LSM303DLH_TEST_YSCALE;
815
                        zscale = LSM303DLH_TEST_ZSCALE;
816
                        break;
817
 
394 killagreg 818
                case TYPE_LSM303DLM:
819
                        // does not support self test feature 
820
                        done = retval;
821
                        return(retval);
822
                        break;
823
 
253 killagreg 824
                default:
394 killagreg 825
                        return(0);
253 killagreg 826
        }
827
 
828
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
829
        MagConfig.crb = crb_gain;
830
        MagConfig.mode = MODE_CONTINUOUS;
831
        // activate positive bias field
832
        NCMAG_SetMagConfig();
251 killagreg 833
        // wait for stable readings
834
        time = SetDelay(50);
835
        while(!CheckDelay(time));
243 killagreg 836
        // averaging
253 killagreg 837
        #define AVERAGE 20
838
        for(i = 0; i<AVERAGE; i++)
243 killagreg 839
        {
253 killagreg 840
                NCMAG_GetMagVector();
243 killagreg 841
                time = SetDelay(20);
842
        while(!CheckDelay(time));
254 killagreg 843
                XMax += MagRawVector.X;
844
                YMax += MagRawVector.Y;
845
                ZMax += MagRawVector.Z;
243 killagreg 846
        }
253 killagreg 847
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
848
        // activate positive bias field
849
        NCMAG_SetMagConfig();
251 killagreg 850
    // wait for stable readings
851
        time = SetDelay(50);
852
        while(!CheckDelay(time));
243 killagreg 853
        // averaging
253 killagreg 854
        for(i = 0; i < AVERAGE; i++)
243 killagreg 855
        {
253 killagreg 856
                NCMAG_GetMagVector();
243 killagreg 857
                time = SetDelay(20);
858
        while(!CheckDelay(time));
254 killagreg 859
                XMin += MagRawVector.X;
860
                YMin += MagRawVector.Y;
861
                ZMin += MagRawVector.Z;
243 killagreg 862
        }
863
        // setup final configuration
253 killagreg 864
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
865
        // activate positive bias field
866
        NCMAG_SetMagConfig();
266 holgerb 867
        // check scale for all axes
243 killagreg 868
        // prepare scale limits
253 killagreg 869
        LIMITS(xscale, scale_min, scale_max);
267 holgerb 870
        xscale = (XMax - XMin)/(2*AVERAGE);
266 holgerb 871
        if((xscale > scale_max) || (xscale < scale_min))
394 killagreg 872
    {
873
                retval = 0;
874
        sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
875
                UART1_PutString(msg);
876
    }
267 holgerb 877
        LIMITS(yscale, scale_min, scale_max);
266 holgerb 878
        yscale = (YMax - YMin)/(2*AVERAGE);
879
        if((yscale > scale_max) || (yscale < scale_min))
394 killagreg 880
    {
881
                retval = 0;
882
        sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
883
                UART1_PutString(msg);
884
    }
267 holgerb 885
        LIMITS(zscale, scale_min, scale_max);
266 holgerb 886
        zscale = (ZMax - ZMin)/(2*AVERAGE);
887
        if((zscale > scale_max) || (zscale < scale_min))      
394 killagreg 888
        {
889
                retval = 0;
890
        sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
891
                UART1_PutString(msg);
892
    }
275 killagreg 893
        done = retval;
253 killagreg 894
        return(retval);
243 killagreg 895
}
896
 
897
 
898
//----------------------------------------------------------------
253 killagreg 899
u8 NCMAG_Init(void)
242 killagreg 900
{
901
        u8 msg[64];
252 killagreg 902
        u8 retval = 0;
242 killagreg 903
        u8 repeat;
904
 
253 killagreg 905
        NCMAG_Present = 0;
394 killagreg 906
        NCMAG_SensorType = TYPE_HMC5843;        // assuming having an HMC5843
907
        // polling for LSM302DLH/DLM option by ACC address ack
253 killagreg 908
        repeat = 0;
909
        do
910
        {
911
                retval = NCMAG_GetAccConfig();
912
                if(retval) break; // break loop on success
913
                UART1_PutString(".");
914
                repeat++;
915
        }while(repeat < 3);
394 killagreg 916
        if(retval)
242 killagreg 917
        {
394 killagreg 918
                // initialize ACC sensor
919
                NCMAG_Init_ACCSensor();
920
 
921
                NCMAG_SensorType = TYPE_LSM303DLH;     
922
                // polling of sub identification
923
                repeat = 0;
924
                do
925
                {
926
                        retval = NCMAG_GetIdentification_Sub();
927
                        if(retval) break; // break loop on success
928
                        UART1_PutString(".");
929
                        repeat++;
930
                }while(repeat < 12);
931
                if(retval)
932
                {
933
                        if(NCMAG_Identification2.Sub == MAG_IDF_LSM303DLM)      NCMAG_SensorType = TYPE_LSM303DLM;
934
                }      
935
        }
936
        // get id bytes
329 holgerb 937
        retval = 0;
938
        do
939
        {
253 killagreg 940
                retval = NCMAG_GetIdentification();
252 killagreg 941
                if(retval) break; // break loop on success
242 killagreg 942
                UART1_PutString(".");
943
                repeat++;
252 killagreg 944
        }while(repeat < 12);
329 holgerb 945
 
253 killagreg 946
        // if we got an answer to id request
252 killagreg 947
        if(retval)
242 killagreg 948
        {
329 holgerb 949
                u8 n1[] = "\n\r HMC5843";
950
                u8 n2[] = "\n\r LSM303DLH";
951
                u8 n3[] = "\n\r LSM303DLM";
394 killagreg 952
                u8* pn = n1;
329 holgerb 953
 
394 killagreg 954
                switch(NCMAG_SensorType)
329 holgerb 955
                {
394 killagreg 956
                        case TYPE_HMC5843:
957
                                pn = n1;
958
                                break;
959
                        case TYPE_LSM303DLH:
960
                                pn = n2;
961
                                break;
962
                        case TYPE_LSM303DLM:
963
                                pn = n3;
964
                                break;
329 holgerb 965
                }
966
 
967
                sprintf(msg, " %s ID 0x%02x/%02x/%02x-%02x", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C,NCMAG_Identification2.Sub);
242 killagreg 968
                UART1_PutString(msg);
253 killagreg 969
                if (    (NCMAG_Identification.A == MAG_IDA)
970
                     && (NCMAG_Identification.B == MAG_IDB)
971
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 972
                {
268 killagreg 973
                        NCMAG_Present = 1;
329 holgerb 974
 
975
                        if(EEPROM_Init())
394 killagreg 976
                        {
977
                                NCMAG_IsCalibrated = NCMag_CalibrationRead();
978
                                if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
979
                        }
329 holgerb 980
                        else UART1_PutString("\r\n EEPROM data not available!!!!!!!!!!!!!!!");
394 killagreg 981
                        // perform self test
982
                        if(!NCMAG_SelfTest())
983
                        {
329 holgerb 984
                                UART1_PutString("\r\n Selftest failed!!!!!!!!!!!!!!!!!!!!\r\n");
985
                                LED_RED_ON;
986
                                NCMAG_IsCalibrated = 0;
394 killagreg 987
                        }
988
                        else UART1_PutString("\r\n Selftest ok");
989
 
990
                        // initialize magnetic sensor configuration
991
                        InitNC_MagnetSensor();
242 killagreg 992
                }
993
                else
994
                {
254 killagreg 995
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 996
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 997
                        LED_RED_ON;
998
                }
999
        }
253 killagreg 1000
        else // nothing found
1001
        {
394 killagreg 1002
                NCMAG_SensorType = TYPE_NONE;
253 killagreg 1003
                UART1_PutString("not found!");  
1004
        }
1005
        return(NCMAG_Present);
242 killagreg 1006
}
1007