Subversion Repositories NaviCtrl

Rev

Rev 342 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + www.MikroKopter.com
6
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 7
// + Software Nutzungsbedingungen (english version: see below)
8
// + der Fa. HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland - nachfolgend Lizenzgeber genannt -
9
// + Der Lizenzgeber räumt dem Kunden ein nicht-ausschließliches, zeitlich und räumlich* unbeschränktes Recht ein, die im den
10
// + Mikrocontroller verwendete Firmware für die Hardware Flight-Ctrl, Navi-Ctrl, BL-Ctrl, MK3Mag & PC-Programm MikroKopter-Tool 
11
// + - nachfolgend Software genannt - nur für private Zwecke zu nutzen.
12
// + Der Einsatz dieser Software ist nur auf oder mit Produkten des Lizenzgebers zulässig.
242 killagreg 13
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 14
// + Die vom Lizenzgeber gelieferte Software ist urheberrechtlich geschützt. Alle Rechte an der Software sowie an sonstigen im
15
// + Rahmen der Vertragsanbahnung und Vertragsdurchführung überlassenen Unterlagen stehen im Verhältnis der Vertragspartner ausschließlich dem Lizenzgeber zu.
16
// + Die in der Software enthaltenen Copyright-Vermerke, Markenzeichen, andere Rechtsvorbehalte, Seriennummern sowie
17
// + sonstige der Programmidentifikation dienenden Merkmale dürfen vom Kunden nicht verändert oder unkenntlich gemacht werden.
18
// + Der Kunde trifft angemessene Vorkehrungen für den sicheren Einsatz der Software. Er wird die Software gründlich auf deren
19
// + Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
20
// + Die Haftung des Lizenzgebers wird - soweit gesetzlich zulässig - begrenzt in Höhe des typischen und vorhersehbaren
21
// + Schadens. Die gesetzliche Haftung bei Personenschäden und nach dem Produkthaftungsgesetz bleibt unberührt. Dem Lizenzgeber steht jedoch der Einwand 
22
// + des Mitverschuldens offen.
23
// + Der Kunde trifft angemessene Vorkehrungen für den Fall, dass die Software ganz oder teilweise nicht ordnungsgemäß arbeitet.
24
// + Er wird die Software gründlich auf deren Verwendbarkeit zu dem von ihm beabsichtigten Zweck testen, bevor er diese operativ einsetzt.
25
// + Der Kunde wird er seine Daten vor Einsatz der Software nach dem Stand der Technik sichern.
26
// + Der Kunde ist darüber unterrichtet, dass der Lizenzgeber seine Daten im zur Vertragsdurchführung erforderlichen Umfang
27
// + und auf Grundlage der Datenschutzvorschriften erhebt, speichert, verarbeitet und, sofern notwendig, an Dritte übermittelt.
28
// + *) Die räumliche Nutzung bezieht sich nur auf den Einsatzort, nicht auf die Reichweite der programmierten Software.
29
// + #### ENDE DER NUTZUNGSBEDINGUNGEN ####'
30
// +  Hinweis: Informationen über erweiterte Nutzungsrechte (wie z.B. Nutzung für nicht-private Zwecke) sind auf Anfrage per Email an info(@)hisystems.de verfügbar.
242 killagreg 31
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 32
// + Software LICENSING TERMS
242 killagreg 33
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
360 holgerb 34
// + of HiSystems GmbH, Flachsmeerstrasse 2, 26802 Moormerland, Germany - the Licensor -
35
// + The Licensor grants the customer a non-exclusive license to use the microcontroller firmware of the Flight-Ctrl, Navi-Ctrl, BL-Ctrl, and MK3Mag hardware 
36
// + (the Software) exclusively for private purposes. The License is unrestricted with respect to time and territory*.
37
// + The Software may only be used with the Licensor's products.
38
// + The Software provided by the Licensor is protected by copyright. With respect to the relationship between the parties to this
39
// + agreement, all rights pertaining to the Software and other documents provided during the preparation and execution of this
40
// + agreement shall be the property of the Licensor.
41
// + The information contained in the Software copyright notices, trademarks, other legal reservations, serial numbers and other
42
// + features that can be used to identify the program may not be altered or defaced by the customer.
43
// + The customer shall be responsible for taking reasonable precautions
44
// + for the safe use of the Software. The customer shall test the Software thoroughly regarding its suitability for the
45
// + intended purpose before implementing it for actual operation. The Licensor's liability shall be limited to the extent of typical and
46
// + foreseeable damage to the extent permitted by law, notwithstanding statutory liability for bodily injury and product
47
// + liability. However, the Licensor shall be entitled to the defense of contributory negligence.
48
// + The customer will take adequate precautions in the case, that the software is not working properly. The customer will test
49
// + the software for his purpose before any operational usage. The customer will backup his data before using the software.
50
// + The customer understands that the Licensor collects, stores and processes, and, where required, forwards, customer data
51
// + to third parties to the extent necessary for executing the agreement, subject to applicable data protection and privacy regulations.
52
// + *) The territory aspect only refers to the place where the Software is used, not its programmed range.
53
// + #### END OF LICENSING TERMS ####
54
// + Note: For information on license extensions (e.g. commercial use), please contact us at info(@)hisystems.de.
242 killagreg 55
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 56
#include <math.h>
292 killagreg 57
#include <stdio.h>
242 killagreg 58
#include <string.h>
59
#include "91x_lib.h"
253 killagreg 60
#include "ncmag.h"
242 killagreg 61
#include "i2c.h"
62
#include "timer1.h"
63
#include "led.h"
64
#include "uart1.h"
254 killagreg 65
#include "eeprom.h"
256 killagreg 66
#include "mymath.h"
292 killagreg 67
#include "main.h"
242 killagreg 68
 
253 killagreg 69
u8 NCMAG_Present = 0;
254 killagreg 70
u8 NCMAG_IsCalibrated = 0;
242 killagreg 71
 
253 killagreg 72
#define MAG_TYPE_NONE           0
73
#define MAG_TYPE_HMC5843        1
74
#define MAG_TYPE_LSM303DLH      2
254 killagreg 75
u8 NCMAG_MagType = MAG_TYPE_NONE;
242 killagreg 76
 
338 holgerb 77
#define CALIBRATION_VERSION                     1
78
#define EEPROM_ADR_MAG_CALIBRATION              50
339 holgerb 79
#define MAG_CALIBRATION_COMPATIBEL              0xA2
254 killagreg 80
 
256 killagreg 81
#define NCMAG_MIN_RAWVALUE -2047
82
#define NCMAG_MAX_RAWVALUE  2047
83
#define NCMAG_INVALID_DATA -4096
84
 
254 killagreg 85
typedef struct
86
{
87
        s16 Range;
88
        s16 Offset;
256 killagreg 89
} __attribute__((packed)) Scaling_t;
254 killagreg 90
 
91
typedef struct
92
{
93
        Scaling_t MagX;
94
        Scaling_t MagY;
95
        Scaling_t MagZ;
96
        u8 Version;
97
        u8 crc;
256 killagreg 98
} __attribute__((packed)) Calibration_t;
254 killagreg 99
 
100
Calibration_t Calibration;              // calibration data in RAM 
339 holgerb 101
volatile s16vec_t AccRawVector;
102
volatile s16vec_t MagRawVector;
254 killagreg 103
 
253 killagreg 104
// i2c MAG interface
105
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 106
 
253 killagreg 107
// register mapping
108
#define REG_MAG_CRA                     0x00
109
#define REG_MAG_CRB                     0x01
110
#define REG_MAG_MODE            0x02
111
#define REG_MAG_DATAX_MSB       0x03
112
#define REG_MAG_DATAX_LSB       0x04
113
#define REG_MAG_DATAY_MSB       0x05
114
#define REG_MAG_DATAY_LSB       0x06
115
#define REG_MAG_DATAZ_MSB       0x07
116
#define REG_MAG_DATAZ_LSB       0x08
117
#define REG_MAG_STATUS          0x09
329 holgerb 118
 
253 killagreg 119
#define REG_MAG_IDA                     0x0A
120
#define REG_MAG_IDB                     0x0B
121
#define REG_MAG_IDC                     0x0C
329 holgerb 122
#define REG_MAG_IDF                     0x0F
242 killagreg 123
 
253 killagreg 124
// bit mask for configuration mode
125
#define CRA_MODE_MASK           0x03
126
#define CRA_MODE_NORMAL         0x00    //default
127
#define CRA_MODE_POSBIAS        0x01
128
#define CRA_MODE_NEGBIAS        0x02
129
#define CRA_MODE_SELFTEST       0x03
242 killagreg 130
 
253 killagreg 131
// bit mask for measurement mode
132
#define MODE_MASK                       0xFF
133
#define MODE_CONTINUOUS         0x00
134
#define MODE_SINGLE                     0x01    // default
135
#define MODE_IDLE                       0x02
136
#define MODE_SLEEP                      0x03
137
 
242 killagreg 138
// bit mask for rate
253 killagreg 139
#define CRA_RATE_MASK           0x1C
140
 
141
// bit mask for gain
142
#define CRB_GAIN_MASK           0xE0
143
 
144
// ids
145
#define MAG_IDA         0x48
146
#define MAG_IDB         0x34
147
#define MAG_IDC         0x33
148
 
149
// the special HMC5843 interface
150
// bit mask for rate
242 killagreg 151
#define HMC5843_CRA_RATE_0_5HZ          0x00
152
#define HMC5843_CRA_RATE_1HZ            0x04
153
#define HMC5843_CRA_RATE_2HZ            0x08
154
#define HMC5843_CRA_RATE_5HZ            0x0C
155
#define HMC5843_CRA_RATE_10HZ           0x10    //default
156
#define HMC5843_CRA_RATE_20HZ           0x14
157
#define HMC5843_CRA_RATE_50HZ           0x18
158
// bit mask for gain
159
#define HMC5843_CRB_GAIN_07GA           0x00
160
#define HMC5843_CRB_GAIN_10GA           0x20    //default
339 holgerb 161
#define HMC5843_CRB_GAIN_15GA           0x40    // <--- we use this     
242 killagreg 162
#define HMC5843_CRB_GAIN_20GA           0x60
163
#define HMC5843_CRB_GAIN_32GA           0x80
164
#define HMC5843_CRB_GAIN_38GA           0xA0
165
#define HMC5843_CRB_GAIN_45GA           0xC0
166
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 167
// self test value
339 holgerb 168
#define HMC5843_TEST_XSCALE             555
169
#define HMC5843_TEST_YSCALE             555
170
#define HMC5843_TEST_ZSCALE             555
171
// clibration range
342 holgerb 172
#define HMC5843_CALIBRATION_RANGE   600
242 killagreg 173
 
253 killagreg 174
// the special LSM302DLH interface
175
// bit mask for rate
176
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
177
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
178
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
179
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
180
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
181
#define LSM303DLH_CRA_RATE_30HZ         0x14
182
#define LSM303DLH_CRA_RATE_75HZ         0x18
338 holgerb 183
 
253 killagreg 184
// bit mask for gain
185
#define LSM303DLH_CRB_GAIN_XXGA         0x00
186
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
339 holgerb 187
#define LSM303DLH_CRB_GAIN_19GA         0x40    // <--- we use this
253 killagreg 188
#define LSM303DLH_CRB_GAIN_25GA         0x60
189
#define LSM303DLH_CRB_GAIN_40GA         0x80
190
#define LSM303DLH_CRB_GAIN_47GA         0xA0
191
#define LSM303DLH_CRB_GAIN_56GA         0xC0
192
#define LSM303DLH_CRB_GAIN_81GA         0xE0
193
// self test value
338 holgerb 194
#define LSM303DLH_TEST_XSCALE   495
195
#define LSM303DLH_TEST_YSCALE   495
196
#define LSM303DLH_TEST_ZSCALE   470
339 holgerb 197
// clibration range
342 holgerb 198
#define LSM303_CALIBRATION_RANGE   550
253 killagreg 199
 
200
// the i2c ACC interface
201
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
202
// register mapping
203
#define REG_ACC_CTRL1                   0x20
204
#define REG_ACC_CTRL2                   0x21
205
#define REG_ACC_CTRL3                   0x22
206
#define REG_ACC_CTRL4                   0x23
207
#define REG_ACC_CTRL5                   0x24
208
#define REG_ACC_HP_FILTER_RESET 0x25
209
#define REG_ACC_REFERENCE               0x26
210
#define REG_ACC_STATUS                  0x27
211
#define REG_ACC_X_LSB                   0x28
212
#define REG_ACC_X_MSB                   0x29
213
#define REG_ACC_Y_LSB                   0x2A
214
#define REG_ACC_Y_MSB                   0x2B
215
#define REG_ACC_Z_LSB                   0x2C
216
#define REG_ACC_Z_MSB                   0x2D
217
 
218
 
219
 
242 killagreg 220
typedef struct
221
{
253 killagreg 222
        u8 A;
223
        u8 B;
224
        u8 C;
225
} __attribute__((packed)) Identification_t;
226
volatile Identification_t NCMAG_Identification;
242 killagreg 227
 
253 killagreg 228
typedef struct
229
{
329 holgerb 230
        u8 Sub;
231
} __attribute__((packed)) Identification2_t;
232
volatile Identification2_t NCMAG_Identification2;
233
 
234
typedef struct
235
{
253 killagreg 236
        u8 cra;
237
        u8 crb;
238
        u8 mode;
239
} __attribute__((packed)) MagConfig_t;
242 killagreg 240
 
253 killagreg 241
volatile MagConfig_t MagConfig;
242 killagreg 242
 
253 killagreg 243
typedef struct
244
{
245
        u8 ctrl_1;
246
        u8 ctrl_2;
247
        u8 ctrl_3;
248
        u8 ctrl_4;
249
        u8 ctrl_5;
250
} __attribute__((packed)) AccConfig_t;
251
 
252
volatile AccConfig_t AccConfig;
253
 
254 killagreg 254
u8 NCMag_CalibrationWrite(void)
255
{
338 holgerb 256
        u8 i, crc = MAG_CALIBRATION_COMPATIBEL;
254 killagreg 257
        EEPROM_Result_t eres;
258
        u8 *pBuff = (u8*)&Calibration;
259
 
260
        Calibration.Version = CALIBRATION_VERSION;
256 killagreg 261
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 262
        {
263
                crc += pBuff[i];        
264
        }
265
        Calibration.crc = ~crc;
266
        eres = EEPROM_WriteBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration));
267
        if(EEPROM_SUCCESS == eres) i = 1;
268
        else i = 0;
269
        return(i);     
270
}
271
 
272
u8 NCMag_CalibrationRead(void)
273
{
338 holgerb 274
        u8 i, crc = MAG_CALIBRATION_COMPATIBEL;
254 killagreg 275
        u8 *pBuff = (u8*)&Calibration;
276
 
277
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration)))
278
        {
256 killagreg 279
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 280
                {
281
                        crc += pBuff[i];        
282
                }
283
                crc = ~crc;
284
                if(Calibration.crc != crc) return(0); // crc mismatch
257 killagreg 285
                if(Calibration.Version == CALIBRATION_VERSION) return(1);
254 killagreg 286
        }
287
        return(0);
288
}
289
 
290
 
291
void NCMAG_Calibrate(void)
292
{
330 holgerb 293
        u8 msg[64];
254 killagreg 294
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 295
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 296
        static u8 OldCalState = 0;     
339 holgerb 297
        s16 MinCaclibration = 450;
254 killagreg 298
 
256 killagreg 299
        X = (4*X + MagRawVector.X + 3)/5;
300
        Y = (4*Y + MagRawVector.Y + 3)/5;
301
        Z = (4*Z + MagRawVector.Z + 3)/5;
302
 
254 killagreg 303
        switch(Compass_CalState)
304
        {
305
                case 1:
306
                        // 1st step of calibration
307
                        // initialize ranges
308
                        // used to change the orientation of the NC in the horizontal plane
309
                        Xmin =  10000;
310
                        Xmax = -10000;
311
                        Ymin =  10000;
312
                        Ymax = -10000;
313
                        Zmin =  10000;
314
                        Zmax = -10000;
315
                        break;
316
 
317
                case 2: // 2nd step of calibration
318
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
275 killagreg 319
                        if(X < Xmin)            { Xmin = X; BeepTime = 20;}
320
                        else if(X > Xmax)       { Xmax = X; BeepTime = 20;}
321
                        if(Y < Ymin)            { Ymin = Y; BeepTime = 60;}
322
                        else if(Y > Ymax)       { Ymax = Y; BeepTime = 60;}
254 killagreg 323
                        break;
324
 
325
                case 3: // 3rd step of calibration
326
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
327
                        break;
328
 
329
                case 4:
330
                        // find Min and Max of the Z-Sensor
275 killagreg 331
                        if(Z < Zmin)      { Zmin = Z; BeepTime = 80;}
332
                        else if(Z > Zmax) { Zmax = Z; BeepTime = 80;}
254 killagreg 333
                        break;
334
 
335
                case 5:
336
                        // Save values
337
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
338
                        {
338 holgerb 339
//                              #define MIN_CALIBRATION    256
339 holgerb 340
                                if(NCMAG_MagType == MAG_TYPE_HMC5843)
341
                                 {
342
                                  UART1_PutString("\r\nHMC5843 calibration\n\r");
343
                                  MinCaclibration = HMC5843_CALIBRATION_RANGE;
344
                                 }
345
                                if(NCMAG_MagType == MAG_TYPE_LSM303DLH)
346
                                 {
347
                                  UART1_PutString("\r\n\r\nLSM303 calibration\n\r");
348
                                  MinCaclibration =LSM303_CALIBRATION_RANGE;
349
                                 }
342 holgerb 350
                                if(EarthMagneticStrengthTheoretic)
351
                                 {
352
                                  MinCaclibration = (MinCaclibration * EarthMagneticStrengthTheoretic) / 50;
353
                                  sprintf(msg, "Earth field on your location should be: %iuT\r\n",EarthMagneticStrengthTheoretic);
354
                                  UART1_PutString(msg);
355
                                 }
356
                            else UART1_PutString("without GPS\n\r");
339 holgerb 357
 
254 killagreg 358
                                Calibration.MagX.Range = Xmax - Xmin;
359
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
360
                                Calibration.MagY.Range = Ymax - Ymin;
361
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
362
                                Calibration.MagZ.Range = Zmax - Zmin;
363
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
339 holgerb 364
                                if((Calibration.MagX.Range > MinCaclibration) && (Calibration.MagY.Range > MinCaclibration) && (Calibration.MagZ.Range > MinCaclibration))
254 killagreg 365
                                {
366
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite();
270 killagreg 367
                                        BeepTime = 2500;
342 holgerb 368
                                        UART1_PutString("\r\n-> Calibration okay <-\n\r");
254 killagreg 369
                                }
370
                                else
371
                                {
339 holgerb 372
                                        UART1_PutString("\r\nCalibration FAILED - Values too low: ");
373
                                    if(Calibration.MagX.Range < MinCaclibration) UART1_PutString("X! ");
342 holgerb 374
                                    if(Calibration.MagY.Range < MinCaclibration) UART1_PutString("Y! ");
339 holgerb 375
                                    if(Calibration.MagZ.Range < MinCaclibration) UART1_PutString("Z! ");
330 holgerb 376
                                        UART1_PutString("\r\n");
339 holgerb 377
 
254 killagreg 378
                                        // restore old calibration data from eeprom
379
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
380
                                }
330 holgerb 381
                                        sprintf(msg, "X: (%i - %i = %i)\r\n",Xmax,Xmin,Xmax - Xmin);
382
                                        UART1_PutString(msg);
383
                                        sprintf(msg, "Y: (%i - %i = %i)\r\n",Ymax,Ymin,Ymax - Ymin);
384
                                        UART1_PutString(msg);
385
                                        sprintf(msg, "Z: (%i - %i = %i)\r\n",Zmax,Zmin,Zmax - Zmin);
386
                                        UART1_PutString(msg);
342 holgerb 387
                                        sprintf(msg, "(Minimum ampilitude is: %i)\r\n",MinCaclibration);
388
                                        UART1_PutString(msg);
254 killagreg 389
                        }
390
                        break;
391
 
392
                default:
393
                        break; 
394
        }
395
        OldCalState = Compass_CalState;
396
}
397
 
242 killagreg 398
// ---------- call back handlers -----------------------------------------
399
 
400
// rx data handler for id info request
253 killagreg 401
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 402
{       // if number of bytes are matching
253 killagreg 403
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 404
        {
253 killagreg 405
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
406
        }
242 killagreg 407
}
329 holgerb 408
 
409
void NCMAG_UpdateIdentification_Sub(u8* pRxBuffer, u8 RxBufferSize)
410
{       // if number of bytes are matching
411
        if(RxBufferSize == sizeof(NCMAG_Identification2))
412
        {
413
                memcpy((u8 *)&NCMAG_Identification2, pRxBuffer, sizeof(NCMAG_Identification2));
414
        }
415
}
416
 
254 killagreg 417
// rx data handler for magnetic sensor raw data
253 killagreg 418
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 419
{       // if number of bytes are matching
420
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 421
        {       // byte order from big to little endian
256 killagreg 422
                s16 raw;
423
                raw = pRxBuffer[0]<<8;
424
                raw+= pRxBuffer[1];
425
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
426
                raw = pRxBuffer[2]<<8;
427
                raw+= pRxBuffer[3];
330 holgerb 428
            if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
429
                {
430
                  if(NCMAG_Identification2.Sub == 0x3c) MagRawVector.Z = raw; // here Z and Y are exchanged
431
                  else MagRawVector.Y = raw;
432
                }
256 killagreg 433
                raw = pRxBuffer[4]<<8;
434
                raw+= pRxBuffer[5];
330 holgerb 435
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
436
                {
437
                  if(NCMAG_Identification2.Sub == 0x3c) MagRawVector.Y = raw; // here Z and Y are exchanged
438
                  else MagRawVector.Z = raw;
439
                }
342 holgerb 440
//MagRawVector.X += 2 * ((s32) FC.Poti[7] - 128);
242 killagreg 441
        }
254 killagreg 442
        if(Compass_CalState || !NCMAG_IsCalibrated)
284 killagreg 443
        {       // mark out data invalid
289 killagreg 444
                MagVector.X = MagRawVector.X;
445
                MagVector.Y = MagRawVector.Y;
446
                MagVector.Z = MagRawVector.Z;
254 killagreg 447
                Compass_Heading = -1;
448
        }
449
        else
450
        {
451
                // update MagVector from MagRaw Vector by Scaling
452
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
453
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
454
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
292 killagreg 455
                Compass_CalcHeading();
254 killagreg 456
        }
242 killagreg 457
}
254 killagreg 458
// rx data handler  for acceleration raw data
253 killagreg 459
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
460
{       // if number of byte are matching
254 killagreg 461
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 462
        {
254 killagreg 463
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 464
        }
465
}
254 killagreg 466
// rx data handler for reading magnetic sensor configuration
253 killagreg 467
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
468
{       // if number of byte are matching
469
        if(RxBufferSize == sizeof(MagConfig) )
470
        {
471
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
472
        }
473
}
254 killagreg 474
// rx data handler for reading acceleration sensor configuration
253 killagreg 475
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
476
{       // if number of byte are matching
477
        if(RxBufferSize == sizeof(AccConfig) )
478
        {
479
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
480
        }
481
}
254 killagreg 482
//----------------------------------------------------------------------
253 killagreg 483
 
254 killagreg 484
 
485
// ---------------------------------------------------------------------
253 killagreg 486
u8 NCMAG_SetMagConfig(void)
487
{
488
        u8 retval = 0;
489
        // try to catch the i2c buffer within 100 ms timeout
490
        if(I2C_LockBuffer(100))
491
        {
492
                u8 TxBytes = 0;
493
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;    
494
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
495
                TxBytes += sizeof(MagConfig);
496
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
497
                {
498
                        if(I2C_WaitForEndOfTransmission(100))
499
                        {
500
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
501
                        }
502
                }
503
        }
504
        return(retval);        
505
}
242 killagreg 506
 
253 killagreg 507
// ----------------------------------------------------------------------------------------
508
u8 NCMAG_GetMagConfig(void)
242 killagreg 509
{
253 killagreg 510
        u8 retval = 0;
252 killagreg 511
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 512
        if(I2C_LockBuffer(100))
242 killagreg 513
        {
253 killagreg 514
                u8 TxBytes = 0;
515
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;
516
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 517
                {
252 killagreg 518
                        if(I2C_WaitForEndOfTransmission(100))
519
                        {
520
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
521
                        }
248 killagreg 522
                }
242 killagreg 523
        }
253 killagreg 524
        return(retval);        
242 killagreg 525
}
526
 
527
// ----------------------------------------------------------------------------------------
253 killagreg 528
u8 NCMAG_SetAccConfig(void)
242 killagreg 529
{
252 killagreg 530
        u8 retval = 0;
253 killagreg 531
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 532
        if(I2C_LockBuffer(100))
242 killagreg 533
        {
253 killagreg 534
                u8 TxBytes = 0;
535
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;  
536
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
537
                TxBytes += sizeof(AccConfig);
538
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
539
                {
540
                        if(I2C_WaitForEndOfTransmission(100))
541
                        {
542
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
543
                        }
544
                }
545
        }
546
        return(retval);        
547
}
548
 
549
// ----------------------------------------------------------------------------------------
550
u8 NCMAG_GetAccConfig(void)
551
{
552
        u8 retval = 0;
553
        // try to catch the i2c buffer within 100 ms timeout
554
        if(I2C_LockBuffer(100))
555
        {
556
                u8 TxBytes = 0;
557
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;
558
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
559
                {
560
                        if(I2C_WaitForEndOfTransmission(100))
561
                        {
562
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
563
                        }
564
                }
565
        }
566
        return(retval);        
567
}
568
 
569
// ----------------------------------------------------------------------------------------
570
u8 NCMAG_GetIdentification(void)
571
{
572
        u8 retval = 0;
573
        // try to catch the i2c buffer within 100 ms timeout
574
        if(I2C_LockBuffer(100))
575
        {
576
                u16 TxBytes = 0;
577
                NCMAG_Identification.A = 0xFF;
578
                NCMAG_Identification.B = 0xFF;
579
                NCMAG_Identification.C = 0xFF;
580
                I2C_Buffer[TxBytes++] = REG_MAG_IDA;
248 killagreg 581
                // initiate transmission
253 killagreg 582
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 583
                {
253 killagreg 584
                        if(I2C_WaitForEndOfTransmission(100))
252 killagreg 585
                        {
586
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
587
                        }
248 killagreg 588
                }
242 killagreg 589
        }
253 killagreg 590
        return(retval);
242 killagreg 591
}
592
 
329 holgerb 593
u8 NCMAG_GetIdentification_Sub(void)
594
{
595
        u8 retval = 0;
596
        // try to catch the i2c buffer within 100 ms timeout
597
        if(I2C_LockBuffer(100))
598
        {
599
                u16 TxBytes = 0;
600
                NCMAG_Identification2.Sub = 0xFF;
601
                I2C_Buffer[TxBytes++] = REG_MAG_IDF;
602
                // initiate transmission
603
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification_Sub, sizeof(NCMAG_Identification2)))
604
                {
605
                        if(I2C_WaitForEndOfTransmission(100))
606
                        {
607
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
608
                        }
609
                }
610
        }
611
        return(retval);
612
}
613
 
614
 
253 killagreg 615
// ----------------------------------------------------------------------------------------
616
void NCMAG_GetMagVector(void)
617
{
618
        // try to catch the I2C buffer within 0 ms
619
        if(I2C_LockBuffer(0))
620
        {
330 holgerb 621
//       s16 tmp;
253 killagreg 622
                u16 TxBytes = 0;
623
                // set register pointer
624
                I2C_Buffer[TxBytes++] = REG_MAG_DATAX_MSB;
625
                // initiate transmission
626
                I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
627
        }
628
}
629
 
242 killagreg 630
//----------------------------------------------------------------
253 killagreg 631
void NCMAG_GetAccVector(void)
243 killagreg 632
{
252 killagreg 633
        // try to catch the I2C buffer within 0 ms
634
        if(I2C_LockBuffer(0))
243 killagreg 635
        {
248 killagreg 636
                u16 TxBytes = 0;
243 killagreg 637
                // set register pointer
253 killagreg 638
                I2C_Buffer[TxBytes++] = REG_ACC_X_LSB;
243 killagreg 639
                // initiate transmission
254 killagreg 640
                I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
243 killagreg 641
        }
642
}
643
 
330 holgerb 644
//----------------------------------------------------------------
645
void InitNC_MagnetSensor(void)
646
{
647
        s16 xscale, yscale, zscale;
648
        u8 crb_gain, cra_rate;
338 holgerb 649
//      u8  retval = 1;
330 holgerb 650
 
651
        switch(NCMAG_MagType)
652
        {
653
                case MAG_TYPE_HMC5843:
339 holgerb 654
                        crb_gain = HMC5843_CRB_GAIN_15GA;
330 holgerb 655
                        cra_rate = HMC5843_CRA_RATE_50HZ;
656
                        xscale = HMC5843_TEST_XSCALE;
657
                        yscale = HMC5843_TEST_YSCALE;
658
                        zscale = HMC5843_TEST_ZSCALE;
659
                        break;
660
 
661
                case MAG_TYPE_LSM303DLH:
338 holgerb 662
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
330 holgerb 663
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
664
                        xscale = LSM303DLH_TEST_XSCALE;
665
                        yscale = LSM303DLH_TEST_YSCALE;
666
                        zscale = LSM303DLH_TEST_ZSCALE;
667
                        break;
668
 
669
                default:
338 holgerb 670
                return;
330 holgerb 671
        }
672
 
673
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
674
        MagConfig.crb = crb_gain;
675
        MagConfig.mode = MODE_CONTINUOUS;
676
        NCMAG_SetMagConfig();
677
}
678
 
679
 
253 killagreg 680
// --------------------------------------------------------
292 killagreg 681
void NCMAG_Update(void)
243 killagreg 682
{
292 killagreg 683
        static u32 TimerUpdate = 0;
321 holgerb 684
        static u8 send_config = 0;
243 killagreg 685
 
254 killagreg 686
        if( (I2C_State == I2C_STATE_OFF) || !NCMAG_Present )
687
        {
688
                Compass_Heading = -1;
326 holgerb 689
                DebugOut.Analog[14]++; // count I2C error
254 killagreg 690
                return;
691
        }
292 killagreg 692
        if(CheckDelay(TimerUpdate))
243 killagreg 693
        {
326 holgerb 694
           if(Compass_Heading != -1) send_config = 0; // no re-configuration if value is valid
695
       if(++send_config == 25)   // 500ms
321 holgerb 696
            {
697
                 send_config = 0;
330 holgerb 698
             InitNC_MagnetSensor();
321 holgerb 699
                 TimerUpdate = SetDelay(15);    // back into the old time-slot
700
            }
701
                else
702
                {
254 killagreg 703
                // check for new calibration state
704
                Compass_UpdateCalState();
705
                if(Compass_CalState) NCMAG_Calibrate();
706
                NCMAG_GetMagVector(); //Get new data;
326 holgerb 707
                if(send_config == 24) TimerUpdate = SetDelay(5);    // next event is the re-configuration
321 holgerb 708
                else TimerUpdate = SetDelay(20);    // every 20 ms are 50 Hz
709
                }
243 killagreg 710
        }
711
}
712
 
330 holgerb 713
 
254 killagreg 714
// --------------------------------------------------------
253 killagreg 715
u8 NCMAG_SelfTest(void)
243 killagreg 716
{
266 holgerb 717
        u8 msg[64];
275 killagreg 718
        static u8 done = 0;
266 holgerb 719
 
287 holgerb 720
        if(done) return(1);        // just make it once
275 killagreg 721
 
271 holgerb 722
        #define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
243 killagreg 723
        u32 time;
253 killagreg 724
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
725
        s16 xscale, yscale, zscale, scale_min, scale_max;
726
        u8 crb_gain, cra_rate;
727
        u8 i = 0, retval = 1;
243 killagreg 728
 
253 killagreg 729
        switch(NCMAG_MagType)
730
        {
731
                case MAG_TYPE_HMC5843:
339 holgerb 732
                        crb_gain = HMC5843_CRB_GAIN_15GA;
253 killagreg 733
                        cra_rate = HMC5843_CRA_RATE_50HZ;
734
                        xscale = HMC5843_TEST_XSCALE;
735
                        yscale = HMC5843_TEST_YSCALE;
736
                        zscale = HMC5843_TEST_ZSCALE;
737
                        break;
738
 
739
                case MAG_TYPE_LSM303DLH:
338 holgerb 740
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
253 killagreg 741
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
742
                        xscale = LSM303DLH_TEST_XSCALE;
743
                        yscale = LSM303DLH_TEST_YSCALE;
744
                        zscale = LSM303DLH_TEST_ZSCALE;
745
                        break;
746
 
747
                default:
748
                return(0);
749
        }
750
 
751
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
752
        MagConfig.crb = crb_gain;
753
        MagConfig.mode = MODE_CONTINUOUS;
754
        // activate positive bias field
755
        NCMAG_SetMagConfig();
251 killagreg 756
        // wait for stable readings
757
        time = SetDelay(50);
758
        while(!CheckDelay(time));
243 killagreg 759
        // averaging
253 killagreg 760
        #define AVERAGE 20
761
        for(i = 0; i<AVERAGE; i++)
243 killagreg 762
        {
253 killagreg 763
                NCMAG_GetMagVector();
243 killagreg 764
                time = SetDelay(20);
765
        while(!CheckDelay(time));
254 killagreg 766
                XMax += MagRawVector.X;
767
                YMax += MagRawVector.Y;
768
                ZMax += MagRawVector.Z;
243 killagreg 769
        }
253 killagreg 770
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
771
        // activate positive bias field
772
        NCMAG_SetMagConfig();
251 killagreg 773
    // wait for stable readings
774
        time = SetDelay(50);
775
        while(!CheckDelay(time));
243 killagreg 776
        // averaging
253 killagreg 777
        for(i = 0; i < AVERAGE; i++)
243 killagreg 778
        {
253 killagreg 779
                NCMAG_GetMagVector();
243 killagreg 780
                time = SetDelay(20);
781
        while(!CheckDelay(time));
254 killagreg 782
                XMin += MagRawVector.X;
783
                YMin += MagRawVector.Y;
784
                ZMin += MagRawVector.Z;
243 killagreg 785
        }
786
        // setup final configuration
253 killagreg 787
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
788
        // activate positive bias field
789
        NCMAG_SetMagConfig();
266 holgerb 790
        // check scale for all axes
243 killagreg 791
        // prepare scale limits
253 killagreg 792
        LIMITS(xscale, scale_min, scale_max);
267 holgerb 793
        xscale = (XMax - XMin)/(2*AVERAGE);
266 holgerb 794
        if((xscale > scale_max) || (xscale < scale_min))
795
     {
796
          retval = 0;
797
      sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
798
          UART1_PutString(msg);
799
     }
267 holgerb 800
        LIMITS(yscale, scale_min, scale_max);
266 holgerb 801
        yscale = (YMax - YMin)/(2*AVERAGE);
802
        if((yscale > scale_max) || (yscale < scale_min))
803
     {
804
          retval = 0;
805
      sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
806
          UART1_PutString(msg);
807
     }
267 holgerb 808
        LIMITS(zscale, scale_min, scale_max);
266 holgerb 809
        zscale = (ZMax - ZMin)/(2*AVERAGE);
810
        if((zscale > scale_max) || (zscale < scale_min))      
811
         {
812
          retval = 0;
813
      sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
814
          UART1_PutString(msg);
815
     }
275 killagreg 816
        done = retval;
253 killagreg 817
        return(retval);
243 killagreg 818
}
819
 
820
 
821
//----------------------------------------------------------------
253 killagreg 822
u8 NCMAG_Init(void)
242 killagreg 823
{
824
        u8 msg[64];
252 killagreg 825
        u8 retval = 0;
242 killagreg 826
        u8 repeat;
827
 
253 killagreg 828
        NCMAG_Present = 0;
829
        NCMAG_MagType = MAG_TYPE_HMC5843;       // assuming having an HMC5843
830
        // polling for LSM302DLH option
831
        repeat = 0;
832
        do
833
        {
834
                retval = NCMAG_GetAccConfig();
835
                if(retval) break; // break loop on success
836
                UART1_PutString(".");
837
                repeat++;
838
        }while(repeat < 3);
839
        if(retval) NCMAG_MagType = MAG_TYPE_LSM303DLH; // must be a LSM303DLH
242 killagreg 840
        // polling of identification
841
        repeat = 0;
842
        do
843
        {
329 holgerb 844
                retval = NCMAG_GetIdentification_Sub();
845
                if(retval) break; // break loop on success
846
                UART1_PutString(".");
847
                repeat++;
848
        }while(repeat < 12);
849
        retval = 0;
850
        do
851
        {
253 killagreg 852
                retval = NCMAG_GetIdentification();
252 killagreg 853
                if(retval) break; // break loop on success
242 killagreg 854
                UART1_PutString(".");
855
                repeat++;
252 killagreg 856
        }while(repeat < 12);
329 holgerb 857
 
253 killagreg 858
        // if we got an answer to id request
252 killagreg 859
        if(retval)
242 killagreg 860
        {
329 holgerb 861
                u8 n1[] = "\n\r HMC5843";
862
                u8 n2[] = "\n\r LSM303DLH";
863
                u8 n3[] = "\n\r LSM303DLM";
253 killagreg 864
                u8* pn;
329 holgerb 865
 
866
                pn = n1;
867
                if(NCMAG_MagType == MAG_TYPE_LSM303DLH)
868
                {
869
                 if(NCMAG_Identification2.Sub == 0x3c) pn = n3;
870
                 else pn = n2;
871
                }
872
 
873
                sprintf(msg, " %s ID 0x%02x/%02x/%02x-%02x", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C,NCMAG_Identification2.Sub);
242 killagreg 874
                UART1_PutString(msg);
253 killagreg 875
                if (    (NCMAG_Identification.A == MAG_IDA)
876
                     && (NCMAG_Identification.B == MAG_IDB)
877
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 878
                {
268 killagreg 879
                        NCMAG_Present = 1;
329 holgerb 880
 
881
                        if(EEPROM_Init())
264 killagreg 882
                                {
883
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
884
                                        if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
885
                                }
329 holgerb 886
                        else UART1_PutString("\r\n EEPROM data not available!!!!!!!!!!!!!!!");
887
 
888
                        if(NCMAG_Identification2.Sub == 0x00)
889
                        {
890
                         if(!NCMAG_SelfTest())
891
                         {
892
                                UART1_PutString("\r\n Selftest failed!!!!!!!!!!!!!!!!!!!!\r\n");
893
                                LED_RED_ON;
894
                                NCMAG_IsCalibrated = 0;
895
                         }      else UART1_PutString("\r\n Selftest ok");
254 killagreg 896
                        }
330 holgerb 897
                        else InitNC_MagnetSensor();
242 killagreg 898
                }
899
                else
900
                {
254 killagreg 901
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 902
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 903
                        LED_RED_ON;
904
                }
905
        }
253 killagreg 906
        else // nothing found
907
        {
908
                NCMAG_MagType = MAG_TYPE_NONE;
909
                UART1_PutString("not found!");  
910
        }
911
        return(NCMAG_Present);
242 killagreg 912
}
913