Subversion Repositories NaviCtrl

Rev

Rev 342 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + Copyright (c) 2010 Ingo Busker, Holger Buss
6
// + Nur für den privaten Gebrauch / NON-COMMERCIAL USE ONLY
7
// + FOR NON COMMERCIAL USE ONLY
8
// + www.MikroKopter.com
9
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
10
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
11
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
12
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
13
// + bzgl. der Nutzungsbedingungen aufzunehmen.
14
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
15
// + Verkauf von Luftbildaufnahmen, usw.
16
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
17
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
18
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
21
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
22
// + eindeutig als Ursprung verlinkt werden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
25
// + Benutzung auf eigene Gefahr
26
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
27
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// + Die Portierung oder Nutzung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
29
// + mit unserer Zustimmung zulässig
30
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
31
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
32
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
33
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
34
// + this list of conditions and the following disclaimer.
35
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
36
// +     from this software without specific prior written permission.
37
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permitted
38
// +     for non-commercial use (directly or indirectly)
39
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
40
// +     with our written permission
41
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
42
// +     clearly linked as origin
43
// +   * porting the sources to other systems or using the software on other systems (except hardware from www.mikrokopter.de) is not allowed
44
//
45
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
46
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
49
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
50
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
51
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
52
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
53
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
55
// +  POSSIBILITY OF SUCH DAMAGE.
56
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 57
#include <math.h>
292 killagreg 58
#include <stdio.h>
242 killagreg 59
#include <string.h>
60
#include "91x_lib.h"
253 killagreg 61
#include "ncmag.h"
242 killagreg 62
#include "i2c.h"
63
#include "timer1.h"
64
#include "led.h"
65
#include "uart1.h"
254 killagreg 66
#include "eeprom.h"
256 killagreg 67
#include "mymath.h"
292 killagreg 68
#include "main.h"
242 killagreg 69
 
253 killagreg 70
u8 NCMAG_Present = 0;
254 killagreg 71
u8 NCMAG_IsCalibrated = 0;
242 killagreg 72
 
253 killagreg 73
#define MAG_TYPE_NONE           0
74
#define MAG_TYPE_HMC5843        1
75
#define MAG_TYPE_LSM303DLH      2
254 killagreg 76
u8 NCMAG_MagType = MAG_TYPE_NONE;
242 killagreg 77
 
338 holgerb 78
#define CALIBRATION_VERSION                     1
79
#define EEPROM_ADR_MAG_CALIBRATION              50
339 holgerb 80
#define MAG_CALIBRATION_COMPATIBEL              0xA2
254 killagreg 81
 
256 killagreg 82
#define NCMAG_MIN_RAWVALUE -2047
83
#define NCMAG_MAX_RAWVALUE  2047
84
#define NCMAG_INVALID_DATA -4096
85
 
254 killagreg 86
typedef struct
87
{
88
        s16 Range;
89
        s16 Offset;
256 killagreg 90
} __attribute__((packed)) Scaling_t;
254 killagreg 91
 
92
typedef struct
93
{
94
        Scaling_t MagX;
95
        Scaling_t MagY;
96
        Scaling_t MagZ;
97
        u8 Version;
98
        u8 crc;
256 killagreg 99
} __attribute__((packed)) Calibration_t;
254 killagreg 100
 
101
Calibration_t Calibration;              // calibration data in RAM 
339 holgerb 102
volatile s16vec_t AccRawVector;
103
volatile s16vec_t MagRawVector;
254 killagreg 104
 
253 killagreg 105
// i2c MAG interface
106
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 107
 
253 killagreg 108
// register mapping
109
#define REG_MAG_CRA                     0x00
110
#define REG_MAG_CRB                     0x01
111
#define REG_MAG_MODE            0x02
112
#define REG_MAG_DATAX_MSB       0x03
113
#define REG_MAG_DATAX_LSB       0x04
114
#define REG_MAG_DATAY_MSB       0x05
115
#define REG_MAG_DATAY_LSB       0x06
116
#define REG_MAG_DATAZ_MSB       0x07
117
#define REG_MAG_DATAZ_LSB       0x08
118
#define REG_MAG_STATUS          0x09
329 holgerb 119
 
253 killagreg 120
#define REG_MAG_IDA                     0x0A
121
#define REG_MAG_IDB                     0x0B
122
#define REG_MAG_IDC                     0x0C
329 holgerb 123
#define REG_MAG_IDF                     0x0F
242 killagreg 124
 
253 killagreg 125
// bit mask for configuration mode
126
#define CRA_MODE_MASK           0x03
127
#define CRA_MODE_NORMAL         0x00    //default
128
#define CRA_MODE_POSBIAS        0x01
129
#define CRA_MODE_NEGBIAS        0x02
130
#define CRA_MODE_SELFTEST       0x03
242 killagreg 131
 
253 killagreg 132
// bit mask for measurement mode
133
#define MODE_MASK                       0xFF
134
#define MODE_CONTINUOUS         0x00
135
#define MODE_SINGLE                     0x01    // default
136
#define MODE_IDLE                       0x02
137
#define MODE_SLEEP                      0x03
138
 
242 killagreg 139
// bit mask for rate
253 killagreg 140
#define CRA_RATE_MASK           0x1C
141
 
142
// bit mask for gain
143
#define CRB_GAIN_MASK           0xE0
144
 
145
// ids
146
#define MAG_IDA         0x48
147
#define MAG_IDB         0x34
148
#define MAG_IDC         0x33
149
 
150
// the special HMC5843 interface
151
// bit mask for rate
242 killagreg 152
#define HMC5843_CRA_RATE_0_5HZ          0x00
153
#define HMC5843_CRA_RATE_1HZ            0x04
154
#define HMC5843_CRA_RATE_2HZ            0x08
155
#define HMC5843_CRA_RATE_5HZ            0x0C
156
#define HMC5843_CRA_RATE_10HZ           0x10    //default
157
#define HMC5843_CRA_RATE_20HZ           0x14
158
#define HMC5843_CRA_RATE_50HZ           0x18
159
// bit mask for gain
160
#define HMC5843_CRB_GAIN_07GA           0x00
161
#define HMC5843_CRB_GAIN_10GA           0x20    //default
339 holgerb 162
#define HMC5843_CRB_GAIN_15GA           0x40    // <--- we use this     
242 killagreg 163
#define HMC5843_CRB_GAIN_20GA           0x60
164
#define HMC5843_CRB_GAIN_32GA           0x80
165
#define HMC5843_CRB_GAIN_38GA           0xA0
166
#define HMC5843_CRB_GAIN_45GA           0xC0
167
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 168
// self test value
339 holgerb 169
#define HMC5843_TEST_XSCALE             555
170
#define HMC5843_TEST_YSCALE             555
171
#define HMC5843_TEST_ZSCALE             555
172
// clibration range
342 holgerb 173
#define HMC5843_CALIBRATION_RANGE   600
242 killagreg 174
 
253 killagreg 175
// the special LSM302DLH interface
176
// bit mask for rate
177
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
178
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
179
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
180
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
181
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
182
#define LSM303DLH_CRA_RATE_30HZ         0x14
183
#define LSM303DLH_CRA_RATE_75HZ         0x18
338 holgerb 184
 
253 killagreg 185
// bit mask for gain
186
#define LSM303DLH_CRB_GAIN_XXGA         0x00
187
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
339 holgerb 188
#define LSM303DLH_CRB_GAIN_19GA         0x40    // <--- we use this
253 killagreg 189
#define LSM303DLH_CRB_GAIN_25GA         0x60
190
#define LSM303DLH_CRB_GAIN_40GA         0x80
191
#define LSM303DLH_CRB_GAIN_47GA         0xA0
192
#define LSM303DLH_CRB_GAIN_56GA         0xC0
193
#define LSM303DLH_CRB_GAIN_81GA         0xE0
194
// self test value
338 holgerb 195
#define LSM303DLH_TEST_XSCALE   495
196
#define LSM303DLH_TEST_YSCALE   495
197
#define LSM303DLH_TEST_ZSCALE   470
339 holgerb 198
// clibration range
342 holgerb 199
#define LSM303_CALIBRATION_RANGE   550
253 killagreg 200
 
201
// the i2c ACC interface
202
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
203
// register mapping
204
#define REG_ACC_CTRL1                   0x20
205
#define REG_ACC_CTRL2                   0x21
206
#define REG_ACC_CTRL3                   0x22
207
#define REG_ACC_CTRL4                   0x23
208
#define REG_ACC_CTRL5                   0x24
209
#define REG_ACC_HP_FILTER_RESET 0x25
210
#define REG_ACC_REFERENCE               0x26
211
#define REG_ACC_STATUS                  0x27
212
#define REG_ACC_X_LSB                   0x28
213
#define REG_ACC_X_MSB                   0x29
214
#define REG_ACC_Y_LSB                   0x2A
215
#define REG_ACC_Y_MSB                   0x2B
216
#define REG_ACC_Z_LSB                   0x2C
217
#define REG_ACC_Z_MSB                   0x2D
218
 
219
 
220
 
242 killagreg 221
typedef struct
222
{
253 killagreg 223
        u8 A;
224
        u8 B;
225
        u8 C;
226
} __attribute__((packed)) Identification_t;
227
volatile Identification_t NCMAG_Identification;
242 killagreg 228
 
253 killagreg 229
typedef struct
230
{
329 holgerb 231
        u8 Sub;
232
} __attribute__((packed)) Identification2_t;
233
volatile Identification2_t NCMAG_Identification2;
234
 
235
typedef struct
236
{
253 killagreg 237
        u8 cra;
238
        u8 crb;
239
        u8 mode;
240
} __attribute__((packed)) MagConfig_t;
242 killagreg 241
 
253 killagreg 242
volatile MagConfig_t MagConfig;
242 killagreg 243
 
253 killagreg 244
typedef struct
245
{
246
        u8 ctrl_1;
247
        u8 ctrl_2;
248
        u8 ctrl_3;
249
        u8 ctrl_4;
250
        u8 ctrl_5;
251
} __attribute__((packed)) AccConfig_t;
252
 
253
volatile AccConfig_t AccConfig;
254
 
254 killagreg 255
u8 NCMag_CalibrationWrite(void)
256
{
338 holgerb 257
        u8 i, crc = MAG_CALIBRATION_COMPATIBEL;
254 killagreg 258
        EEPROM_Result_t eres;
259
        u8 *pBuff = (u8*)&Calibration;
260
 
261
        Calibration.Version = CALIBRATION_VERSION;
256 killagreg 262
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 263
        {
264
                crc += pBuff[i];        
265
        }
266
        Calibration.crc = ~crc;
267
        eres = EEPROM_WriteBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration));
268
        if(EEPROM_SUCCESS == eres) i = 1;
269
        else i = 0;
270
        return(i);     
271
}
272
 
273
u8 NCMag_CalibrationRead(void)
274
{
338 holgerb 275
        u8 i, crc = MAG_CALIBRATION_COMPATIBEL;
254 killagreg 276
        u8 *pBuff = (u8*)&Calibration;
277
 
278
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration)))
279
        {
256 killagreg 280
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 281
                {
282
                        crc += pBuff[i];        
283
                }
284
                crc = ~crc;
285
                if(Calibration.crc != crc) return(0); // crc mismatch
257 killagreg 286
                if(Calibration.Version == CALIBRATION_VERSION) return(1);
254 killagreg 287
        }
288
        return(0);
289
}
290
 
291
 
292
void NCMAG_Calibrate(void)
293
{
330 holgerb 294
        u8 msg[64];
254 killagreg 295
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 296
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 297
        static u8 OldCalState = 0;     
339 holgerb 298
        s16 MinCaclibration = 450;
254 killagreg 299
 
256 killagreg 300
        X = (4*X + MagRawVector.X + 3)/5;
301
        Y = (4*Y + MagRawVector.Y + 3)/5;
302
        Z = (4*Z + MagRawVector.Z + 3)/5;
303
 
254 killagreg 304
        switch(Compass_CalState)
305
        {
306
                case 1:
307
                        // 1st step of calibration
308
                        // initialize ranges
309
                        // used to change the orientation of the NC in the horizontal plane
310
                        Xmin =  10000;
311
                        Xmax = -10000;
312
                        Ymin =  10000;
313
                        Ymax = -10000;
314
                        Zmin =  10000;
315
                        Zmax = -10000;
316
                        break;
317
 
318
                case 2: // 2nd step of calibration
319
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
275 killagreg 320
                        if(X < Xmin)            { Xmin = X; BeepTime = 20;}
321
                        else if(X > Xmax)       { Xmax = X; BeepTime = 20;}
322
                        if(Y < Ymin)            { Ymin = Y; BeepTime = 60;}
323
                        else if(Y > Ymax)       { Ymax = Y; BeepTime = 60;}
254 killagreg 324
                        break;
325
 
326
                case 3: // 3rd step of calibration
327
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
328
                        break;
329
 
330
                case 4:
331
                        // find Min and Max of the Z-Sensor
275 killagreg 332
                        if(Z < Zmin)      { Zmin = Z; BeepTime = 80;}
333
                        else if(Z > Zmax) { Zmax = Z; BeepTime = 80;}
254 killagreg 334
                        break;
335
 
336
                case 5:
337
                        // Save values
338
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
339
                        {
338 holgerb 340
//                              #define MIN_CALIBRATION    256
339 holgerb 341
                                if(NCMAG_MagType == MAG_TYPE_HMC5843)
342
                                 {
343
                                  UART1_PutString("\r\nHMC5843 calibration\n\r");
344
                                  MinCaclibration = HMC5843_CALIBRATION_RANGE;
345
                                 }
346
                                if(NCMAG_MagType == MAG_TYPE_LSM303DLH)
347
                                 {
348
                                  UART1_PutString("\r\n\r\nLSM303 calibration\n\r");
349
                                  MinCaclibration =LSM303_CALIBRATION_RANGE;
350
                                 }
342 holgerb 351
                                if(EarthMagneticStrengthTheoretic)
352
                                 {
353
                                  MinCaclibration = (MinCaclibration * EarthMagneticStrengthTheoretic) / 50;
354
                                  sprintf(msg, "Earth field on your location should be: %iuT\r\n",EarthMagneticStrengthTheoretic);
355
                                  UART1_PutString(msg);
356
                                 }
357
                            else UART1_PutString("without GPS\n\r");
339 holgerb 358
 
254 killagreg 359
                                Calibration.MagX.Range = Xmax - Xmin;
360
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
361
                                Calibration.MagY.Range = Ymax - Ymin;
362
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
363
                                Calibration.MagZ.Range = Zmax - Zmin;
364
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
339 holgerb 365
                                if((Calibration.MagX.Range > MinCaclibration) && (Calibration.MagY.Range > MinCaclibration) && (Calibration.MagZ.Range > MinCaclibration))
254 killagreg 366
                                {
367
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite();
270 killagreg 368
                                        BeepTime = 2500;
342 holgerb 369
                                        UART1_PutString("\r\n-> Calibration okay <-\n\r");
254 killagreg 370
                                }
371
                                else
372
                                {
339 holgerb 373
                                        UART1_PutString("\r\nCalibration FAILED - Values too low: ");
374
                                    if(Calibration.MagX.Range < MinCaclibration) UART1_PutString("X! ");
342 holgerb 375
                                    if(Calibration.MagY.Range < MinCaclibration) UART1_PutString("Y! ");
339 holgerb 376
                                    if(Calibration.MagZ.Range < MinCaclibration) UART1_PutString("Z! ");
330 holgerb 377
                                        UART1_PutString("\r\n");
339 holgerb 378
 
254 killagreg 379
                                        // restore old calibration data from eeprom
380
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
381
                                }
330 holgerb 382
                                        sprintf(msg, "X: (%i - %i = %i)\r\n",Xmax,Xmin,Xmax - Xmin);
383
                                        UART1_PutString(msg);
384
                                        sprintf(msg, "Y: (%i - %i = %i)\r\n",Ymax,Ymin,Ymax - Ymin);
385
                                        UART1_PutString(msg);
386
                                        sprintf(msg, "Z: (%i - %i = %i)\r\n",Zmax,Zmin,Zmax - Zmin);
387
                                        UART1_PutString(msg);
342 holgerb 388
                                        sprintf(msg, "(Minimum ampilitude is: %i)\r\n",MinCaclibration);
389
                                        UART1_PutString(msg);
254 killagreg 390
                        }
391
                        break;
392
 
393
                default:
394
                        break; 
395
        }
396
        OldCalState = Compass_CalState;
397
}
398
 
242 killagreg 399
// ---------- call back handlers -----------------------------------------
400
 
401
// rx data handler for id info request
253 killagreg 402
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 403
{       // if number of bytes are matching
253 killagreg 404
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 405
        {
253 killagreg 406
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
407
        }
242 killagreg 408
}
329 holgerb 409
 
410
void NCMAG_UpdateIdentification_Sub(u8* pRxBuffer, u8 RxBufferSize)
411
{       // if number of bytes are matching
412
        if(RxBufferSize == sizeof(NCMAG_Identification2))
413
        {
414
                memcpy((u8 *)&NCMAG_Identification2, pRxBuffer, sizeof(NCMAG_Identification2));
415
        }
416
}
417
 
254 killagreg 418
// rx data handler for magnetic sensor raw data
253 killagreg 419
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 420
{       // if number of bytes are matching
421
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 422
        {       // byte order from big to little endian
256 killagreg 423
                s16 raw;
424
                raw = pRxBuffer[0]<<8;
425
                raw+= pRxBuffer[1];
426
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
427
                raw = pRxBuffer[2]<<8;
428
                raw+= pRxBuffer[3];
330 holgerb 429
            if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
430
                {
431
                  if(NCMAG_Identification2.Sub == 0x3c) MagRawVector.Z = raw; // here Z and Y are exchanged
432
                  else MagRawVector.Y = raw;
433
                }
256 killagreg 434
                raw = pRxBuffer[4]<<8;
435
                raw+= pRxBuffer[5];
330 holgerb 436
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE)
437
                {
438
                  if(NCMAG_Identification2.Sub == 0x3c) MagRawVector.Y = raw; // here Z and Y are exchanged
439
                  else MagRawVector.Z = raw;
440
                }
342 holgerb 441
//MagRawVector.X += 2 * ((s32) FC.Poti[7] - 128);
242 killagreg 442
        }
254 killagreg 443
        if(Compass_CalState || !NCMAG_IsCalibrated)
284 killagreg 444
        {       // mark out data invalid
289 killagreg 445
                MagVector.X = MagRawVector.X;
446
                MagVector.Y = MagRawVector.Y;
447
                MagVector.Z = MagRawVector.Z;
254 killagreg 448
                Compass_Heading = -1;
449
        }
450
        else
451
        {
452
                // update MagVector from MagRaw Vector by Scaling
453
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
454
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
455
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
292 killagreg 456
                Compass_CalcHeading();
254 killagreg 457
        }
242 killagreg 458
}
254 killagreg 459
// rx data handler  for acceleration raw data
253 killagreg 460
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
461
{       // if number of byte are matching
254 killagreg 462
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 463
        {
254 killagreg 464
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 465
        }
466
}
254 killagreg 467
// rx data handler for reading magnetic sensor configuration
253 killagreg 468
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
469
{       // if number of byte are matching
470
        if(RxBufferSize == sizeof(MagConfig) )
471
        {
472
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
473
        }
474
}
254 killagreg 475
// rx data handler for reading acceleration sensor configuration
253 killagreg 476
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
477
{       // if number of byte are matching
478
        if(RxBufferSize == sizeof(AccConfig) )
479
        {
480
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
481
        }
482
}
254 killagreg 483
//----------------------------------------------------------------------
253 killagreg 484
 
254 killagreg 485
 
486
// ---------------------------------------------------------------------
253 killagreg 487
u8 NCMAG_SetMagConfig(void)
488
{
489
        u8 retval = 0;
490
        // try to catch the i2c buffer within 100 ms timeout
491
        if(I2C_LockBuffer(100))
492
        {
493
                u8 TxBytes = 0;
494
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;    
495
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
496
                TxBytes += sizeof(MagConfig);
497
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
498
                {
499
                        if(I2C_WaitForEndOfTransmission(100))
500
                        {
501
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
502
                        }
503
                }
504
        }
505
        return(retval);        
506
}
242 killagreg 507
 
253 killagreg 508
// ----------------------------------------------------------------------------------------
509
u8 NCMAG_GetMagConfig(void)
242 killagreg 510
{
253 killagreg 511
        u8 retval = 0;
252 killagreg 512
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 513
        if(I2C_LockBuffer(100))
242 killagreg 514
        {
253 killagreg 515
                u8 TxBytes = 0;
516
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;
517
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 518
                {
252 killagreg 519
                        if(I2C_WaitForEndOfTransmission(100))
520
                        {
521
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
522
                        }
248 killagreg 523
                }
242 killagreg 524
        }
253 killagreg 525
        return(retval);        
242 killagreg 526
}
527
 
528
// ----------------------------------------------------------------------------------------
253 killagreg 529
u8 NCMAG_SetAccConfig(void)
242 killagreg 530
{
252 killagreg 531
        u8 retval = 0;
253 killagreg 532
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 533
        if(I2C_LockBuffer(100))
242 killagreg 534
        {
253 killagreg 535
                u8 TxBytes = 0;
536
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;  
537
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
538
                TxBytes += sizeof(AccConfig);
539
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
540
                {
541
                        if(I2C_WaitForEndOfTransmission(100))
542
                        {
543
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
544
                        }
545
                }
546
        }
547
        return(retval);        
548
}
549
 
550
// ----------------------------------------------------------------------------------------
551
u8 NCMAG_GetAccConfig(void)
552
{
553
        u8 retval = 0;
554
        // try to catch the i2c buffer within 100 ms timeout
555
        if(I2C_LockBuffer(100))
556
        {
557
                u8 TxBytes = 0;
558
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;
559
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
560
                {
561
                        if(I2C_WaitForEndOfTransmission(100))
562
                        {
563
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
564
                        }
565
                }
566
        }
567
        return(retval);        
568
}
569
 
570
// ----------------------------------------------------------------------------------------
571
u8 NCMAG_GetIdentification(void)
572
{
573
        u8 retval = 0;
574
        // try to catch the i2c buffer within 100 ms timeout
575
        if(I2C_LockBuffer(100))
576
        {
577
                u16 TxBytes = 0;
578
                NCMAG_Identification.A = 0xFF;
579
                NCMAG_Identification.B = 0xFF;
580
                NCMAG_Identification.C = 0xFF;
581
                I2C_Buffer[TxBytes++] = REG_MAG_IDA;
248 killagreg 582
                // initiate transmission
253 killagreg 583
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 584
                {
253 killagreg 585
                        if(I2C_WaitForEndOfTransmission(100))
252 killagreg 586
                        {
587
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
588
                        }
248 killagreg 589
                }
242 killagreg 590
        }
253 killagreg 591
        return(retval);
242 killagreg 592
}
593
 
329 holgerb 594
u8 NCMAG_GetIdentification_Sub(void)
595
{
596
        u8 retval = 0;
597
        // try to catch the i2c buffer within 100 ms timeout
598
        if(I2C_LockBuffer(100))
599
        {
600
                u16 TxBytes = 0;
601
                NCMAG_Identification2.Sub = 0xFF;
602
                I2C_Buffer[TxBytes++] = REG_MAG_IDF;
603
                // initiate transmission
604
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification_Sub, sizeof(NCMAG_Identification2)))
605
                {
606
                        if(I2C_WaitForEndOfTransmission(100))
607
                        {
608
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
609
                        }
610
                }
611
        }
612
        return(retval);
613
}
614
 
615
 
253 killagreg 616
// ----------------------------------------------------------------------------------------
617
void NCMAG_GetMagVector(void)
618
{
619
        // try to catch the I2C buffer within 0 ms
620
        if(I2C_LockBuffer(0))
621
        {
330 holgerb 622
//       s16 tmp;
253 killagreg 623
                u16 TxBytes = 0;
624
                // set register pointer
625
                I2C_Buffer[TxBytes++] = REG_MAG_DATAX_MSB;
626
                // initiate transmission
627
                I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
628
        }
629
}
630
 
242 killagreg 631
//----------------------------------------------------------------
253 killagreg 632
void NCMAG_GetAccVector(void)
243 killagreg 633
{
252 killagreg 634
        // try to catch the I2C buffer within 0 ms
635
        if(I2C_LockBuffer(0))
243 killagreg 636
        {
248 killagreg 637
                u16 TxBytes = 0;
243 killagreg 638
                // set register pointer
253 killagreg 639
                I2C_Buffer[TxBytes++] = REG_ACC_X_LSB;
243 killagreg 640
                // initiate transmission
254 killagreg 641
                I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
243 killagreg 642
        }
643
}
644
 
330 holgerb 645
//----------------------------------------------------------------
646
void InitNC_MagnetSensor(void)
647
{
648
        s16 xscale, yscale, zscale;
649
        u8 crb_gain, cra_rate;
338 holgerb 650
//      u8  retval = 1;
330 holgerb 651
 
652
        switch(NCMAG_MagType)
653
        {
654
                case MAG_TYPE_HMC5843:
339 holgerb 655
                        crb_gain = HMC5843_CRB_GAIN_15GA;
330 holgerb 656
                        cra_rate = HMC5843_CRA_RATE_50HZ;
657
                        xscale = HMC5843_TEST_XSCALE;
658
                        yscale = HMC5843_TEST_YSCALE;
659
                        zscale = HMC5843_TEST_ZSCALE;
660
                        break;
661
 
662
                case MAG_TYPE_LSM303DLH:
338 holgerb 663
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
330 holgerb 664
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
665
                        xscale = LSM303DLH_TEST_XSCALE;
666
                        yscale = LSM303DLH_TEST_YSCALE;
667
                        zscale = LSM303DLH_TEST_ZSCALE;
668
                        break;
669
 
670
                default:
338 holgerb 671
                return;
330 holgerb 672
        }
673
 
674
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
675
        MagConfig.crb = crb_gain;
676
        MagConfig.mode = MODE_CONTINUOUS;
677
        NCMAG_SetMagConfig();
678
}
679
 
680
 
253 killagreg 681
// --------------------------------------------------------
292 killagreg 682
void NCMAG_Update(void)
243 killagreg 683
{
292 killagreg 684
        static u32 TimerUpdate = 0;
321 holgerb 685
        static u8 send_config = 0;
243 killagreg 686
 
254 killagreg 687
        if( (I2C_State == I2C_STATE_OFF) || !NCMAG_Present )
688
        {
689
                Compass_Heading = -1;
326 holgerb 690
                DebugOut.Analog[14]++; // count I2C error
254 killagreg 691
                return;
692
        }
292 killagreg 693
        if(CheckDelay(TimerUpdate))
243 killagreg 694
        {
326 holgerb 695
           if(Compass_Heading != -1) send_config = 0; // no re-configuration if value is valid
696
       if(++send_config == 25)   // 500ms
321 holgerb 697
            {
698
                 send_config = 0;
330 holgerb 699
             InitNC_MagnetSensor();
321 holgerb 700
                 TimerUpdate = SetDelay(15);    // back into the old time-slot
701
            }
702
                else
703
                {
254 killagreg 704
                // check for new calibration state
705
                Compass_UpdateCalState();
706
                if(Compass_CalState) NCMAG_Calibrate();
707
                NCMAG_GetMagVector(); //Get new data;
326 holgerb 708
                if(send_config == 24) TimerUpdate = SetDelay(5);    // next event is the re-configuration
321 holgerb 709
                else TimerUpdate = SetDelay(20);    // every 20 ms are 50 Hz
710
                }
243 killagreg 711
        }
712
}
713
 
330 holgerb 714
 
254 killagreg 715
// --------------------------------------------------------
253 killagreg 716
u8 NCMAG_SelfTest(void)
243 killagreg 717
{
266 holgerb 718
        u8 msg[64];
275 killagreg 719
        static u8 done = 0;
266 holgerb 720
 
287 holgerb 721
        if(done) return(1);        // just make it once
275 killagreg 722
 
271 holgerb 723
        #define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
243 killagreg 724
        u32 time;
253 killagreg 725
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
726
        s16 xscale, yscale, zscale, scale_min, scale_max;
727
        u8 crb_gain, cra_rate;
728
        u8 i = 0, retval = 1;
243 killagreg 729
 
253 killagreg 730
        switch(NCMAG_MagType)
731
        {
732
                case MAG_TYPE_HMC5843:
339 holgerb 733
                        crb_gain = HMC5843_CRB_GAIN_15GA;
253 killagreg 734
                        cra_rate = HMC5843_CRA_RATE_50HZ;
735
                        xscale = HMC5843_TEST_XSCALE;
736
                        yscale = HMC5843_TEST_YSCALE;
737
                        zscale = HMC5843_TEST_ZSCALE;
738
                        break;
739
 
740
                case MAG_TYPE_LSM303DLH:
338 holgerb 741
                        crb_gain = LSM303DLH_CRB_GAIN_19GA;
253 killagreg 742
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
743
                        xscale = LSM303DLH_TEST_XSCALE;
744
                        yscale = LSM303DLH_TEST_YSCALE;
745
                        zscale = LSM303DLH_TEST_ZSCALE;
746
                        break;
747
 
748
                default:
749
                return(0);
750
        }
751
 
752
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
753
        MagConfig.crb = crb_gain;
754
        MagConfig.mode = MODE_CONTINUOUS;
755
        // activate positive bias field
756
        NCMAG_SetMagConfig();
251 killagreg 757
        // wait for stable readings
758
        time = SetDelay(50);
759
        while(!CheckDelay(time));
243 killagreg 760
        // averaging
253 killagreg 761
        #define AVERAGE 20
762
        for(i = 0; i<AVERAGE; i++)
243 killagreg 763
        {
253 killagreg 764
                NCMAG_GetMagVector();
243 killagreg 765
                time = SetDelay(20);
766
        while(!CheckDelay(time));
254 killagreg 767
                XMax += MagRawVector.X;
768
                YMax += MagRawVector.Y;
769
                ZMax += MagRawVector.Z;
243 killagreg 770
        }
253 killagreg 771
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
772
        // activate positive bias field
773
        NCMAG_SetMagConfig();
251 killagreg 774
    // wait for stable readings
775
        time = SetDelay(50);
776
        while(!CheckDelay(time));
243 killagreg 777
        // averaging
253 killagreg 778
        for(i = 0; i < AVERAGE; i++)
243 killagreg 779
        {
253 killagreg 780
                NCMAG_GetMagVector();
243 killagreg 781
                time = SetDelay(20);
782
        while(!CheckDelay(time));
254 killagreg 783
                XMin += MagRawVector.X;
784
                YMin += MagRawVector.Y;
785
                ZMin += MagRawVector.Z;
243 killagreg 786
        }
787
        // setup final configuration
253 killagreg 788
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
789
        // activate positive bias field
790
        NCMAG_SetMagConfig();
266 holgerb 791
        // check scale for all axes
243 killagreg 792
        // prepare scale limits
253 killagreg 793
        LIMITS(xscale, scale_min, scale_max);
267 holgerb 794
        xscale = (XMax - XMin)/(2*AVERAGE);
266 holgerb 795
        if((xscale > scale_max) || (xscale < scale_min))
796
     {
797
          retval = 0;
798
      sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
799
          UART1_PutString(msg);
800
     }
267 holgerb 801
        LIMITS(yscale, scale_min, scale_max);
266 holgerb 802
        yscale = (YMax - YMin)/(2*AVERAGE);
803
        if((yscale > scale_max) || (yscale < scale_min))
804
     {
805
          retval = 0;
806
      sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
807
          UART1_PutString(msg);
808
     }
267 holgerb 809
        LIMITS(zscale, scale_min, scale_max);
266 holgerb 810
        zscale = (ZMax - ZMin)/(2*AVERAGE);
811
        if((zscale > scale_max) || (zscale < scale_min))      
812
         {
813
          retval = 0;
814
      sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
815
          UART1_PutString(msg);
816
     }
275 killagreg 817
        done = retval;
253 killagreg 818
        return(retval);
243 killagreg 819
}
820
 
821
 
822
//----------------------------------------------------------------
253 killagreg 823
u8 NCMAG_Init(void)
242 killagreg 824
{
825
        u8 msg[64];
252 killagreg 826
        u8 retval = 0;
242 killagreg 827
        u8 repeat;
828
 
253 killagreg 829
        NCMAG_Present = 0;
830
        NCMAG_MagType = MAG_TYPE_HMC5843;       // assuming having an HMC5843
831
        // polling for LSM302DLH option
832
        repeat = 0;
833
        do
834
        {
835
                retval = NCMAG_GetAccConfig();
836
                if(retval) break; // break loop on success
837
                UART1_PutString(".");
838
                repeat++;
839
        }while(repeat < 3);
840
        if(retval) NCMAG_MagType = MAG_TYPE_LSM303DLH; // must be a LSM303DLH
242 killagreg 841
        // polling of identification
842
        repeat = 0;
843
        do
844
        {
329 holgerb 845
                retval = NCMAG_GetIdentification_Sub();
846
                if(retval) break; // break loop on success
847
                UART1_PutString(".");
848
                repeat++;
849
        }while(repeat < 12);
850
        retval = 0;
851
        do
852
        {
253 killagreg 853
                retval = NCMAG_GetIdentification();
252 killagreg 854
                if(retval) break; // break loop on success
242 killagreg 855
                UART1_PutString(".");
856
                repeat++;
252 killagreg 857
        }while(repeat < 12);
329 holgerb 858
 
253 killagreg 859
        // if we got an answer to id request
252 killagreg 860
        if(retval)
242 killagreg 861
        {
329 holgerb 862
                u8 n1[] = "\n\r HMC5843";
863
                u8 n2[] = "\n\r LSM303DLH";
864
                u8 n3[] = "\n\r LSM303DLM";
253 killagreg 865
                u8* pn;
329 holgerb 866
 
867
                pn = n1;
868
                if(NCMAG_MagType == MAG_TYPE_LSM303DLH)
869
                {
870
                 if(NCMAG_Identification2.Sub == 0x3c) pn = n3;
871
                 else pn = n2;
872
                }
873
 
874
                sprintf(msg, " %s ID 0x%02x/%02x/%02x-%02x", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C,NCMAG_Identification2.Sub);
242 killagreg 875
                UART1_PutString(msg);
253 killagreg 876
                if (    (NCMAG_Identification.A == MAG_IDA)
877
                     && (NCMAG_Identification.B == MAG_IDB)
878
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 879
                {
268 killagreg 880
                        NCMAG_Present = 1;
329 holgerb 881
 
882
                        if(EEPROM_Init())
264 killagreg 883
                                {
884
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
885
                                        if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
886
                                }
329 holgerb 887
                        else UART1_PutString("\r\n EEPROM data not available!!!!!!!!!!!!!!!");
888
 
889
                        if(NCMAG_Identification2.Sub == 0x00)
890
                        {
891
                         if(!NCMAG_SelfTest())
892
                         {
893
                                UART1_PutString("\r\n Selftest failed!!!!!!!!!!!!!!!!!!!!\r\n");
894
                                LED_RED_ON;
895
                                NCMAG_IsCalibrated = 0;
896
                         }      else UART1_PutString("\r\n Selftest ok");
254 killagreg 897
                        }
330 holgerb 898
                        else InitNC_MagnetSensor();
242 killagreg 899
                }
900
                else
901
                {
254 killagreg 902
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 903
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 904
                        LED_RED_ON;
905
                }
906
        }
253 killagreg 907
        else // nothing found
908
        {
909
                NCMAG_MagType = MAG_TYPE_NONE;
910
                UART1_PutString("not found!");  
911
        }
912
        return(NCMAG_Present);
242 killagreg 913
}
914