Subversion Repositories NaviCtrl

Rev

Rev 313 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
242 killagreg 1
/*#######################################################################################*/
2
/* !!! THIS IS NOT FREE SOFTWARE !!!                                                     */
3
/*#######################################################################################*/
4
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// + Copyright (c) 2010 Ingo Busker, Holger Buss
6
// + Nur für den privaten Gebrauch / NON-COMMERCIAL USE ONLY
7
// + FOR NON COMMERCIAL USE ONLY
8
// + www.MikroKopter.com
9
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
10
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
11
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
12
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
13
// + bzgl. der Nutzungsbedingungen aufzunehmen.
14
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
15
// + Verkauf von Luftbildaufnahmen, usw.
16
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
17
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
18
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
21
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
22
// + eindeutig als Ursprung verlinkt werden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
25
// + Benutzung auf eigene Gefahr
26
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
27
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// + Die Portierung oder Nutzung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
29
// + mit unserer Zustimmung zulässig
30
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
31
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
32
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
33
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
34
// + this list of conditions and the following disclaimer.
35
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
36
// +     from this software without specific prior written permission.
37
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permitted
38
// +     for non-commercial use (directly or indirectly)
39
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
40
// +     with our written permission
41
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
42
// +     clearly linked as origin
43
// +   * porting the sources to other systems or using the software on other systems (except hardware from www.mikrokopter.de) is not allowed
44
//
45
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
46
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
49
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
50
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
51
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
52
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
53
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
55
// +  POSSIBILITY OF SUCH DAMAGE.
56
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254 killagreg 57
#include <math.h>
292 killagreg 58
#include <stdio.h>
242 killagreg 59
#include <string.h>
60
#include "91x_lib.h"
253 killagreg 61
#include "ncmag.h"
242 killagreg 62
#include "i2c.h"
63
#include "timer1.h"
64
#include "led.h"
65
#include "uart1.h"
254 killagreg 66
#include "eeprom.h"
256 killagreg 67
#include "mymath.h"
292 killagreg 68
#include "main.h"
242 killagreg 69
 
253 killagreg 70
u8 NCMAG_Present = 0;
254 killagreg 71
u8 NCMAG_IsCalibrated = 0;
242 killagreg 72
 
253 killagreg 73
#define MAG_TYPE_NONE           0
74
#define MAG_TYPE_HMC5843        1
75
#define MAG_TYPE_LSM303DLH      2
254 killagreg 76
u8 NCMAG_MagType = MAG_TYPE_NONE;
242 killagreg 77
 
254 killagreg 78
#define CALIBRATION_VERSION 1
79
#define EEPROM_ADR_MAG_CALIBRATION 50
80
 
256 killagreg 81
#define NCMAG_MIN_RAWVALUE -2047
82
#define NCMAG_MAX_RAWVALUE  2047
83
#define NCMAG_INVALID_DATA -4096
84
 
254 killagreg 85
typedef struct
86
{
87
        s16 Range;
88
        s16 Offset;
256 killagreg 89
} __attribute__((packed)) Scaling_t;
254 killagreg 90
 
91
typedef struct
92
{
93
        Scaling_t MagX;
94
        Scaling_t MagY;
95
        Scaling_t MagZ;
96
        u8 Version;
97
        u8 crc;
256 killagreg 98
} __attribute__((packed)) Calibration_t;
254 killagreg 99
 
100
Calibration_t Calibration;              // calibration data in RAM 
101
 
253 killagreg 102
// i2c MAG interface
103
#define MAG_SLAVE_ADDRESS       0x3C    // i2C slave address mag. sensor registers
242 killagreg 104
 
253 killagreg 105
// register mapping
106
#define REG_MAG_CRA                     0x00
107
#define REG_MAG_CRB                     0x01
108
#define REG_MAG_MODE            0x02
109
#define REG_MAG_DATAX_MSB       0x03
110
#define REG_MAG_DATAX_LSB       0x04
111
#define REG_MAG_DATAY_MSB       0x05
112
#define REG_MAG_DATAY_LSB       0x06
113
#define REG_MAG_DATAZ_MSB       0x07
114
#define REG_MAG_DATAZ_LSB       0x08
115
#define REG_MAG_STATUS          0x09
116
#define REG_MAG_IDA                     0x0A
117
#define REG_MAG_IDB                     0x0B
118
#define REG_MAG_IDC                     0x0C
242 killagreg 119
 
253 killagreg 120
// bit mask for configuration mode
121
#define CRA_MODE_MASK           0x03
122
#define CRA_MODE_NORMAL         0x00    //default
123
#define CRA_MODE_POSBIAS        0x01
124
#define CRA_MODE_NEGBIAS        0x02
125
#define CRA_MODE_SELFTEST       0x03
242 killagreg 126
 
253 killagreg 127
// bit mask for measurement mode
128
#define MODE_MASK                       0xFF
129
#define MODE_CONTINUOUS         0x00
130
#define MODE_SINGLE                     0x01    // default
131
#define MODE_IDLE                       0x02
132
#define MODE_SLEEP                      0x03
133
 
242 killagreg 134
// bit mask for rate
253 killagreg 135
#define CRA_RATE_MASK           0x1C
136
 
137
// bit mask for gain
138
#define CRB_GAIN_MASK           0xE0
139
 
140
// ids
141
#define MAG_IDA         0x48
142
#define MAG_IDB         0x34
143
#define MAG_IDC         0x33
144
 
145
// the special HMC5843 interface
146
// bit mask for rate
242 killagreg 147
#define HMC5843_CRA_RATE_0_5HZ          0x00
148
#define HMC5843_CRA_RATE_1HZ            0x04
149
#define HMC5843_CRA_RATE_2HZ            0x08
150
#define HMC5843_CRA_RATE_5HZ            0x0C
151
#define HMC5843_CRA_RATE_10HZ           0x10    //default
152
#define HMC5843_CRA_RATE_20HZ           0x14
153
#define HMC5843_CRA_RATE_50HZ           0x18
154
// bit mask for gain
155
#define HMC5843_CRB_GAIN_07GA           0x00
156
#define HMC5843_CRB_GAIN_10GA           0x20    //default
157
#define HMC5843_CRB_GAIN_15GA           0x40
158
#define HMC5843_CRB_GAIN_20GA           0x60
159
#define HMC5843_CRB_GAIN_32GA           0x80
160
#define HMC5843_CRB_GAIN_38GA           0xA0
161
#define HMC5843_CRB_GAIN_45GA           0xC0
162
#define HMC5843_CRB_GAIN_65GA           0xE0
253 killagreg 163
// self test value
164
#define HMC5843_TEST_XSCALE             715
165
#define HMC5843_TEST_YSCALE             715
166
#define HMC5843_TEST_ZSCALE             715
242 killagreg 167
 
168
 
253 killagreg 169
// the special LSM302DLH interface
170
// bit mask for rate
171
#define LSM303DLH_CRA_RATE_0_75HZ       0x00
172
#define LSM303DLH_CRA_RATE_1_5HZ        0x04
173
#define LSM303DLH_CRA_RATE_3_0HZ        0x08
174
#define LSM303DLH_CRA_RATE_7_5HZ        0x0C
175
#define LSM303DLH_CRA_RATE_15HZ         0x10    //default
176
#define LSM303DLH_CRA_RATE_30HZ         0x14
177
#define LSM303DLH_CRA_RATE_75HZ         0x18
178
// bit mask for gain
179
#define LSM303DLH_CRB_GAIN_XXGA         0x00
180
#define LSM303DLH_CRB_GAIN_13GA         0x20    //default
181
#define LSM303DLH_CRB_GAIN_19GA         0x40
182
#define LSM303DLH_CRB_GAIN_25GA         0x60
183
#define LSM303DLH_CRB_GAIN_40GA         0x80
184
#define LSM303DLH_CRB_GAIN_47GA         0xA0
185
#define LSM303DLH_CRB_GAIN_56GA         0xC0
186
#define LSM303DLH_CRB_GAIN_81GA         0xE0
187
// self test value
188
#define LSM303DLH_TEST_XSCALE   655
189
#define LSM303DLH_TEST_YSCALE   655
190
#define LSM303DLH_TEST_ZSCALE   630
191
 
192
// the i2c ACC interface
193
#define ACC_SLAVE_ADDRESS               0x30    // i2c slave for acc. sensor registers
194
// register mapping
195
#define REG_ACC_CTRL1                   0x20
196
#define REG_ACC_CTRL2                   0x21
197
#define REG_ACC_CTRL3                   0x22
198
#define REG_ACC_CTRL4                   0x23
199
#define REG_ACC_CTRL5                   0x24
200
#define REG_ACC_HP_FILTER_RESET 0x25
201
#define REG_ACC_REFERENCE               0x26
202
#define REG_ACC_STATUS                  0x27
203
#define REG_ACC_X_LSB                   0x28
204
#define REG_ACC_X_MSB                   0x29
205
#define REG_ACC_Y_LSB                   0x2A
206
#define REG_ACC_Y_MSB                   0x2B
207
#define REG_ACC_Z_LSB                   0x2C
208
#define REG_ACC_Z_MSB                   0x2D
209
 
210
 
211
 
242 killagreg 212
typedef struct
213
{
253 killagreg 214
        u8 A;
215
        u8 B;
216
        u8 C;
217
} __attribute__((packed)) Identification_t;
242 killagreg 218
 
253 killagreg 219
volatile Identification_t NCMAG_Identification;
242 killagreg 220
 
253 killagreg 221
typedef struct
222
{
223
        u8 cra;
224
        u8 crb;
225
        u8 mode;
226
} __attribute__((packed)) MagConfig_t;
242 killagreg 227
 
253 killagreg 228
volatile MagConfig_t MagConfig;
242 killagreg 229
 
253 killagreg 230
typedef struct
231
{
232
        u8 ctrl_1;
233
        u8 ctrl_2;
234
        u8 ctrl_3;
235
        u8 ctrl_4;
236
        u8 ctrl_5;
237
} __attribute__((packed)) AccConfig_t;
238
 
239
volatile AccConfig_t AccConfig;
240
 
254 killagreg 241
volatile s16vec_t AccRawVector;
242
volatile s16vec_t MagRawVector;
253 killagreg 243
 
244
 
254 killagreg 245
u8 NCMag_CalibrationWrite(void)
246
{
247
        u8 i, crc = 0xAA;
248
        EEPROM_Result_t eres;
249
        u8 *pBuff = (u8*)&Calibration;
250
 
251
        Calibration.Version = CALIBRATION_VERSION;
256 killagreg 252
        for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 253
        {
254
                crc += pBuff[i];        
255
        }
256
        Calibration.crc = ~crc;
257
        eres = EEPROM_WriteBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration));
258
        if(EEPROM_SUCCESS == eres) i = 1;
259
        else i = 0;
260
        return(i);     
261
}
262
 
263
u8 NCMag_CalibrationRead(void)
264
{
265
        u8 i, crc = 0xAA;
266
        u8 *pBuff = (u8*)&Calibration;
267
 
268
        if(EEPROM_SUCCESS == EEPROM_ReadBlock(EEPROM_ADR_MAG_CALIBRATION, pBuff, sizeof(Calibration)))
269
        {
256 killagreg 270
                for(i = 0; i<(sizeof(Calibration)-1); i++)
254 killagreg 271
                {
272
                        crc += pBuff[i];        
273
                }
274
                crc = ~crc;
275
                if(Calibration.crc != crc) return(0); // crc mismatch
257 killagreg 276
                if(Calibration.Version == CALIBRATION_VERSION) return(1);
254 killagreg 277
        }
278
        return(0);
279
}
280
 
281
 
282
void NCMAG_Calibrate(void)
283
{
284
        static s16 Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
256 killagreg 285
        static s16 X = 0, Y = 0, Z = 0;
254 killagreg 286
        static u8 OldCalState = 0;     
287
 
256 killagreg 288
        X = (4*X + MagRawVector.X + 3)/5;
289
        Y = (4*Y + MagRawVector.Y + 3)/5;
290
        Z = (4*Z + MagRawVector.Z + 3)/5;
291
 
254 killagreg 292
        switch(Compass_CalState)
293
        {
294
                case 1:
295
                        // 1st step of calibration
296
                        // initialize ranges
297
                        // used to change the orientation of the NC in the horizontal plane
298
                        Xmin =  10000;
299
                        Xmax = -10000;
300
                        Ymin =  10000;
301
                        Ymax = -10000;
302
                        Zmin =  10000;
303
                        Zmax = -10000;
304
                        break;
305
 
306
                case 2: // 2nd step of calibration
307
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
275 killagreg 308
                        if(X < Xmin)            { Xmin = X; BeepTime = 20;}
309
                        else if(X > Xmax)       { Xmax = X; BeepTime = 20;}
310
                        if(Y < Ymin)            { Ymin = Y; BeepTime = 60;}
311
                        else if(Y > Ymax)       { Ymax = Y; BeepTime = 60;}
254 killagreg 312
                        break;
313
 
314
                case 3: // 3rd step of calibration
315
                        // used to change the orientation of the MK3MAG vertical to the horizontal plane
316
                        break;
317
 
318
                case 4:
319
                        // find Min and Max of the Z-Sensor
275 killagreg 320
                        if(Z < Zmin)      { Zmin = Z; BeepTime = 80;}
321
                        else if(Z > Zmax) { Zmax = Z; BeepTime = 80;}
254 killagreg 322
                        break;
323
 
324
                case 5:
325
                        // Save values
326
                        if(Compass_CalState != OldCalState) // avoid continously writing of eeprom!
327
                        {
292 killagreg 328
                                #define MIN_CALIBRATION    256
254 killagreg 329
                                Calibration.MagX.Range = Xmax - Xmin;
330
                                Calibration.MagX.Offset = (Xmin + Xmax) / 2;
331
                                Calibration.MagY.Range = Ymax - Ymin;
332
                                Calibration.MagY.Offset = (Ymin + Ymax) / 2;
333
                                Calibration.MagZ.Range = Zmax - Zmin;
334
                                Calibration.MagZ.Offset = (Zmin + Zmax) / 2;
265 holgerb 335
                                if((Calibration.MagX.Range > MIN_CALIBRATION) && (Calibration.MagY.Range > MIN_CALIBRATION) && (Calibration.MagZ.Range > MIN_CALIBRATION))
254 killagreg 336
                                {
337
                                        NCMAG_IsCalibrated = NCMag_CalibrationWrite();
270 killagreg 338
                                        BeepTime = 2500;
265 holgerb 339
                                        UART1_PutString("\r\n Calibration okay");
254 killagreg 340
                                }
341
                                else
342
                                {
343
                                        // restore old calibration data from eeprom
344
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
265 holgerb 345
                                        UART1_PutString("\r\n Calibration FAILED - Values too low: ");
346
                                        if(Calibration.MagX.Range < MIN_CALIBRATION) UART1_PutString("X! ");
347
                                        if(Calibration.MagY.Range < MIN_CALIBRATION) UART1_PutString("Y! ");
348
                                        if(Calibration.MagZ.Range < MIN_CALIBRATION) UART1_PutString("Z! ");
254 killagreg 349
                                }
350
                        }
351
                        break;
352
 
353
                default:
354
                        break; 
355
        }
356
        OldCalState = Compass_CalState;
357
}
358
 
242 killagreg 359
// ---------- call back handlers -----------------------------------------
360
 
361
// rx data handler for id info request
253 killagreg 362
void NCMAG_UpdateIdentification(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 363
{       // if number of bytes are matching
253 killagreg 364
        if(RxBufferSize == sizeof(NCMAG_Identification) )
242 killagreg 365
        {
253 killagreg 366
                memcpy((u8 *)&NCMAG_Identification, pRxBuffer, sizeof(NCMAG_Identification));
367
        }
242 killagreg 368
}
254 killagreg 369
// rx data handler for magnetic sensor raw data
253 killagreg 370
void NCMAG_UpdateMagVector(u8* pRxBuffer, u8 RxBufferSize)
254 killagreg 371
{       // if number of bytes are matching
372
        if(RxBufferSize == sizeof(MagRawVector) )
243 killagreg 373
        {       // byte order from big to little endian
256 killagreg 374
                s16 raw;
375
                raw = pRxBuffer[0]<<8;
376
                raw+= pRxBuffer[1];
377
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.X = raw;
378
                raw = pRxBuffer[2]<<8;
379
                raw+= pRxBuffer[3];
380
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.Y = raw;
381
                raw = pRxBuffer[4]<<8;
382
                raw+= pRxBuffer[5];
383
                if(raw >= NCMAG_MIN_RAWVALUE && raw <= NCMAG_MAX_RAWVALUE) MagRawVector.Z = raw;
242 killagreg 384
        }
254 killagreg 385
        if(Compass_CalState || !NCMAG_IsCalibrated)
284 killagreg 386
        {       // mark out data invalid
289 killagreg 387
                MagVector.X = MagRawVector.X;
388
                MagVector.Y = MagRawVector.Y;
389
                MagVector.Z = MagRawVector.Z;
254 killagreg 390
                Compass_Heading = -1;
391
        }
392
        else
393
        {
394
                // update MagVector from MagRaw Vector by Scaling
395
                MagVector.X = (s16)((1024L*(s32)(MagRawVector.X - Calibration.MagX.Offset))/Calibration.MagX.Range);
396
                MagVector.Y = (s16)((1024L*(s32)(MagRawVector.Y - Calibration.MagY.Offset))/Calibration.MagY.Range);
397
                MagVector.Z = (s16)((1024L*(s32)(MagRawVector.Z - Calibration.MagZ.Offset))/Calibration.MagZ.Range);
292 killagreg 398
                Compass_CalcHeading();
254 killagreg 399
        }
242 killagreg 400
}
254 killagreg 401
// rx data handler  for acceleration raw data
253 killagreg 402
void NCMAG_UpdateAccVector(u8* pRxBuffer, u8 RxBufferSize)
403
{       // if number of byte are matching
254 killagreg 404
        if(RxBufferSize == sizeof(AccRawVector) )
253 killagreg 405
        {
254 killagreg 406
                memcpy((u8*)&AccRawVector, pRxBuffer,sizeof(AccRawVector));
253 killagreg 407
        }
408
}
254 killagreg 409
// rx data handler for reading magnetic sensor configuration
253 killagreg 410
void NCMAG_UpdateMagConfig(u8* pRxBuffer, u8 RxBufferSize)
411
{       // if number of byte are matching
412
        if(RxBufferSize == sizeof(MagConfig) )
413
        {
414
                memcpy((u8*)(&MagConfig), pRxBuffer, sizeof(MagConfig));
415
        }
416
}
254 killagreg 417
// rx data handler for reading acceleration sensor configuration
253 killagreg 418
void NCMAG_UpdateAccConfig(u8* pRxBuffer, u8 RxBufferSize)
419
{       // if number of byte are matching
420
        if(RxBufferSize == sizeof(AccConfig) )
421
        {
422
                memcpy((u8*)&AccConfig, pRxBuffer, sizeof(AccConfig));
423
        }
424
}
254 killagreg 425
//----------------------------------------------------------------------
253 killagreg 426
 
254 killagreg 427
 
428
// ---------------------------------------------------------------------
253 killagreg 429
u8 NCMAG_SetMagConfig(void)
430
{
431
        u8 retval = 0;
432
        // try to catch the i2c buffer within 100 ms timeout
433
        if(I2C_LockBuffer(100))
434
        {
435
                u8 TxBytes = 0;
436
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;    
437
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&MagConfig, sizeof(MagConfig));
438
                TxBytes += sizeof(MagConfig);
439
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, 0, 0))
440
                {
441
                        if(I2C_WaitForEndOfTransmission(100))
442
                        {
443
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
444
                        }
445
                }
446
        }
447
        return(retval);        
448
}
242 killagreg 449
 
253 killagreg 450
// ----------------------------------------------------------------------------------------
451
u8 NCMAG_GetMagConfig(void)
242 killagreg 452
{
253 killagreg 453
        u8 retval = 0;
252 killagreg 454
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 455
        if(I2C_LockBuffer(100))
242 killagreg 456
        {
253 killagreg 457
                u8 TxBytes = 0;
458
                I2C_Buffer[TxBytes++] = REG_MAG_CRA;
459
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagConfig, sizeof(MagConfig)))
248 killagreg 460
                {
252 killagreg 461
                        if(I2C_WaitForEndOfTransmission(100))
462
                        {
463
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
464
                        }
248 killagreg 465
                }
242 killagreg 466
        }
253 killagreg 467
        return(retval);        
242 killagreg 468
}
469
 
470
// ----------------------------------------------------------------------------------------
253 killagreg 471
u8 NCMAG_SetAccConfig(void)
242 killagreg 472
{
252 killagreg 473
        u8 retval = 0;
253 killagreg 474
        // try to catch the i2c buffer within 100 ms timeout
248 killagreg 475
        if(I2C_LockBuffer(100))
242 killagreg 476
        {
253 killagreg 477
                u8 TxBytes = 0;
478
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;  
479
                memcpy((u8*)(&I2C_Buffer[TxBytes]), (u8*)&AccConfig, sizeof(AccConfig));
480
                TxBytes += sizeof(AccConfig);
481
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, 0, 0))
482
                {
483
                        if(I2C_WaitForEndOfTransmission(100))
484
                        {
485
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
486
                        }
487
                }
488
        }
489
        return(retval);        
490
}
491
 
492
// ----------------------------------------------------------------------------------------
493
u8 NCMAG_GetAccConfig(void)
494
{
495
        u8 retval = 0;
496
        // try to catch the i2c buffer within 100 ms timeout
497
        if(I2C_LockBuffer(100))
498
        {
499
                u8 TxBytes = 0;
500
                I2C_Buffer[TxBytes++] = REG_ACC_CTRL1;
501
                if(I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccConfig, sizeof(AccConfig)))
502
                {
503
                        if(I2C_WaitForEndOfTransmission(100))
504
                        {
505
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
506
                        }
507
                }
508
        }
509
        return(retval);        
510
}
511
 
512
// ----------------------------------------------------------------------------------------
513
u8 NCMAG_GetIdentification(void)
514
{
515
        u8 retval = 0;
516
        // try to catch the i2c buffer within 100 ms timeout
517
        if(I2C_LockBuffer(100))
518
        {
519
                u16 TxBytes = 0;
520
                NCMAG_Identification.A = 0xFF;
521
                NCMAG_Identification.B = 0xFF;
522
                NCMAG_Identification.C = 0xFF;
523
                I2C_Buffer[TxBytes++] = REG_MAG_IDA;
248 killagreg 524
                // initiate transmission
253 killagreg 525
                if(I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateIdentification, sizeof(NCMAG_Identification)))
248 killagreg 526
                {
253 killagreg 527
                        if(I2C_WaitForEndOfTransmission(100))
252 killagreg 528
                        {
529
                                if(I2C_Error == I2C_ERROR_NONE) retval = 1;
530
                        }
248 killagreg 531
                }
242 killagreg 532
        }
253 killagreg 533
        return(retval);
242 killagreg 534
}
535
 
253 killagreg 536
// ----------------------------------------------------------------------------------------
537
void NCMAG_GetMagVector(void)
538
{
539
        // try to catch the I2C buffer within 0 ms
540
        if(I2C_LockBuffer(0))
541
        {
542
                u16 TxBytes = 0;
543
                // set register pointer
544
                I2C_Buffer[TxBytes++] = REG_MAG_DATAX_MSB;
545
                // initiate transmission
546
                I2C_Transmission(MAG_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateMagVector, sizeof(MagVector));
547
        }
548
}
549
 
242 killagreg 550
//----------------------------------------------------------------
253 killagreg 551
void NCMAG_GetAccVector(void)
243 killagreg 552
{
252 killagreg 553
        // try to catch the I2C buffer within 0 ms
554
        if(I2C_LockBuffer(0))
243 killagreg 555
        {
248 killagreg 556
                u16 TxBytes = 0;
243 killagreg 557
                // set register pointer
253 killagreg 558
                I2C_Buffer[TxBytes++] = REG_ACC_X_LSB;
243 killagreg 559
                // initiate transmission
254 killagreg 560
                I2C_Transmission(ACC_SLAVE_ADDRESS, TxBytes, &NCMAG_UpdateAccVector, sizeof(AccRawVector));
243 killagreg 561
        }
562
}
563
 
253 killagreg 564
// --------------------------------------------------------
292 killagreg 565
void NCMAG_Update(void)
243 killagreg 566
{
292 killagreg 567
        static u32 TimerUpdate = 0;
243 killagreg 568
 
254 killagreg 569
        if( (I2C_State == I2C_STATE_OFF) || !NCMAG_Present )
570
        {
571
                Compass_Heading = -1;
572
                return;
573
        }
253 killagreg 574
 
292 killagreg 575
        if(CheckDelay(TimerUpdate))
243 killagreg 576
        {
254 killagreg 577
                // check for new calibration state
578
                Compass_UpdateCalState();
579
                if(Compass_CalState) NCMAG_Calibrate();
580
                NCMAG_GetMagVector(); //Get new data;
292 killagreg 581
                TimerUpdate = SetDelay(20);    // every 20 ms are 50 Hz
243 killagreg 582
        }
583
}
584
 
254 killagreg 585
// --------------------------------------------------------
253 killagreg 586
u8 NCMAG_SelfTest(void)
243 killagreg 587
{
266 holgerb 588
        u8 msg[64];
275 killagreg 589
        static u8 done = 0;
266 holgerb 590
 
287 holgerb 591
        if(done) return(1);        // just make it once
275 killagreg 592
 
271 holgerb 593
        #define LIMITS(value, min, max) {min = (80 * value)/100; max = (120 * value)/100;}
243 killagreg 594
        u32 time;
253 killagreg 595
        s32 XMin = 0, XMax = 0, YMin = 0, YMax = 0, ZMin = 0, ZMax = 0;
596
        s16 xscale, yscale, zscale, scale_min, scale_max;
597
        u8 crb_gain, cra_rate;
598
        u8 i = 0, retval = 1;
243 killagreg 599
 
253 killagreg 600
        switch(NCMAG_MagType)
601
        {
602
                case MAG_TYPE_HMC5843:
603
                        crb_gain = HMC5843_CRB_GAIN_10GA;
604
                        cra_rate = HMC5843_CRA_RATE_50HZ;
605
                        xscale = HMC5843_TEST_XSCALE;
606
                        yscale = HMC5843_TEST_YSCALE;
607
                        zscale = HMC5843_TEST_ZSCALE;
608
                        break;
609
 
610
                case MAG_TYPE_LSM303DLH:
611
                        crb_gain = LSM303DLH_CRB_GAIN_13GA;
612
                        cra_rate = LSM303DLH_CRA_RATE_75HZ;
613
                        xscale = LSM303DLH_TEST_XSCALE;
614
                        yscale = LSM303DLH_TEST_YSCALE;
615
                        zscale = LSM303DLH_TEST_ZSCALE;
616
                        break;
617
 
618
                default:
619
                return(0);
620
        }
621
 
622
        MagConfig.cra = cra_rate|CRA_MODE_POSBIAS;
623
        MagConfig.crb = crb_gain;
624
        MagConfig.mode = MODE_CONTINUOUS;
625
        // activate positive bias field
626
        NCMAG_SetMagConfig();
251 killagreg 627
        // wait for stable readings
628
        time = SetDelay(50);
629
        while(!CheckDelay(time));
243 killagreg 630
        // averaging
253 killagreg 631
        #define AVERAGE 20
632
        for(i = 0; i<AVERAGE; i++)
243 killagreg 633
        {
253 killagreg 634
                NCMAG_GetMagVector();
243 killagreg 635
                time = SetDelay(20);
636
        while(!CheckDelay(time));
254 killagreg 637
                XMax += MagRawVector.X;
638
                YMax += MagRawVector.Y;
639
                ZMax += MagRawVector.Z;
243 killagreg 640
        }
253 killagreg 641
        MagConfig.cra = cra_rate|CRA_MODE_NEGBIAS;
642
        // activate positive bias field
643
        NCMAG_SetMagConfig();
251 killagreg 644
    // wait for stable readings
645
        time = SetDelay(50);
646
        while(!CheckDelay(time));
243 killagreg 647
        // averaging
253 killagreg 648
        for(i = 0; i < AVERAGE; i++)
243 killagreg 649
        {
253 killagreg 650
                NCMAG_GetMagVector();
243 killagreg 651
                time = SetDelay(20);
652
        while(!CheckDelay(time));
254 killagreg 653
                XMin += MagRawVector.X;
654
                YMin += MagRawVector.Y;
655
                ZMin += MagRawVector.Z;
243 killagreg 656
        }
657
        // setup final configuration
253 killagreg 658
        MagConfig.cra = cra_rate|CRA_MODE_NORMAL;
659
        // activate positive bias field
660
        NCMAG_SetMagConfig();
266 holgerb 661
        // check scale for all axes
243 killagreg 662
        // prepare scale limits
253 killagreg 663
        LIMITS(xscale, scale_min, scale_max);
267 holgerb 664
        xscale = (XMax - XMin)/(2*AVERAGE);
266 holgerb 665
        if((xscale > scale_max) || (xscale < scale_min))
666
     {
667
          retval = 0;
668
      sprintf(msg, "\r\n Value X: %d not %d-%d !", xscale, scale_min,scale_max);
669
          UART1_PutString(msg);
670
     }
267 holgerb 671
        LIMITS(yscale, scale_min, scale_max);
266 holgerb 672
        yscale = (YMax - YMin)/(2*AVERAGE);
673
        if((yscale > scale_max) || (yscale < scale_min))
674
     {
675
          retval = 0;
676
      sprintf(msg, "\r\n Value Y: %d not %d-%d !", yscale, scale_min,scale_max);
677
          UART1_PutString(msg);
678
     }
267 holgerb 679
        LIMITS(zscale, scale_min, scale_max);
266 holgerb 680
        zscale = (ZMax - ZMin)/(2*AVERAGE);
681
        if((zscale > scale_max) || (zscale < scale_min))      
682
         {
683
          retval = 0;
684
      sprintf(msg, "\r\n Value Z: %d not %d-%d !", zscale, scale_min,scale_max);
685
          UART1_PutString(msg);
686
     }
275 killagreg 687
        done = retval;
253 killagreg 688
        return(retval);
243 killagreg 689
}
690
 
691
 
692
//----------------------------------------------------------------
253 killagreg 693
u8 NCMAG_Init(void)
242 killagreg 694
{
695
        u8 msg[64];
252 killagreg 696
        u8 retval = 0;
242 killagreg 697
        u8 repeat;
698
 
253 killagreg 699
        NCMAG_Present = 0;
700
        NCMAG_MagType = MAG_TYPE_HMC5843;       // assuming having an HMC5843
701
        // polling for LSM302DLH option
702
        repeat = 0;
703
        do
704
        {
705
                retval = NCMAG_GetAccConfig();
706
                if(retval) break; // break loop on success
707
                UART1_PutString(".");
708
                repeat++;
709
        }while(repeat < 3);
710
        if(retval) NCMAG_MagType = MAG_TYPE_LSM303DLH; // must be a LSM303DLH
242 killagreg 711
        // polling of identification
712
        repeat = 0;
713
        do
714
        {
253 killagreg 715
                retval = NCMAG_GetIdentification();
252 killagreg 716
                if(retval) break; // break loop on success
242 killagreg 717
                UART1_PutString(".");
718
                repeat++;
252 killagreg 719
        }while(repeat < 12);
253 killagreg 720
        // if we got an answer to id request
252 killagreg 721
        if(retval)
242 killagreg 722
        {
253 killagreg 723
                u8 n1[] = "HMC5843";
724
                u8 n2[] = "LSM303DLH";
725
                u8* pn;
726
                if(NCMAG_MagType == MAG_TYPE_LSM303DLH) pn = n2;
727
                else pn = n1;
728
                sprintf(msg, " %s ID%d/%d/%d", pn, NCMAG_Identification.A, NCMAG_Identification.B, NCMAG_Identification.C);
242 killagreg 729
                UART1_PutString(msg);
253 killagreg 730
                if (    (NCMAG_Identification.A == MAG_IDA)
731
                     && (NCMAG_Identification.B == MAG_IDB)
732
                         && (NCMAG_Identification.C == MAG_IDC))
242 killagreg 733
                {
268 killagreg 734
                        NCMAG_Present = 1;
253 killagreg 735
                        if(!NCMAG_SelfTest())
243 killagreg 736
                        {
312 holgerb 737
                                UART1_PutString(" Selftest failed!!!!!!!!!!!!!!!!!!!!");
243 killagreg 738
                                LED_RED_ON;
268 killagreg 739
                                NCMAG_IsCalibrated = 0;
243 killagreg 740
                        }
254 killagreg 741
                        else
742
                        {
264 killagreg 743
                                if(EEPROM_Init())
744
                                {
745
                                        NCMAG_IsCalibrated = NCMag_CalibrationRead();
746
                                        if(!NCMAG_IsCalibrated) UART1_PutString("\r\n Not calibrated!");
747
                                }
312 holgerb 748
                                else UART1_PutString("\r\n Calibration data not available!!!!!!!!!!!!!!!");
254 killagreg 749
                        }
242 killagreg 750
                }
751
                else
752
                {
254 killagreg 753
                        UART1_PutString("\n\r Not compatible!");
256 killagreg 754
                        UART_VersionInfo.HardwareError[0] |= NC_ERROR0_COMPASS_INCOMPATIBLE;
242 killagreg 755
                        LED_RED_ON;
756
                }
757
        }
253 killagreg 758
        else // nothing found
759
        {
760
                NCMAG_MagType = MAG_TYPE_NONE;
761
                UART1_PutString("not found!");  
762
        }
763
        return(NCMAG_Present);
242 killagreg 764
}
765