Subversion Repositories FlightCtrl

Rev

Rev 2069 | Rev 2117 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
#include <avr/io.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
4
#include "rc.h"
5
#include "attitude.h"
6
 
2069 - 7
#define COARSERESOLUTION 1
1612 dongfang 8
 
2039 - 9
#ifdef COARSERESOLUTION
1980 - 10
#define NEUTRAL_PULSELENGTH 938
2070 - 11
#define STABILIZATION_LOG_DIVIDER 6
1980 - 12
#define SERVOLIMIT 500
13
#define SCALE_FACTOR 4
14
#define CS2 ((1<<CS21)|(1<<CS20))
2062 - 15
 
1980 - 16
#else
2062 - 17
 
1980 - 18
#define NEUTRAL_PULSELENGTH 3750
2070 - 19
#define STABILIZATION_LOG_DIVIDER 4
1980 - 20
#define SERVOLIMIT 2000
21
#define SCALE_FACTOR 16
2062 - 22
#define CS2 (1<<CS21)
1980 - 23
#endif
24
 
25
#define MAX_SERVOS 8
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
29
 
30
//volatile uint8_t servoActive = 0;
31
volatile uint8_t recalculateServoTimes = 0;
32
volatile uint16_t servoValues[MAX_SERVOS];
33
volatile uint16_t previousManualValues[2];
34
 
1612 dongfang 35
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
36
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
37
 
38
/*****************************************************
2067 - 39
 *              Initialize Timer 2
1612 dongfang 40
 *****************************************************/
41
void timer2_init(void) {
2067 - 42
    uint8_t sreg = SREG;
1612 dongfang 43
 
2067 - 44
    // disable all interrupts before reconfiguration
45
    cli();
1612 dongfang 46
 
2067 - 47
    // set PD7 as output of the PWM for pitch servo
48
    DDRD |= (1 << DDD7);
49
    PORTD &= ~(1 << PORTD7); // set PD7 to low
1612 dongfang 50
 
2067 - 51
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
52
    HEF4017R_ON; // enable reset
1612 dongfang 53
 
2067 - 54
    // Timer/Counter 2 Control Register A
55
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
56
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
57
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
58
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
59
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
1612 dongfang 60
 
2067 - 61
    // Timer/Counter 2 Control Register B
1612 dongfang 62
 
2067 - 63
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
64
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
65
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
66
 
67
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
68
    TCCR2B |= CS2;
69
 
70
    // Initialize the Timer/Counter 2 Register
71
    TCNT2 = 0;
72
 
73
    // Initialize the Output Compare Register A used for signal generation on port PD7.
74
    OCR2A = 255;
75
 
76
    // Timer/Counter 2 Interrupt Mask Register
77
    // Enable timer output compare match A Interrupt only
78
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
79
    TIMSK2 |= (1 << OCIE2A);
80
 
81
    for (uint8_t axis=0; axis<2; axis++)
82
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
83
 
84
    SREG = sreg;
1612 dongfang 85
}
86
 
1980 - 87
/*
88
void servo_On(void) {
2067 - 89
    servoActive = 1;
1612 dongfang 90
}
1980 - 91
void servo_Off(void) {
2067 - 92
    servoActive = 0;
93
    HEF4017R_ON; // enable reset
1612 dongfang 94
}
1980 - 95
*/
1612 dongfang 96
 
97
/*****************************************************
2067 - 98
 * Control Servo Position
1612 dongfang 99
 *****************************************************/
1821 - 100
 
1980 - 101
/*typedef struct {
102
  uint8_t manualControl;
103
  uint8_t compensationFactor;
104
  uint8_t minValue;
105
  uint8_t maxValue;
106
  uint8_t flags;
107
} servo_t;*/
1612 dongfang 108
 
1980 - 109
int16_t calculateStabilizedServoAxis(uint8_t axis) {
2070 - 110
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
1980 - 111
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
112
  // That is a divisor of about 1<<14. Same conclusion as H&I.
113
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
2070 - 114
  value = value >> 8;
1980 - 115
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
2067 - 116
    return -value;
1980 - 117
  return value;
118
}
1821 - 119
 
1980 - 120
// With constant-speed limitation.
121
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
122
  int16_t diff = manualValue - previousManualValues[axis];
123
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
124
  if (diff > maxSpeed) diff = maxSpeed;
125
  else if (diff < -maxSpeed) diff = -maxSpeed;
126
  manualValue = previousManualValues[axis] + diff;
127
  previousManualValues[axis] = manualValue;
128
  return manualValue;
129
}
1612 dongfang 130
 
1980 - 131
// add stabilization and manual, apply soft position limits.
132
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
133
int16_t featuredServoValue(uint8_t axis) {
134
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
135
  value += calculateStabilizedServoAxis(axis);
136
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
137
  if (value < limit) value = limit;
138
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
139
  if (value > limit) value = limit;
140
  return value;
141
}
1612 dongfang 142
 
1980 - 143
uint16_t servoValue(uint8_t axis) {
144
  int16_t value;
145
  if (axis<2) value = featuredServoValue(axis);
146
  else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8.
2067 - 147
  // Shift out of the [0..255*SCALE_FACTOR] space
1980 - 148
  value -= (128 * SCALE_FACTOR);
149
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
150
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
151
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
152
  return value + NEUTRAL_PULSELENGTH;
153
}
1821 - 154
 
1980 - 155
void calculateServoValues(void) {
156
  if (!recalculateServoTimes) return;
157
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
2067 - 158
    servoValues[axis] = servoValue(axis);
159
  }
1980 - 160
  recalculateServoTimes = 0;
161
}
1821 - 162
 
1980 - 163
ISR(TIMER2_COMPA_vect) {
164
  static uint16_t remainingPulseTime;
165
  static uint8_t servoIndex = 0;
166
  static uint16_t sumOfPulseTimes = 0;
2067 - 167
 
1980 - 168
  if (!remainingPulseTime) {
169
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
170
    if (servoIndex < staticParams.servoCount) {
171
      // There are more signals to output.
172
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
173
      servoIndex++;
174
    } else {
175
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
176
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
177
      sumOfPulseTimes = servoIndex = 0;
178
      recalculateServoTimes = 1;
179
      HEF4017R_ON;
180
    }
181
  }
1821 - 182
 
1980 - 183
  // Schedule the next OCR2A event. The counter is already reset at this time.
184
  if (remainingPulseTime > 256+128) {
2067 - 185
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
1980 - 186
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
187
    OCR2A = 255;
188
    TCCR2A &= ~(1<<COM2A0);
189
    remainingPulseTime-=256;
190
  } else if (remainingPulseTime > 256) {
2067 - 191
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
1980 - 192
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
193
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
194
    remainingPulseTime-=128;
195
    OCR2A=127;
196
  } else {
197
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
198
    TCCR2A |= (1<<COM2A0);
199
    OCR2A = remainingPulseTime-1;
200
    remainingPulseTime=0;
201
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
202
  }
1612 dongfang 203
}